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Introduction and Motivation

The Problem

• Hilbert spaces X and Y, with norms ‖.‖.
• Operator F : X → Y, continuously Fréchet differentiable.

• Noisy data y δ ∈ Y and noise level δ ∈ R+.

Problem

F (x) = y (δ)

The noisy data y δ satisfies∥∥∥y − y δ
∥∥∥ ≤ δ .

Two-Point Gradient Methods Simon Hubmer
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Introduction and Motivation

Examples

Nonlinear Hammerstein operator:

F : H1[0, 1]→ L2[0, 1] , F (x)(s) :=

∫ 1

0
k(s, t)Φ(x(t), t) dt .

Attenuated Radon transform (SPECT):

A(f , µ)(s, ω) :=

∫
R
f (sω⊥ + tω) exp

− ∞∫
t

µ(sω⊥ + rω) dr

 dt .

Further examples: CT, MRI, MRAI, PI, EIT, AO, . . .

Two-Point Gradient Methods Simon Hubmer
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Introduction and Motivation

Tikhonov Regularization

Required:

• Initial guess x0 and regularization parameter α.

The method:

min
x

{
1

2

∥∥F (x)− y δ
∥∥2

+
α

2
‖x − x0‖2

}
.

Properties:

+ Weak conditions necessary for analysis.

+ Very versatile (different norms, regularization functionals).

− Computation of the minimum ↔ HOW??

Two-Point Gradient Methods Simon Hubmer
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Introduction and Motivation

Landweber Iteration

Required:

• Initial guess x0 and stopping criterion.

The method:

xδk+1 = xδk + F ′(xδk )∗(y δ − F (xδk )) .

Properties:

+ Easy to implement.

− Strong conditions necessary for analysis.

− Slow convergence, i.e., lots of iterations required.
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Introduction and Motivation

Second Order Methods

Levenberg-Marquardt method

xδk+1 = xδk + (F ′(xδk )∗F ′(xδk ) + αk I )
−1F ′(xδk )∗(y δ − F (xδk )) .

Iteratively regularized Gauss-Newton method

xδk+1 = xδk + (F ′(xδk )∗F ′(xδk ) + αk I )
−1(F ′(xδk )∗(y δ − F (xδk ))

+αk(x0 − xδk )) .

Properties:

+ Require much less iterations.

− Very strong conditions necessary for analysis.

− Require inversion of (F ′(x)∗F ′(x) + αI ) in every iteration step
→ difficult and takes time.

Two-Point Gradient Methods Simon Hubmer
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Introduction and Motivation

Acceleration Techniques

• Landweber Iteration with operator approximation:

xδk+1 = xδk + F̃ ′(xδk )∗(y δ − F̃ (xδk )) .

• Landweber Iteration in Hilbert Scales:

xδk+1 = xδk + L−2sF ′(xδk )∗(y δ − F (xδk )) .

• Landweber Iteration with intelligent stepsizes:

xδk+1 = xδk + αδkF
′(xδk )∗(y δ − F (xδk )) .

Examples: Steepest Descent, Barzilai-Borwein, Neubauer.
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Two-Point Gradient (TPG) Methods

Connection: Residual Functional

Φ(x) =
1

2

∥∥∥F (x)− y δ
∥∥∥2

• Tikhonov = Minimize{ Φ(x) + Regularization(x) }.
• Landweber = Gradient Descent for Φ(x).

• Levenberg Marquardt = 2nd order descent for Φ(x).

• Iteratively regularized Gauss-Newton
= 2nd order descent for Φ(x) + Tikhonov Type Stabilization.

Two-Point Gradient Methods Simon Hubmer
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Two-Point Gradient (TPG) Methods

Nesterov Acceleration

General minimization problem

min
x
{Φ(x)} .

Yurii Nesterov: Instead of using gradient descent:

xk+1 = xk − ω∇Φ(xk) ,

use the following iteration:

zk = xk + k−1
k+α−1(xk − xk−1) ,

xk+1 = zk − ω∇Φ(zk) .
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Two-Point Gradient (TPG) Methods

Motivating Picture

xk−1

xk

x̃k+1

zk
xk+1
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Two-Point Gradient (TPG) Methods

What’s so good about that?

