Introduction 000000 Numerical Results

Conclusion 00

Two-Point Gradient Methods

Nonlinear III-Posed Problems

Simon Hubmer

Johannes Kepler University, Linz

4.4.2017, DTU Lyngby, HD-Tomo Seminar

Joint work with: R. Ramlau

Two-Point Gradient Methods

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
•00000				
Introduction and Motiva	tion			

Two-Point Gradient Methods

<ロト < 部ト < 注ト < 注</p>

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
•00000				
Introduction and Motivat	ion			

• Hilbert spaces \mathcal{X} and \mathcal{Y} , with norms $\|.\|$.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
●00000	0000000		00000	00
Introduction and Motivat	ion			

- Hilbert spaces \mathcal{X} and \mathcal{Y} , with norms $\|.\|$.
- Operator $F : \mathcal{X} \to \mathcal{Y}$, continuously Fréchet differentiable.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
•00000				
Introduction and Motivat	ion			

- Hilbert spaces \mathcal{X} and \mathcal{Y} , with norms $\|.\|$.
- Operator $F : \mathcal{X} \to \mathcal{Y}$, continuously Fréchet differentiable.
- Noisy data $y^{\delta} \in \mathcal{Y}$ and noise level $\delta \in \mathbb{R}^+$.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	ion			

- Hilbert spaces \mathcal{X} and \mathcal{Y} , with norms $\|.\|$.
- Operator $F : \mathcal{X} \to \mathcal{Y}$, continuously Fréchet differentiable.
- Noisy data $y^{\delta} \in \mathcal{Y}$ and noise level $\delta \in \mathbb{R}^+$.

Problem

$$F(x) = y^{(\delta)}$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000	0000000	00000	00000	00
Introduction and Motivat	ion			

- Hilbert spaces \mathcal{X} and \mathcal{Y} , with norms $\|.\|$.
- Operator $F : \mathcal{X} \to \mathcal{Y}$, continuously Fréchet differentiable.
- Noisy data $y^{\delta} \in \mathcal{Y}$ and noise level $\delta \in \mathbb{R}^+$.

Problem

$$F(x) = y^{(\delta)}$$

The noisy data y^{δ} satisfies

$$\left\| y - y^{\delta} \right\| \leq \delta \, .$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motiva	tion			

Two-Point Gradient Methods

イロト イ団ト イヨト イヨト

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	tion			

Nonlinear Hammerstein operator:

$$F: H^1[0,1] \to L^2[0,1], \quad F(x)(s) := \int_0^1 k(s,t) \Phi(x(t),t) \, dt \, .$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	ion			

Nonlinear Hammerstein operator:

$$F: H^1[0,1] \to L^2[0,1], \quad F(x)(s) := \int_0^1 k(s,t) \Phi(x(t),t) dt.$$

Attenuated Radon transform (SPECT):

$$A(f,\mu)(s,\omega) := \int_{\mathbb{R}} f(s\omega^{\perp} + t\omega) \exp\left(-\int_{t}^{\infty} \mu(s\omega^{\perp} + r\omega) \, dr\right) \, dt \, .$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	ion			

Nonlinear Hammerstein operator:

$$F: H^1[0,1] \to L^2[0,1], \quad F(x)(s) := \int_0^1 k(s,t) \Phi(x(t),t) dt.$$

Attenuated Radon transform (SPECT):

$$A(f,\mu)(s,\omega) := \int_{\mathbb{R}} f(s\omega^{\perp} + t\omega) \exp\left(-\int_{t}^{\infty} \mu(s\omega^{\perp} + r\omega) dr\right) dt.$$

Further examples: CT, MRI, MRAI, PI, EIT, AO, ...

Introduction 00●000	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion
Introduction and Motiva	tion			

Two-Point Gradient Methods

Simon Hubmer

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	00
Introduction and Motiva	tion			

Required:

• Initial guess x_0 and regularization parameter α .

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	tion			

Required:

• Initial guess x_0 and regularization parameter α .

The method:

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^{2} + \frac{\alpha}{2} \left\| x - x_{0} \right\|^{2} \right\} \,.$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	tion			

Required:

• Initial guess x_0 and regularization parameter α .

The method:

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^{2} + \frac{\alpha}{2} \left\| x - x_{0} \right\|^{2} \right\} \,.$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	tion			

Required:

• Initial guess x_0 and regularization parameter α .

The method:

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^{2} + \frac{\alpha}{2} \left\| x - x_{0} \right\|^{2} \right\} \,.$$

Properties:

 $+\,$ Weak conditions necessary for analysis.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	tion			

Required:

• Initial guess x_0 and regularization parameter α .

The method:

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^{2} + \frac{\alpha}{2} \left\| x - x_{0} \right\|^{2} \right\} \,.$$

- + Weak conditions necessary for analysis.
- + Very versatile (different norms, regularization functionals).

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000				
Introduction and Motivat	tion			

Required:

• Initial guess x_0 and regularization parameter α .

The method:

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^{2} + \frac{\alpha}{2} \left\| x - x_{0} \right\|^{2} \right\} .$$

- + Weak conditions necessary for analysis.
- + Very versatile (different norms, regularization functionals).
- Computation of the minimum \leftrightarrow HOW??

