Invariant algebraic curves of rational vector fields and their explicit rational solutions

L.X.Châu Ngô

Doctoral Program "Computational Mathematics"
Johannes Kepler University Linz, Linz, Austria

ACA 2010
Vlora, Albania
June 24-27, 2010

Outline

Introduction to rational vector fields

Invariant algebraic curves of a rational vector field

Solving rational systems by parametrizing invariant algebraic curves

Conclusion and future works

Introduction to rational vector fields

Consider the autonomous rational system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{N_{1}(s, t)}{M_{1}(s, t)} \tag{1}\\
t^{\prime}=\frac{N_{2}(s, t)}{M_{2}(s, t)}
\end{array}\right.
$$

where $M_{1}, N_{1}, M_{2}, N_{2} \in \mathbb{K}[s, t], M_{1}, M_{2} \neq 0, \mathbb{K}$ is a field of constants. (e.g. $\mathbb{K}=\overline{\mathbb{Q}}$)

Introduction to rational vector fields

Consider the autonomous rational system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{N_{1}(s, t)}{M_{1}(s, t)} \tag{1}\\
t^{\prime}=\frac{N_{2}(s, t)}{M_{2}(s, t)}
\end{array}\right.
$$

where $M_{1}, N_{1}, M_{2}, N_{2} \in \mathbb{K}[s, t], M_{1}, M_{2} \neq 0, \mathbb{K}$ is a field of constants. (e.g. $\mathbb{K}=\overline{\mathbb{Q}}$)

- The system defines a vector field on the affine plane excluding two curves $M_{1}(s, t)=0$ and $M_{2}(s, t)=0$.

Introduction to rational vector fields

Consider the autonomous rational system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{N_{1}(s, t)}{M_{1}(s, t)} \tag{1}\\
t^{\prime}=\frac{N_{2}(s, t)}{M_{2}(s, t)}
\end{array}\right.
$$

where $M_{1}, N_{1}, M_{2}, N_{2} \in \mathbb{K}[s, t], M_{1}, M_{2} \neq 0, \mathbb{K}$ is a field of constants. (e.g. $\mathbb{K}=\overline{\mathbb{Q}}$)

- The system defines a vector field on the affine plane excluding two curves $M_{1}(s, t)=0$ and $M_{2}(s, t)=0$.
- We study a method for finding explicit rational solutions of a given degree, i.e., finding $(s(x), t(x)) \in \overline{\mathbb{K}}(x)^{2}$ satisfying the differential system.

Invariant algebraic curves of a rational vector field

Lemma

If $(s(x), t(x))$ is a non-trivial rational solution of the differential system (1), then the irreducible implicit equation $F(s, t)=0$ of $(s(x), t(x))$ satisfies the relation

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

for some bivariate polynomial K, where F_{s} and F_{t} are partial derivatives of F with respect to s and t.

Invariant algebraic curves of a rational vector field

Lemma

If $(s(x), t(x))$ is a non-trivial rational solution of the differential system (1), then the irreducible implicit equation $F(s, t)=0$ of $(s(x), t(x))$ satisfies the relation

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

for some bivariate polynomial K, where F_{s} and F_{t} are partial derivatives of F with respect to s and t.
Of course, $F(s, t)=0$ must be a rational algebraic curve.

Lemma
Let $F(s, t)=0$ be an irreducible algebraic curve such that

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

for some bivariate polynomial K.

Lemma

Let $F(s, t)=0$ be an irreducible algebraic curve such that

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

for some bivariate polynomial K. Let $(s(x), t(x))$ be a rational parametrization of $F(s, t)=0$.

Lemma

Let $F(s, t)=0$ be an irreducible algebraic curve such that

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

for some bivariate polynomial K. Let $(s(x), t(x))$ be a rational parametrization of $F(s, t)=0$. If $M_{1}(s(x), t(x)) \neq 0$ and $M_{2}(s(x), t(x)) \neq 0$, then

$$
s^{\prime}(x) \cdot \frac{N_{2}(s(x), t(x))}{M_{2}(s(x), t(x))}-t^{\prime}(x) \cdot \frac{N_{1}(s(x), t(x))}{M_{1}(s(x), t(x))}=0 .
$$

Definition

An algebraic curve $F(s, t)=0$ is called an invariant algebraic curve of the rational vector field (1) iff

$$
\begin{equation*}
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K \tag{2}
\end{equation*}
$$

for some bivariate polynomial $K, F \nmid M_{1}$ and $F \nmid M_{2}$.

Definition

An algebraic curve $F(s, t)=0$ is called an invariant algebraic curve of the rational vector field (1) iff

$$
\begin{equation*}
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K \tag{2}
\end{equation*}
$$

for some bivariate polynomial $K, F \nmid M_{1}$ and $F \nmid M_{2}$.
In addition, if $F(s, t)=0$ is also a rational algebraic curve, then we call $F(s, t)=0$ a rational invariant algebraic curve.