• Assume: Φ is convex.

• Gradient Descent:∥∥∥Φ(xk)− Φ(x†)
∥∥∥ = O(k−1)

• Nesterov Acceleration:∥∥∥Φ(xk)− Φ(x†)
∥∥∥ = O(k−2)

H. Attouch, J. Peypouquet, The rate of convergence of Nesterov’s accelerated

forward-backward method is actually o(k−2), SIAM Journal on Optimization

Y. Nesterov, A method of solving a convex programming problem with

convergence rate O(1/k2), Soviet Mathematics Doklady, 27, 2, 1983
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Two-Point Gradient (TPG) Methods

Application to Nonlinear Ill-Posed Problems

For our problem, the method reads as

zδk = xδk + k−1
k+α−1 (xδk − xδk−1) ,

xδk+1 = zδk + αδk F
′(zδk )∗(y δ − F (zδk )) .

There is a generalization to deal with

min{Φ(x) + Ψ(x)} ,

which reads as

zk = xk + k−1
k+α−1 (xk − xk−1) ,

xk+1 = proxΨ (zk − ω∇Φ(zk)) .

=⇒ Sparsity Constraints, Projections, etc.
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Two-Point Gradient (TPG) Methods

Neubauer strikes again

• Assumptions: Linear operator F (x) = Tx , source condition
x† ∈ R((T ∗T )µ), a priori stopping rule.

• If 0 ≤ µ ≤ 1
2 , then

k(δ) = O(δ−
1

2µ+1 ) ,
∥∥∥xδk(δ) − x†

∥∥∥ = o(δ
2µ

2µ+1 ) .

• If µ > 1
2 , then

k(δ) = O(δ−
2

2µ+3 ) ,
∥∥∥xδk(δ) − x†

∥∥∥ = o(δ
2µ+1
2µ+3 ) .

• Similar results also when using the discrepancy principle.

A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed
problems, J. Inv. Ill-Posed Problems, to appear.
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Two-Point Gradient (TPG) Methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Two-Point Gradient (TPG) Methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Two-Point Gradient (TPG) Methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Two-Point Gradient (TPG) Methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Two-Point Gradient (TPG) Methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Two-Point Gradient (TPG) Methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Two-Point Gradient (TPG) Methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Two-Point Gradient (TPG) Methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Convergence Analysis

Convergence Conditions

• Nonlinearity Condition∥∥F (x)− F (x̃)− F ′(x)(x − x̃)
∥∥ ≤ η ‖F (x)− F (x̃)‖ ,

x , x̃ ∈ B4ρ(x0) ⊂ D(F ) , η <
1

2
.

• Parameters 0 ≤ λδk ≤ 1 and stepsizes αδk ≥ αmin > 0 satisfy

λδk(λδk + 1)
∥∥∥xδk − xδk+1

∥∥∥2
−
(

1 +
Ψ

µ

)
αδk

∥∥∥F (zδk )− y δ
∥∥∥2

+(αδk)2
∥∥∥F ′(zδk )∗(F (zδk )− y δ)

∥∥∥2
≤ 0 .

• Parameters λδk satisfy

∞∑
k=0

λ0
k

∥∥x0
k − x0

k−1

∥∥ <∞ .
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Convergence Analysis

Some Possible Choices

For the stepsizes αδk , one can use

• a constant stepsize αδk = ω,

• the steepest descent stepsize or the minimal error stepsize.

The parameters λδk can be chosen

• as any sequence decaying sufficiently fast,

• explicitly via

λδk = min

{
−1

2
+

√
1

4
+

Ψ(τδ)2

µω̄2
∥∥xδk − xδk−1

∥∥2
, 1

}
,

• via a backtracking algorithm.
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Convergence Analysis

Main Result

Discrepancy Principle:∥∥∥y δ − F (zδk∗)
∥∥∥ ≤ τδ < ∥∥∥y δ − F (zδk )

∥∥∥ , 0 ≤ k < k∗ = k∗(δ, y
δ) .