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000				
Introduction and Motiva	tion			

Two-Point Gradient Methods

Simon Hubmer

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000				
Introduction and Motivat	tion			

Required:

• Initial guess x_0 and stopping criterion.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	00000	00000	
Introduction and Motivat	ion			

Required:

• Initial guess x_0 and stopping criterion.

The method:

$$x_{k+1}^{\delta} = x_k^{\delta} + F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

Two-Point Gradient Methods

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	00000	00000	
Introduction and Motivat	ion			

Required:

• Initial guess x_0 and stopping criterion.

The method:

$$x_{k+1}^{\delta} = x_k^{\delta} + F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	00000	00000	
Introduction and Motivat	ion			

Required:

• Initial guess x_0 and stopping criterion.

The method:

$$x_{k+1}^{\delta} = x_k^{\delta} + F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

Properties:

+ Easy to implement.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	00000	00000	
Introduction and Motivat	ion			

Required:

• Initial guess x_0 and stopping criterion.

The method:

$$x_{k+1}^{\delta} = x_k^{\delta} + F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

- + Easy to implement.
- Strong conditions necessary for analysis.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	00000	00000	
Introduction and Motivat	ion			

Required:

• Initial guess x_0 and stopping criterion.

The method:

$$x_{k+1}^{\delta} = x_k^{\delta} + F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

- + Easy to implement.
- Strong conditions necessary for analysis.
- Slow convergence, i.e., lots of iterations required.

Introduction 0000●0	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion
Introduction and Motiva	tion			

Two-Point Gradient Methods

Simon Hubmer

Introduction	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion
Introduction and Motivat	tion			

Levenberg-Marquardt method

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	000000	00000	00000	00
Introduction and Motivat	tion			

Levenberg-Marquardt method

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Iteratively regularized Gauss-Newton method

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} + \left(F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I \right)^{-1} \left(F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})) \right. \\ &+ \alpha_k (x_0 - x_k^{\delta}) \right). \end{aligned}$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	00000	00000	
Introduction and Motivat	ion			

Levenberg-Marquardt method

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Iteratively regularized Gauss-Newton method

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} + \left(F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I \right)^{-1} \left(F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})) \right. \\ &+ \alpha_k (x_0 - x_k^{\delta}) \right). \end{aligned}$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	000000	00000	00000	00
Introduction and Motivat	tion			

Levenberg-Marquardt method

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Iteratively regularized Gauss-Newton method

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} + \left(F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I \right)^{-1} \left(F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})) \right. \\ &+ \alpha_k (x_0 - x_k^{\delta}) \right). \end{aligned}$$

Properties:

+ Require much less iterations.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	000000	00000	00000	00
Introduction and Motivat	tion			

Levenberg-Marquardt method

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Iteratively regularized Gauss-Newton method

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} + \left(F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I \right)^{-1} \left(F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})) \right. \\ &+ \alpha_k (x_0 - x_k^{\delta}) \right). \end{aligned}$$

- + Require much less iterations.
- Very strong conditions necessary for analysis.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	00000	00000	00
Introduction and Motivat	tion			

Levenberg-Marquardt method

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Iteratively regularized Gauss-Newton method

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} + \left(F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha_k I \right)^{-1} \left(F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})) \right. \\ &+ \alpha_k (x_0 - x_k^{\delta}) \right). \end{aligned}$$

- + Require much less iterations.
- Very strong conditions necessary for analysis.
- Require inversion of $(F'(x)^*F'(x) + \alpha I)$ in every iteration step \rightarrow difficult and takes time.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000	0000000	00000	00000	00
Introduction and Motiva	ition			

Two-Point Gradient Methods

Simon Hubmer

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000●	0000000		00000	00
Introduction and Motiva	tion			

• Landweber Iteration with operator approximation:

$$x_{k+1}^{\delta} = x_k^{\delta} + ilde{\mathcal{F}}'(x_k^{\delta})^*(y^{\delta} - ilde{\mathcal{F}}(x_k^{\delta})) \,.$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000●	0000000		00000	00
Introduction and Motivat	ion			

• Landweber Iteration with operator approximation:

$$x_{k+1}^{\delta} = x_k^{\delta} + \tilde{F}'(x_k^{\delta})^*(y^{\delta} - \tilde{F}(x_k^{\delta}))$$

• Landweber Iteration in Hilbert Scales:

$$x_{k+1}^{\delta} = x_k^{\delta} + L^{-2s} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
00000●	0000000		00000	00
Introduction and Motivat	ion			

• Landweber Iteration with operator approximation:

$$x_{k+1}^{\delta} = x_k^{\delta} + \tilde{F}'(x_k^{\delta})^*(y^{\delta} - \tilde{F}(x_k^{\delta})).$$

• Landweber Iteration in Hilbert Scales:

$$x_{k+1}^{\delta} = x_k^{\delta} + L^{-2s} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

• Landweber Iteration with intelligent stepsizes:

$$x_{k+1}^{\delta} = x_k^{\delta} + \alpha_k^{\delta} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Examples: Steepest Descent, Barzilai-Borwein, Neubauer.
Introduction 000000	TPG Methods ●000000	Convergence Analysis	Numerical Results 00000	Conclusion
Two-Point Gradient (TP	G) Methods			

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

→ 3 → 4 3

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	●000000		00000	00
Two-Point Gradient (TP	G) Methods			

