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e Hilbert spaces X and ), with norms ||.]|.
e Operator F : X — ), continuously Fréchet differentiable.
e Noisy data y° € ) and noise level § € R™.

F(x) =y
The noisy data y° satisfies
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Nonlinear Hammerstein operator:

F:HY0,1] — L?[0,1], F(x)(s) := /01 k(s, t)d(x(t),t)dt.

Attenuated Radon transform (SPECT):

oo

A(f, 1)(s,w) ::/Rf(swL—i-tw)exp —/u(swL—Frw)dr dt.

t
Further examples: CT, MRI, MRAI, PI, EIT, AO, ...
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Tikhonov Regularization

Required:

e Initial guess xp and regularization parameter a.

The method:

. [1
min 3 5 1FG) =y |F+ 5 llx = ol

Properties:
+ Weak conditions necessary for analysis.
+ Very versatile (different norms, regularization functionals).
— Computation of the minimum « HOW??
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Landweber lteration

Required:

e Initial guess xp and stopping criterion.

The method:

Xern = xe + F'()"(v° = F(x0)).

Properties:
+ Easy to implement.
— Strong conditions necessary for analysis.

— Slow convergence, i.e., lots of iterations required.
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Iteratively regularized Gauss-Newton method
Xear = X+ (F/OQ) F' () + ) (F'0)* (v = F(xQ))
+ak(xo — xp)) -

Properties:
+ Require much less iterations.

— Very strong conditions necessary for analysis.

Two-Point Gradient Methods Simon Hubmer



Introduction
0000e0

Introduction and Motivation

Second Order Methods

Levenberg-Marquardt method

Xer = X+ (F/() " F' () + ) T ()" (v° — F(xR)) -
Iteratively regularized Gauss-Newton method

Xep1 = X+ (F(R)"F/(x) + aucd ) THF ()" (v° = F(x2))

+ak(xo — X7))-

Properties:
+ Require much less iterations.
— Very strong conditions necessary for analysis.
— Require inversion of (F'(x)*F’(x) + al) in every iteration step
— difficult and takes time.
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Acceleration Techniques

e Landweber lteration with operator approximation:

Xep1 = X+ F ) (0 = F(xR)) -

e Landweber Iteration in Hilbert Scales:

Xes1 =X + L 2F () (v° = F(xQ)) -

e Landweber lteration with intelligent stepsizes:
1 1) N =) ) 1
Xier1 = Xk + G F ()" (v — F(xg)) -
Examples: Steepest Descent, Barzilai-Borwein, Neubauer.
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Connection: Residual Functional

ot~ e

e Tikhonov = Minimize{ ®(x) + Regularization(x) }.
e Landweber = Gradient Descent for ®(x).
e Levenberg Marquardt = 2nd order descent for ®(x).

o lteratively regularized Gauss-Newton
= 2nd order descent for ®(x) + Tikhonov Type Stabilization.
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Nesterov Acceleration

General minimization problem

mXin {®(x)} .

Yurii Nesterov: Instead of using gradient descent:

Xk+1 = Xk — qu)(xk) s

use the following iteration:

Z) = Xk + ki;il(xk — Xk-1) ,

Xk+1 = Zk — wVCD(zk) .
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Motivating Picture

Zk = X) + %(Xk — Xk—l)

Xk4+1 — Zk — wVCD(zk)
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Two-Point Gradient (TPG) Methods

What's so good about that?

e Assume: O is convex.

¢ Gradient Descent:

904 = o< = o(k™)

e Nesterov Acceleration:

|00a) - o) = ok 2)

@ H. Attouch, J. Peypouquet, The rate of convergence of Nesterov's accelerated
forward-backward method is actually o(k~2), SIAM Journal on Optimization

@ Y. Nesterov, A method of solving a convex programming problem with
convergence rate O(1/k?), Soviet Mathematics Doklady, 27, 2, 1983
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For our problem, the method reads as

5 5
Zp = xp + k+ 1(Xk Xk-1) ;
5 5 5
Xk+1 = Z) + o) F'(z0)*(y° — F(2})) -

There is a generalization to deal with
min{®(x) + W(x)},
which reads as

Z = Xk + k+ 1(Xk_Xk 1),

Xk+1 = proxy (zx —wVed(zy)) .
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Two-Point Gradient (TPG) Methods