Theorem

Under the above assumptions, there holds

lim
δ→0

zδk∗(δ,yδ) = x∗ .

If additionally N (F ′(x†)) ⊂ N (F ′(x)), then we have

lim
δ→0

zδk∗(δ,yδ) = x† .
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Convergence Analysis

Proof Steps

1 While the discrepancy principle is not satisfied,∥∥∥xδk+1 − x∗

∥∥∥ ≤ ∥∥∥xδk − x∗

∥∥∥ .
2 The discrepancy principle yields a well defined stopping rule.

3 For exact data, i.e., for δ = 0 or y = y δ, one has

lim
k→∞

x0
k → x∗ and lim

k→∞
z0
k → x∗ .

4 Combine everything and use continuity to get

lim
δ→0

zδk∗(δ,yδ) = x∗ .

5 If N (F ′(x†)) ⊂ N (F ′(x)), use a special property of x†.
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Convergence Analysis

Backtracking Algorithm

For many stepsizes αδk , the coupling condition above reduces to

λδk(λδk + 1)
∥∥∥xδk − xδk−1

∥∥∥2
≤ Ψ

µ
αδk

∥∥∥y δ − F (zδk )
∥∥∥2

.

Idea: Given a summable sequence (qn)n, choose λδk via

λδk = min

{
qnk∥∥xδk − xδk−1

∥∥ , 1
}
,

where the subsequence (qnk )k is chosen such that the above
inequality is satisfied.With this choice, one also has

∞∑
k=0

λ0
k

∥∥x0
k − x0

k−1

∥∥ <∞ .
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Example Problem: SPECT

Figure: Activity function f∗ (left) and attenuation function µ∗ (right).

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Example Problem: SPECT

SPECT Data
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Example Problem: SPECT

A(f , µ)(s, ω) :=

∫
R

f (sω⊥ + tω) exp

− ∞∫
t

µ(sω⊥ + rω) dr

 dt .

Choice of λδk k∗ Time

λδk = 0 3433 489 s

Backtracking 631 90 s

Explicit 345 77 s

Nesterov 205 30 s

S. Hubmer, R. Ramlau Convergence Analysis of a Two-Point Gradient Method
for Nonlinear Ill-Posed Problems, DK Preprint Series (2017)
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Example Problem: SPECT

Evolution of λδk and Residuals
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Example Problem: SPECT

SPECT Reconstruction
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Conclusion

Conclusion

Two-Point Gradient (TPG) methods

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) ,

• converge under standard assumptions,

• are very easy to implement,

• require no more computation time than Landweber iteration,

• and lead to a considerable speed-up in practise.

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Conclusion

Conclusion

Two-Point Gradient (TPG) methods

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) ,

• converge under standard assumptions,

• are very easy to implement,

• require no more computation time than Landweber iteration,

• and lead to a considerable speed-up in practise.

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Conclusion

Conclusion

Two-Point Gradient (TPG) methods

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) ,

• converge under standard assumptions,

• are very easy to implement,

• require no more computation time than Landweber iteration,

• and lead to a considerable speed-up in practise.

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Conclusion

Conclusion

Two-Point Gradient (TPG) methods

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) ,

• converge under standard assumptions,

• are very easy to implement,

• require no more computation time than Landweber iteration,

• and lead to a considerable speed-up in practise.

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Conclusion

Conclusion

Two-Point Gradient (TPG) methods

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) ,

• converge under standard assumptions,

• are very easy to implement,

• require no more computation time than Landweber iteration,

• and lead to a considerable speed-up in practise.

Two-Point Gradient Methods Simon Hubmer



Introduction TPG Methods Convergence Analysis Numerical Results Conclusion

Conclusion

Future Work

• Convergence rates of the form∥∥∥xδk∗ − x†
∥∥∥ = O

(
δ

2µ
2µ+1

)
, k∗(δ, y

δ) = ψ(δ) .

• Nonlinear problems and original Nesterov parameter

λδk =
k − 1

k + α− 1
.

• Analysis only under local convexity assumption.

• Weakening of convexity assumption to, e.g., quasi-convexity.
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