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

• Tikhonov = Minimize{ $\Phi(x)$ + Regularization(x) }.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	●000000		00000	00
Two-Point Gradient (TP	G) Methods			

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

- Tikhonov = Minimize{ $\Phi(x)$ + Regularization(x) }.
- Landweber = Gradient Descent for $\Phi(x)$.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	●000000		00000	00
Two-Point Gradient (TP	G) Methods			

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

- Tikhonov = Minimize{ $\Phi(x)$ + Regularization(x) }.
- Landweber = Gradient Descent for $\Phi(x)$.
- Levenberg Marquardt = 2nd order descent for $\Phi(x)$.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	●000000		00000	00
Two-Point Gradient (TP	G) Methods			

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

- Tikhonov = Minimize{ $\Phi(x)$ + Regularization(x) }.
- Landweber = Gradient Descent for $\Phi(x)$.
- Levenberg Marquardt = 2nd order descent for $\Phi(x)$.
- Iteratively regularized Gauss-Newton
 - = 2nd order descent for $\Phi(x)$ + Tikhonov Type Stabilization.

Introduction 000000	TPG Methods 0●00000	Convergence Analysis	Numerical Results 00000	Conclusion
Two-Point Gradient (TP	G) Methods			

Two-Point Gradient Methods

Simon Hubmer

▶ ★ 문 ▶ ★ 문

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	o●ooooo		00000	00
Two-Point Gradient (TP	G) Methods			

General minimization problem

 $\min_x \left\{ \Phi(x) \right\} \, .$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0●00000		00000	00
Two-Point Gradient (T	PG) Methods			

General minimization problem

 $\min_{x} \left\{ \Phi(x) \right\} \, .$

Yurii Nesterov: Instead of using gradient descent:

$$x_{k+1} = x_k - \omega \nabla \Phi(x_k),$$

Introduction 000000	TPG Methods o●ooooo	Convergence Analysis	Numerical Results 00000	Conclusion
Two-Point Gradient (TP	G) Methods			

General minimization problem

$$\min_{x} \left\{ \Phi(x) \right\} \, .$$

Yurii Nesterov: Instead of using gradient descent:

$$x_{k+1} = x_k - \omega \nabla \Phi(x_k),$$

use the following iteration:

$$egin{aligned} & z_k = x_k + rac{k-1}{k+lpha-1}(x_k - x_{k-1})\,, \ & x_{k+1} = z_k - \omega
abla \Phi(z_k)\,. \end{aligned}$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	00●0000		00000	00
Two-Point Gradient (TP	G) Methods			

Two-Point Gradient Methods

Simon Hubmer

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	00●0000		00000	00
Two-Point Gradient (TP	G) Methods			

 x_{k-1}

Simon Hubmer

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	00●0000		00000	00
Two-Point Gradient	(TPG) Methods			

$$\tilde{x}_{k+1} = x_k - \omega \nabla \Phi(x_k)$$

문 🕨 🗶 문

Introduction 000000	TPG Methods 00●0000	Convergence Analysis	Numerical Results	Conclusion 00
Two-Point Gradient (TP	G) Methods			

$$z_k = x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1})$$

Two-Point Gradient Methods

Simon Hubmer

Introduction 000000	TPG Methods 00●0000	Convergence Analysis	Numerical Results	Conclusion 00
Two-Point Gradient (TP	G) Methods			

$$egin{aligned} & z_k = x_k + rac{k-1}{k+lpha-1}(x_k - x_{k-1}) \ & x_{k+1} = z_k - \omega
abla \Phi(z_k) \end{aligned}$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	000●000		00000	00
Two-Point Gradien	it (TPG) Methods			

Two-Point Gradient Methods

Simon Hubmer

Introduction 000000	TPG Methods	Convergence Analysis	Numerical Results 00000	Conclusion 00
Two-Point Gradient (TP	G) Methods			

• Assume: Φ is convex.

Introduction 000000	TPG Methods	Convergence Analysis	Numerical Results 00000	Conclusion 00
Two-Point Gradient (TP	G) Methods			

- Assume: Φ is convex.
- Gradient Descent:

$$\left\|\Phi(x_k)-\Phi(x^{\dagger})\right\|=\mathcal{O}(k^{-1})$$

Introduction 000000	TPG Methods	Convergence Analysis	Numerical Results 00000	Conclusion 00
Two-Point Gradient (TP	G) Methods			

- Assume: Φ is convex.
- Gradient Descent:

$$\left\|\Phi(x_k)-\Phi(x^{\dagger})\right\|=\mathcal{O}(k^{-1})$$

• Nesterov Acceleration:

$$\left\|\Phi(x_k)-\Phi(x^{\dagger})\right\|=\mathcal{O}(k^{-2})$$

Introduction 000000	TPG Methods	Convergence Analysis	Numerical Results 00000	Conclusion 00
Two-Point Gradient (TP	G) Methods			

- Assume: Φ is convex.
- Gradient Descent:

$$\left\|\Phi(x_k)-\Phi(x^{\dagger})\right\|=\mathcal{O}(k^{-1})$$

• Nesterov Acceleration:

$$\left\|\Phi(x_k)-\Phi(x^{\dagger})\right\|=\mathcal{O}(k^{-2})$$

H. Attouch, J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually $o(k^{-2})$, SIAM Journal on Optimization

Y. Nesterov, A method of solving a convex programming problem with convergence rate $O(1/k^2)$, Soviet Mathematics Doklady, 27, 2, 1983