Application to Nonlinear lll-Posed Problems

For our problem, the method reads as

Zp = xp + k+ (Xk X 1),
Xop1 =20+ o) F'(Z)(v° — F(2)).-
There is a generalization to deal with
min{®(x) + W(x)},
which reads as

Zk—Xk+k+ (Xk—Xk 1)

Xk+1 = proxy (zx —wVed(zy)) .
= Sparsity Constraints, Projections, etc.
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Two-Point Gradient (TPG) Methods

Neubauer strikes again

e Assumptions: Linear operator F(x) = Tx, source condition
xt € R((T*T)"), a priori stopping rule.

) Ingugé,then

KO) =06 57),  ||xis) — || = o(67)..

o If p> %,then

K(5) = O(6 773 | Hx;j(é) - XTH — o(62443).

e Similar results also when using the discrepancy principle.

@ A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed
problems,
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Two-Point Gradient (TPG) Methods

How about general methods of the form

20 =X+ M08 — X))

5 5 5 PN 5
Xer1 = 2k + g F'(22)"(v° — F(2)) .

Question: Do they converge under standard assumptions?

e Yes for linear problems and )\i = ki;il < Neubauer

e Yes for )\i — 0 fast enough.

e Yes for some explicit choices of )\i.

Yes for )\i defined via a backtracking search.

k—1

. : 6 _
Open: Convergence for nonlinear problems and )\ = |
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Convergence Analysis

Convergence Conditions
¢ Nonlinearity Condition
[F(x) = F(X) = F/()(x = R)|| < nlIF(x) = FR)II

1
X, X € Bap(x0) C D(F), n< -

e Parameters 0 < )\i < 1 and stepsizes ai > Qmin > 0 satisfy
0%+ 0 o = = (145 ) o Fad -
Ha [Py (e - )| <o.

o Parameters )\i satisfy

o
Z)\2 Hx,? — X,?le < 00.
k=0

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
0@000

Convergence Analysis

Some Possible Choices

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
0@000

Convergence Analysis

Some Possible Choices

For the stepsizes aj, one can use

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
0@000

Convergence Analysis

Some Possible Choices

For the stepsizes aj, one can use

e a constant stepsize Oéi = w,

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
0@000

Convergence Analysis

Some Possible Choices

For the stepsizes aj, one can use

e a constant stepsize Oéi = w,

o the steepest descent stepsize or the minimal error stepsize.

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
0@000

Convergence Analysis

Some Possible Choices

For the stepsizes aj, one can use

e a constant stepsize ai = w,
o the steepest descent stepsize or the minimal error stepsize.

The parameters )\i can be chosen

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
0@000
Convergence Analysis

Some Possible Choices

For the stepsizes aj, one can use
e a constant stepsize o = w,

o the steepest descent stepsize or the minimal error stepsize.
The parameters )\i can be chosen

e as any sequence decaying sufficiently fast,

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
0@000

Convergence Analysis

Some Possible Choices

For the stepsizes aj, one can use
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The parameters )\i can be chosen

e as any sequence decaying sufficiently fast,

o explicitly via
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)\i:min 1+\/1+ V(7o) 1;,
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Convergence Analysis

Some Possible Choices

For the stepsizes aj, one can use

e a constant stepsize Oéi = w,

o the steepest descent stepsize or the minimal error stepsize.

The parameters )\i can be chosen
e as any sequence decaying sufficiently fast,

o explicitly via

_ 1 1 V(70)>?
X = —S4 )+ 1y,
A W w2 | — x4

e via a backtracking algorithm.
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Main Result

Discrepancy Principle:

0 < k < ke = ku(6,y%).

|y =Pt < o< -

Under the above assumptions, there holds

I|m zk (5.y5) = X -
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Convergence Analysis

Main Result

Discrepancy Principle:

Vo =FE|smo< |y -FED| .  o<k<k=k(5y).