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	00
Two-Point Gradien	t (TPG) Methods			

Application to Nonlinear III-Posed Problems

Two-Point Gradient Methods

Simon Hubmer

Application to Nonlinear III-Posed Problems

For our problem, the method reads as

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+\alpha-1} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \, \mathsf{F}'(z_k^{\delta})^* (y^{\delta} - \mathsf{F}(z_k^{\delta})) \,. \end{split}$$

(日)

Application to Nonlinear III-Posed Problems

For our problem, the method reads as

$$\begin{aligned} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+\alpha-1} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \, F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{aligned}$$

There is a generalization to deal with

 $\min\{\Phi(x)+\Psi(x)\}\,,$

< ∃ →

Application to Nonlinear III-Posed Problems

For our problem, the method reads as

$$\begin{aligned} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+\alpha-1} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \, F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{aligned}$$

There is a generalization to deal with

 $\min\{\Phi(x)+\Psi(x)\}\,,$

which reads as

$$z_k = x_k + \frac{k-1}{k+\alpha-1} (x_k - x_{k-1}),$$

$$x_{k+1} = \operatorname{pros}_{\Psi} (z_k - \omega \nabla \Phi(z_k)).$$

.⊒ →

Application to Nonlinear III-Posed Problems

For our problem, the method reads as

$$\begin{aligned} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+\alpha-1} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \, F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{aligned}$$

There is a generalization to deal with

 $\min\{\Phi(x)+\Psi(x)\}\,,$

which reads as

$$z_k = x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1}),$$

$$x_{k+1} = \operatorname{pros}_{\Psi}(z_k - \omega \nabla \Phi(z_k)).$$

 \implies Sparsity Constraints, Projections, etc.

Introduction 000000	TPG Methods 00000●0	Convergence Analysis	Numerical Results	Conclusion
Two-Point Gradient (TP	G) Methods			

Introduction 000000	TPG Methods 00000●0	Convergence Analysis	Numerical Results	Conclusion 00
Two-Point Gradient (TP	G) Methods			

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	00000●0		00000	00
Two-Point Gradient (TP	G) Methods			

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

• If
$$0 \le \mu \le \frac{1}{2}$$
, then
 $k(\delta) = \mathcal{O}(\delta^{-\frac{1}{2\mu+1}}), \qquad \left\| x_{k(\delta)}^{\delta} - x^{\dagger} \right\| = o(\delta^{\frac{2\mu}{2\mu+1}}).$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	00000●0		00000	00
Two-Point Gradient (TP	G) Methods			

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

• If
$$0 \le \mu \le \frac{1}{2}$$
, then
 $k(\delta) = \mathcal{O}(\delta^{-\frac{1}{2\mu+1}}), \qquad \left\| x_{k(\delta)}^{\delta} - x^{\dagger} \right\| = o(\delta^{\frac{2\mu}{2\mu+1}}).$

• If
$$\mu > \frac{1}{2}$$
, then

$$k(\delta) = \mathcal{O}(\delta^{-rac{2}{2\mu+3}}), \qquad \left\|x_{k(\delta)}^{\delta} - x^{\dagger}\right\| = o(\delta^{rac{2\mu+1}{2\mu+3}}).$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	00000●0		00000	00
Two-Point Gradient (TP	G) Methods			

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

• If
$$0 \le \mu \le \frac{1}{2}$$
, then
 $k(\delta) = \mathcal{O}(\delta^{-\frac{1}{2\mu+1}}), \qquad \left\| x_{k(\delta)}^{\delta} - x^{\dagger} \right\| = o(\delta^{\frac{2\mu}{2\mu+1}}).$

• If $\mu > \frac{1}{2}$, then

$$k(\delta) = \mathcal{O}(\delta^{-rac{2}{2\mu+3}}), \qquad \left\|x_{k(\delta)}^{\delta} - x^{\dagger}\right\| = o(\delta^{rac{2\mu+1}{2\mu+3}}).$$

• Similar results also when using the discrepancy principle.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	00000●0		00000	00
Two-Point Gradient (TP	G) Methods			

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

• If
$$0 \le \mu \le \frac{1}{2}$$
, then
 $k(\delta) = \mathcal{O}(\delta^{-\frac{1}{2\mu+1}}), \qquad \left\| x_{k(\delta)}^{\delta} - x^{\dagger} \right\| = o(\delta^{\frac{2\mu}{2\mu+1}}).$

• If $\mu > \frac{1}{2}$, then

$$k(\delta) = \mathcal{O}(\delta^{-rac{2}{2\mu+3}}), \qquad \left\|x_{k(\delta)}^{\delta} - x^{\dagger}\right\| = o(\delta^{rac{2\mu+1}{2\mu+3}}).$$

• Similar results also when using the discrepancy principle.

A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed problems, J. Inv. Ill-Posed Problems, to appear.

	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
	000000			
Two-Point Gradient (TPG) Methods				

Two-Point Gradient (TPG) Methods

Two-Point Gradient Methods

Simon Hubmer

	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
	000000			
Two-Point Gradient (TP	'G) Methods			

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \mathcal{F}'(z_k^{\delta})^* (y^{\delta} - \mathcal{F}(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

▶ ∢ ⊒ ▶

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

• Yes for linear problems and $\lambda_k^\delta = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

- Yes for linear problems and $\lambda_k^\delta = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$
- Yes for $\lambda_k^{\delta} \to 0$ fast enough.

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

- Yes for linear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$
- Yes for $\lambda_k^{\delta} \to 0$ fast enough.
- Yes for some explicit choices of λ_k^{δ} .
Introduction
 TPG Methods
 Convergence Analysis
 Numerical Results
 Conclusion

 000000
 000000
 00000
 00000
 00
 00

 Two-Point Gradient (TPG) Methods
 Conclusion
 00000
 00
 00
 00

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

- Yes for linear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$
- Yes for $\lambda_k^{\delta} \to 0$ fast enough.
- Yes for some explicit choices of λ_k^{δ} .
- Yes for λ_k^{δ} defined via a backtracking search.

 Introduction
 TPG Methods
 Convergence Analysis
 Numerical Results
 Conclusion

 000000
 000000
 00000
 00000
 00
 00

 Two-Point Gradient (TPG) Methods
 Conclusion
 00000
 00
 00
 00

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

- Yes for linear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$
- Yes for $\lambda_k^{\delta} \to 0$ fast enough.
- Yes for some explicit choices of λ_k^{δ} .
- Yes for λ_k^{δ} defined via a backtracking search.

Open: Convergence for nonlinear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1}$

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion
Convergence Analysis				

Two-Point Gradient Methods

Simon Hubmer

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	•0000		00
Convergence Analysis				

• Nonlinearity Condition

$$egin{aligned} &\left\| F(x) - F(ilde{x}) - F'(x)(x - ilde{x})
ight\| &\leq \eta \left\| F(x) - F(ilde{x})
ight\| \ , \ & x, ilde{x} \in \mathcal{B}_{4
ho}(x_0) \subset \mathcal{D}(F) \,, \qquad \eta < rac{1}{2} \,. \end{aligned}$$

Introduction 000000	TPG Methods 0000000	Convergence Analysis ●0000	Numerical Results	Conclusion
Convergence Analysis				

• Nonlinearity Condition

$$ig\| F(x) - F(ilde{x}) - F'(x)(x - ilde{x}) ig\| \leq \eta \, \|F(x) - F(ilde{x})\| \ ,$$

 $x, ilde{x} \in \mathcal{B}_{4
ho}(x_0) \subset \mathcal{D}(F) \,, \qquad \eta < rac{1}{2} \,.$

• Parameters $0 \le \lambda_k^\delta \le 1$ and stepsizes $\alpha_k^\delta \ge \alpha_{\min} > 0$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	00
Convergence Analysis				

• Nonlinearity Condition

$$\begin{split} \left| F(x) - F(\tilde{x}) - F'(x)(x - \tilde{x}) \right\| &\leq \eta \left\| F(x) - F(\tilde{x}) \right\| \,, \\ x, \tilde{x} \in \mathcal{B}_{4\rho}(x_0) \subset \mathcal{D}(F) \,, \qquad \eta < \frac{1}{2} \,. \end{split}$$

- Parameters 0 $\leq \lambda_k^\delta \leq 1$ and stepsizes $\alpha_k^\delta \geq \alpha_{\min} > 0$ satisfy

$$\begin{split} \lambda_k^{\delta} (\lambda_k^{\delta} + 1) \left\| x_k^{\delta} - x_{k+1}^{\delta} \right\|^2 &- \left(1 + \frac{\Psi}{\mu} \right) \alpha_k^{\delta} \left\| F(z_k^{\delta}) - y^{\delta} \right\|^2 \\ &+ (\alpha_k^{\delta})^2 \left\| F'(z_k^{\delta})^* (F(z_k^{\delta}) - y^{\delta}) \right\|^2 \leq 0 \,. \end{split}$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	00
Convergence Analysis				

• Nonlinearity Condition

$$\begin{split} \left| F(x) - F(\tilde{x}) - F'(x)(x - \tilde{x}) \right\| &\leq \eta \left\| F(x) - F(\tilde{x}) \right\| \,, \\ x, \tilde{x} \in \mathcal{B}_{4\rho}(x_0) \subset \mathcal{D}(F) \,, \qquad \eta < \frac{1}{2} \,. \end{split}$$

- Parameters 0 $\leq \lambda_k^\delta \leq 1$ and stepsizes $\alpha_k^\delta \geq \alpha_{\min} > 0$ satisfy

$$\begin{split} \lambda_k^{\delta} (\lambda_k^{\delta} + 1) \left\| x_k^{\delta} - x_{k+1}^{\delta} \right\|^2 &- \left(1 + \frac{\Psi}{\mu} \right) \alpha_k^{\delta} \left\| F(z_k^{\delta}) - y^{\delta} \right\|^2 \\ &+ (\alpha_k^{\delta})^2 \left\| F'(z_k^{\delta})^* (F(z_k^{\delta}) - y^{\delta}) \right\|^2 \leq 0 \,. \end{split}$$