Under the above assumptions, there holds

LS
gl—% Zhu(B,y0) = X
If additionally N'(F'(x")) € N(F'(x)), then we have

. ) _ T
im Zi @y =X
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ka+1 — X|| < ka — Xx

® The discrepancy principle yields a well defined stopping rule.
© For exact data, i.e., for § = 0 or y = y%, one has

lim x,? — Xy
k—o0

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
[e]e]e] Jo]

Convergence Analysis

Proof Steps
@ While the discrepancy principle is not satisfied,

5 5
ka+1 — X|| < ka — Xx

® The discrepancy principle yields a well defined stopping rule.
© For exact data, i.e., for § = 0 or y = y%, one has

lim x,? — Xy and lim z,? — X -
k—o0 k—o0
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Convergence Analysis

Proof Steps
@ While the discrepancy principle is not satisfied,

5 5
ka+1 — X|| < ka — Xx

® The discrepancy principle yields a well defined stopping rule.
© For exact data, i.e., for § = 0 or y = y%, one has

lim x,? — Xy and lim 2,9 — X -
k—o0 k—o0

O Combine everything and use continuity to get

lim 20 = Xy .
5_>0 k*(57y6) *
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Convergence Analysis

Proof Steps
@ While the discrepancy principle is not satisfied,

5 5
ka+1 — X|| < ka — Xx

® The discrepancy principle yields a well defined stopping rule.
© For exact data, i.e., for § = 0 or y = y%, one has

lim x,? — Xy and lim 2,9 — X -
k—o0 k—o0

O Combine everything and use continuity to get

lim 20 = Xy .
5_>0 k*(57y6) *

0 If N(F'(x")) € N(F'(x)), use a special property of x'.



Convergence Analysis
Q000e

Convergence Analysis

Backtracking Algorithm

Two-Point Gradient Methods Simon Hubmer



Convergence Analysis
Q000e

Convergence Analysis

Backtracking Algorithm

For many stepsizes ai, the coupling condition above reduces to
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Convergence Analysis

Backtracking Algorithm

For many stepsizes ai, the coupling condition above reduces to

2
NG+ 1) [ = x|

v 2
<—af |y - FE)|| -
u
Idea: Given a summable sequence (g,)n, choose )\i via

qny

)\6 = min S ——
: Hxi - X£—1|

) 1 )
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Convergence Analysis

Backtracking Algorithm

For many stepsizes ai, the coupling condition above reduces to

2
NG+ 1) [ = x|

v 2
<—af |y - FE)|| -
u
Idea: Given a summable sequence (g,)n, choose )\i via

Ao = min an,l} )
: {Hxi_xf—ﬂ

where the subsequence (qp, )« is chosen such that the above
inequality is satisfied.
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Convergence Analysis
Q000e

Convergence Analysis

Backtracking Algorithm

For many stepsizes ai, the coupling condition above reduces to

2
NG+ 1) [ = x|

v 2
<—af |y - FE)|| -
u
Idea: Given a summable sequence (g,)n, choose )\i via

Ao = min an,l} )
: {Hxi_xf—ﬂ

where the subsequence (qp, )« is chosen such that the above
inequality is satisfied.With this choice, one also has

oo
Z)\2 Hx,? —x,?_lH < 0.
k=0
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Figure: Activity function f, (left) and attenuation function p, (right).
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R t

Choice of ) | k. | Time
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Backtracking | 631 | 90s
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Nesterov 205 | 30s
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Example Problem: SPECT

A(f, p)(s,w) ::/f(swL—i—tw)exp —/,u(swL—i—rw)dr dt.
R t

Choice of ) | k. | Time
M =0 3433 | 489 s
Backtracking | 631 | 90s
Explicit 345 | T7s
Nesterov 205 | 30s

@ S. Hubmer, R. Ramlau Convergence Analysis of a Two-Point Gradient Method
for Nonlinear lll-Posed Problems,
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Conclusion

Two-Point Gradient (TPG) methods

zp = xg + X0k — X0 1).

5 5 5 PN b
Xey1 = 2k + g F'(22)"(v° = F(2)),

e converge under standard assumptions,
e are very easy to implement,

e require no more computation time than Landweber iteration,

and lead to a considerable speed-up in practise.
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Conclusion

Future Work

e Convergence rates of the form

Hx,‘ik —XTH :(’)<52i%> , ko (8, y°) = ().

Nonlinear problems and original Nesterov parameter

k—1
A= ———.
KT k+a—1

Analysis only under local convexity assumption.

Weakening of convexity assumption to, e.g., quasi-convexity.
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Thank you for your attention!
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