• Parameters λ_k^{δ} satisfy

$$\sum_{k=0}^{\infty}\lambda_k^0\left\|x_k^0-x_{k-1}^0\right\|<\infty.$$

Introduction 000000	TPG Methods 0000000	Convergence Analysis 0●000	Numerical Results	Conclusion
Convergence Analysis				

Two-Point Gradient Methods

Simon Hubmer

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion
Convergence Analysis				

For the stepsizes α_k^{δ} , one can use

Introduction 000000	TPG Methods 0000000	Convergence Analysis ○●○○○	Numerical Results	Conclusion
Convergence Analysis				

For the stepsizes α_k^{δ} , one can use

• a constant stepsize $\alpha_k^{\delta} = \omega$,

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	○●○○○		00
Convergence Analysis				

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	○●○○○		00
Convergence Analysis				

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

The parameters λ_k^{δ} can be chosen

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	○●○○○	00000	
Convergence Analysis				

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

The parameters λ_k^{δ} can be chosen

• as any sequence decaying sufficiently fast,

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	○●○○○	00000	00
Convergence Analysis				

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

The parameters λ_k^{δ} can be chosen

- as any sequence decaying sufficiently fast,
- explicitly via

$$\lambda_{k}^{\delta} = \min\left\{-\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\Psi(\tau\delta)^{2}}{\mu\bar{\omega}^{2}\left\|x_{k}^{\delta} - x_{k-1}^{\delta}\right\|^{2}}}, 1\right\},$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	○●○○○	00000	00
Convergence Analysis				

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

The parameters λ_k^{δ} can be chosen

- as any sequence decaying sufficiently fast,
- explicitly via

$$\lambda_k^{\delta} = \min\left\{-\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\Psi(\tau\delta)^2}{\mu\bar{\omega}^2 \left\|x_k^{\delta} - x_{k-1}^{\delta}\right\|^2}}, 1\right\},$$

• via a backtracking algorithm.

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion 00
Convergence Analysis				

Two-Point Gradient Methods

Simon Hubmer

< • • • **6**

▶ ★ 문 ▶ ★ 문

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	00
Convergence Analysis				

Discrepancy Principle:

$$\left\|y^{\delta} - F(z_{k_*}^{\delta})\right\| \leq \tau \delta < \left\|y^{\delta} - F(z_k^{\delta})\right\|, \qquad 0 \leq k < k_* = k_*(\delta, y^{\delta}).$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	00
Convergence Analysis				

Discrepancy Principle:

$$\left\|y^{\delta} - F(z_{k_*}^{\delta})\right\| \leq \tau \delta < \left\|y^{\delta} - F(z_k^{\delta})\right\|, \qquad 0 \leq k < k_* = k_*(\delta, y^{\delta}).$$

Theorem

Under the above assumptions, there holds

$$\lim_{\delta\to 0} z_{k_*(\delta,y^{\delta})}^{\delta} = x_* \,.$$

÷.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	00
Convergence Analysis				

Discrepancy Principle:

$$\left\|y^{\delta} - F(z_{k_*}^{\delta})\right\| \leq \tau \delta < \left\|y^{\delta} - F(z_k^{\delta})\right\|, \qquad 0 \leq k < k_* = k_*(\delta, y^{\delta}).$$

Theorem

Under the above assumptions, there holds

$$\lim_{\delta\to 0} z_{k_*(\delta,y^{\delta})}^{\delta} = x_* \,.$$

If additionally $\mathcal{N}(F'(x^{\dagger})) \subset \mathcal{N}(F'(x))$, then we have

$$\lim_{\delta\to 0} z_{k_*(\delta,y^{\delta})}^{\delta} = x^{\dagger} \, .$$

∃⇒

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion
Convergence Analysis				

Two-Point Gradient Methods

Simon Hubmer

3

Introduction 000000	TPG Methods 0000000	Convergence Analysis 000●0	Numerical Results	Conclusion
Convergence Analysis				

• While the discrepancy principle is not satisfied,

$$\left\|x_{k+1}^{\delta}-x_{*}\right\|\leq \left\|x_{k}^{\delta}-x_{*}\right\|$$
.

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion 00
Convergence Analysis				

① While the discrepancy principle is not satisfied,

$$\left\|x_{k+1}^{\delta}-x_{*}\right\|\leq\left\|x_{k}^{\delta}-x_{*}\right\|$$
.

2 The discrepancy principle yields a well defined stopping rule.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	000●0	00000	
Convergence Analysis				

① While the discrepancy principle is not satisfied,

$$\left\|x_{k+1}^{\delta}-x_{*}\right\|\leq\left\|x_{k}^{\delta}-x_{*}\right\|$$
.

P The discrepancy principle yields a well defined stopping rule.
For exact data, i.e., for δ = 0 or y = y^δ, one has

$$\lim_{k\to\infty} x_k^0 \to x_*$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	000●0	00000	
Convergence Analysis				

① While the discrepancy principle is not satisfied,

$$\left\|x_{k+1}^{\delta}-x_*\right\|\leq \left\|x_k^{\delta}-x_*\right\|$$
.

P The discrepancy principle yields a well defined stopping rule.
For exact data, i.e., for δ = 0 or y = y^δ, one has

$$\lim_{k\to\infty} x_k^0\to x_* \qquad \text{and} \qquad \lim_{k\to\infty} z_k^0\to x_*\,.$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	000●0	00000	
Convergence Analysis				

① While the discrepancy principle is not satisfied,

$$\left\|x_{k+1}^{\delta}-x_{*}\right\|\leq\left\|x_{k}^{\delta}-x_{*}\right\|$$
.

P The discrepancy principle yields a well defined stopping rule.
For exact data, i.e., for δ = 0 or y = y^δ, one has

$$\lim_{k\to\infty} x_k^0\to x_* \qquad \text{and} \qquad \lim_{k\to\infty} z_k^0\to x_* \ .$$

Ocombine everything and use continuity to get

$$\lim_{\delta\to 0} z_{k_*(\delta,y^{\delta})}^{\delta} = x_* \,.$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	000●0	00000	
Convergence Analysis				

① While the discrepancy principle is not satisfied,

$$\left\|x_{k+1}^{\delta}-x_{*}\right\|\leq\left\|x_{k}^{\delta}-x_{*}\right\|$$
.

P The discrepancy principle yields a well defined stopping rule.
For exact data, i.e., for δ = 0 or y = y^δ, one has

$$\lim_{k\to\infty} x_k^0\to x_* \qquad \text{and} \qquad \lim_{k\to\infty} z_k^0\to x_* \ .$$

Ocombine everything and use continuity to get

$$\lim_{\delta\to 0} z_{k_*(\delta,y^{\delta})}^{\delta} = x_* \,.$$

6 If $\mathcal{N}(F'(x^{\dagger})) \subset \mathcal{N}(F'(x))$, use a special property of x^{\dagger} .

Introduction 000000	TPG Methods 0000000	Convergence Analysis 0000●	Numerical Results	Conclusion
Convergence Analysis				

Two-Point Gradient Methods

Simon Hubmer

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	○○○○●	00000	
Convergence Analysis				

For many stepsizes $\alpha_k^{\delta},$ the $coupling\ condition$ above reduces to

$$\lambda_k^\delta(\lambda_k^\delta+1) \left\|x_k^\delta-x_{k-1}^\delta
ight\|^2 \leq rac{\Psi}{\mu} lpha_k^\delta \left\|y^\delta-{\sf F}(z_k^\delta)
ight\|^2\,.$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	○○○○●	00000	00
Convergence Analysis				

For many stepsizes α_k^{δ} , the *coupling condition* above reduces to

$$\lambda_k^\delta (\lambda_k^\delta + 1) \left\| x_k^\delta - x_{k-1}^\delta
ight\|^2 \leq rac{\Psi}{\mu} lpha_k^\delta \left\| y^\delta - \mathcal{F}(z_k^\delta)
ight\|^2$$

Idea: Given a summable sequence $(q_n)_n$, choose λ_k^{δ} via

$$\lambda_k^{\delta} = \min\left\{\frac{q_{n_k}}{\left\|x_k^{\delta} - x_{k-1}^{\delta}\right\|}, 1\right\} \ ,$$

.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	0000●	00000	00
Convergence Analysis				

For many stepsizes α_k^{δ} , the *coupling condition* above reduces to

$$\lambda_k^{\delta}(\lambda_k^{\delta}+1)\left\|x_k^{\delta}-x_{k-1}^{\delta}\right\|^2 \leq \frac{\Psi}{\mu}\alpha_k^{\delta}\left\|y^{\delta}-F(z_k^{\delta})\right\|^2$$

Idea: Given a summable sequence $(q_n)_n$, choose λ_k^{δ} via

$$\lambda_k^\delta = \min\left\{rac{q_{n_k}}{\left\|x_k^\delta - x_{k-1}^\delta
ight\|}, 1
ight\}\,,$$

where the subsequence $(q_{n_k})_k$ is chosen such that the above inequality is satisfied.

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000	○○○○●	00000	00
Convergence Analysis				

For many stepsizes α_k^{δ} , the *coupling condition* above reduces to

$$\lambda_k^\delta (\lambda_k^\delta + 1) \left\| x_k^\delta - x_{k-1}^\delta
ight\|^2 \le rac{\Psi}{\mu} lpha_k^\delta \left\| y^\delta - \mathcal{F}(z_k^\delta)
ight\|^2$$

Idea: Given a summable sequence $(q_n)_n$, choose λ_k^{δ} via

$$\lambda_k^\delta = \min\left\{rac{q_{n_k}}{\left\|x_k^\delta - x_{k-1}^\delta
ight\|}, 1
ight\}\,,$$

where the subsequence $(q_{n_k})_k$ is chosen such that the above inequality is satisfied. With this choice, one also has

$$\sum_{k=0}^{\infty}\lambda_k^0\left\|x_k^0-x_{k-1}^0\right\|<\infty.$$

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		●0000	00
Example Problem: SPEC	T			

Figure: Activity function f_* (left) and attenuation function μ_* (right).

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		0●000	00
Example Problem: SPEC	CT			

SPECT Data

Ξ.

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion
Example Problem: SPECT				

$$A(f,\mu)(s,\omega) := \int\limits_{\mathbb{R}} f(s\omega^{\perp} + t\omega) \exp\left(-\int\limits_{t}^{\infty} \mu(s\omega^{\perp} + r\omega) dr\right) dt.$$

▶ ★ 문 ▶ ★ 문

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion 00
Example Problem: SPEC	CT CT			

$$A(f,\mu)(s,\omega) := \int_{\mathbb{R}} f(s\omega^{\perp} + t\omega) \exp\left(-\int_{t}^{\infty} \mu(s\omega^{\perp} + r\omega) dr\right) dt.$$

Choice of λ_k^δ	k _*	Time
$\lambda_k^\delta = 0$	3433	489 s
Backtracking	631	90 s
Explicit	345	77 s
Nesterov	205	30 s

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion 00
Example Problem: SPECT				

$$A(f,\mu)(s,\omega) := \int_{\mathbb{R}} f(s\omega^{\perp} + t\omega) \exp\left(-\int_{t}^{\infty} \mu(s\omega^{\perp} + r\omega) dr\right) dt.$$

Choice of λ_k^δ	k _*	Time
$\lambda_k^\delta = 0$	3433	489 s
Backtracking	631	90 s
Explicit	345	77 s
Nesterov	205	30 s

S. Hubmer, R. Ramlau Convergence Analysis of a Two-Point Gradient Method for Nonlinear III-Posed Problems, DK Preprint Series (2017)
Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion 00
Example Problem: SPECT				

Evolution of λ_k^δ and Residuals

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion 00
Example Problem: SPEC	T			

SPECT Reconstruction

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	●0
Conclusion				

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,, \end{split}$$

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion ●0
Conclusion				

Two-Point Gradient (TPG) methods

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,, \end{split}$$

• converge under standard assumptions,

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	●0
Conclusion				

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \mathcal{F}'(z_k^{\delta})^* (y^{\delta} - \mathcal{F}(z_k^{\delta})) \,, \end{split}$$

- converge under standard assumptions,
- are very easy to implement,

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	●0
Conclusion				

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \mathcal{F}'(z_k^{\delta})^* (y^{\delta} - \mathcal{F}(z_k^{\delta})) \,, \end{split}$$

- converge under standard assumptions,
- are very easy to implement,
- require no more computation time than Landweber iteration,

Introduction	TPG Methods	Convergence Analysis	Numerical Results	Conclusion
000000	0000000		00000	●0
Conclusion				

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,, \end{split}$$

- converge under standard assumptions,
- are very easy to implement,
- require no more computation time than Landweber iteration,
- and lead to a considerable speed-up in practise.

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion
Conclusion				

Two-Point Gradient Methods

▶ ★ 문 ▶ ★ 문

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion ○●
Conclusion				

• Convergence rates of the form

$$\left\|x_{k_*}^{\delta}-x^{\dagger}\right\|=\mathcal{O}\left(\delta^{rac{2\mu}{2\mu+1}}
ight)\,,\qquad k_*(\delta,y^{\delta})=\psi(\delta)\,.$$

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion ○●
Conclusion				

• Convergence rates of the form

$$\left\|x_{k_*}^{\delta}-x^{\dagger}\right\|=\mathcal{O}\left(\delta^{rac{2\mu}{2\mu+1}}
ight)\,,\qquad k_*(\delta,y^{\delta})=\psi(\delta)\,.$$

• Nonlinear problems and original Nesterov parameter

$$\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1}$$

.

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion
Conclusion				

• Convergence rates of the form

$$\left\|x_{k_*}^{\delta}-x^{\dagger}\right\|=\mathcal{O}\left(\delta^{rac{2\mu}{2\mu+1}}
ight)\,,\qquad k_*(\delta,y^{\delta})=\psi(\delta)\,.$$

• Nonlinear problems and original Nesterov parameter

$$\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1}$$

• Analysis only under local convexity assumption.

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion ○●
Conclusion				

• Convergence rates of the form

$$\left\|x_{k_*}^{\delta}-x^{\dagger}\right\|=\mathcal{O}\left(\delta^{rac{2\mu}{2\mu+1}}
ight)\,,\qquad k_*(\delta,y^{\delta})=\psi(\delta)\,.$$

• Nonlinear problems and original Nesterov parameter

$$\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1}$$

- Analysis only under local convexity assumption.
- Weakening of convexity assumption to, e.g., quasi-convexity.

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results	Conclusion 00

References

- H. Attouch, J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually $o(k^{-2})$, SIAM Journal on Optimization
- S. Hubmer, R. Ramlau Convergence Analysis of a Two-Point Gradient Method for Nonlinear III-Posed Problems, DK Preprint Series (2017)
 - Y. Nesterov, A method of solving a convex programming problem with convergence rate $O(1/k^2)$, Soviet Mathematics Doklady, 27, 2, 1983
 - A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed problems, J. Inv. Ill-Posed Problems, to appear.

Introduction 000000	TPG Methods 0000000	Convergence Analysis	Numerical Results 00000	Conclusion 00

References

- H. Attouch, J. Peypouquet, The rate of convergence of Nesterov's accelerated forward-backward method is actually $o(k^{-2})$, SIAM Journal on Optimization
- S. Hubmer, R. Ramlau Convergence Analysis of a Two-Point Gradient Method for Nonlinear III-Posed Problems, DK Preprint Series (2017)
 - Y. Nesterov, A method of solving a convex programming problem with convergence rate $O(1/k^2)$, Soviet Mathematics Doklady, 27, 2, 1983
 - A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed problems, J. Inv. Ill-Posed Problems, to appear.

Thank you for your attention!