Main strategy

- Find the invariant algebraic curves, $F(s, t)=0$, of the rational differential system (1), i.e.,

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

$F \nmid M_{1}$ and $F \nmid M_{2}$.

Main strategy

- Find the invariant algebraic curves, $F(s, t)=0$, of the rational differential system (1), i.e.,

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

$F \nmid M_{1}$ and $F \nmid M_{2}$.

- Decide whether $F(s, t)=0$ gives a rational solution or not. In the affirmative case we compute a rational solution corresponding to the invariant algebraic curve $F(s, t)=0$.

Issues on finding invariant algebraic curves (briefly)

- Denote that $D:=N_{1} M_{2} \cdot \frac{\partial}{\partial s}+N_{2} M_{1} \cdot \frac{\partial}{\partial t}$. Then D is a differential operator and one can define $F(s, t)=0$ to be an invariant algebraic curve of D iff

$$
D F=F \cdot K
$$

for some polynomial K.

Issues on finding invariant algebraic curves (briefly)

- Denote that $D:=N_{1} M_{2} \cdot \frac{\partial}{\partial s}+N_{2} M_{1} \cdot \frac{\partial}{\partial t}$. Then D is a differential operator and one can define $F(s, t)=0$ to be an invariant algebraic curve of D iff

$$
D F=F \cdot K
$$

for some polynomial K.

- The degree of the cofactor K is bounded by $\max \left\{\operatorname{deg}\left(N_{1} M_{2}\right), \operatorname{deg}\left(N_{2} M_{1}\right)\right\}-1$.

Issues on finding invariant algebraic curves (briefly)

- Let $F_{1}(s, t)$ and $F_{2}(s, t)$ be irreducible polynomials. Then

$$
\left\{\left.\begin{array}{l}
F_{1} \mid D F_{1} \\
F_{2} \mid D F_{2}
\end{array} \Longleftrightarrow F_{1} F_{2} \right\rvert\, D F_{1} F_{2}\right.
$$

Issues on finding invariant algebraic curves (briefly)

- Let $F_{1}(s, t)$ and $F_{2}(s, t)$ be irreducible polynomials. Then

$$
\left\{\left.\begin{array}{l}
F_{1} \mid D F_{1} \\
F_{2} \mid D F_{2}
\end{array} \Longleftrightarrow F_{1} F_{2} \right\rvert\, D F_{1} F_{2}\right.
$$

- As a corollary of Darboux's Theorem the degree of any irreducible invariant algebraic curves is bounded by some natural number N. However how to find such upper bound effectively is still an unsolved problem (Poincaré problem).

Example

Consider the polynomial system

$$
\left\{\begin{array}{l}
s^{\prime}=s^{2}-(t-1)^{2} \tag{3}\\
t^{\prime}=2 s(t-1)
\end{array}\right.
$$

Example

Consider the polynomial system

$$
\left\{\begin{array}{l}
s^{\prime}=s^{2}-(t-1)^{2} \tag{3}\\
t^{\prime}=2 s(t-1)
\end{array}\right.
$$

Let $d=2$. The set of irreducible invariant algebraic curves of (3) of degree at most 2 is

$$
\begin{aligned}
& \{[t-1,2 s], \\
& \\
& {[\alpha(t-1)+s, \alpha(t-1)+s],} \\
& {[-\alpha(t-1)+s,-\alpha(t-1)+s]} \\
& \left.\left[s^{2}+t^{2}+(-1-C) t+C, 2 s\right]\right\}
\end{aligned}
$$

where $\alpha=\operatorname{Root} O f\left(Z^{2}+1\right)$ and C is an arbitrary constant.

Example

Consider the polynomial system

$$
\left\{\begin{array}{l}
s^{\prime}=s^{2}-(t-1)^{2} \tag{3}\\
t^{\prime}=2 s(t-1)
\end{array}\right.
$$

Let $d=2$. The set of irreducible invariant algebraic curves of (3) of degree at most 2 is

$$
\begin{aligned}
& \{[t-1,2 s], \\
& \\
& {[\alpha(t-1)+s, \alpha(t-1)+s],} \\
& {[-\alpha(t-1)+s,-\alpha(t-1)+s],} \\
& \left.\left[s^{2}+t^{2}+(-1-C) t+C, 2 s\right]\right\}
\end{aligned}
$$

where $\alpha=\operatorname{Root} O f\left(Z^{2}+1\right)$ and C is an arbitrary constant. In this example there is no irreducible invariant algebraic curves of degree higher than 2.

Finding rational solutions by parametrizing invariant algebraic curves

- Given an irreducible rational invariant algebraic curve $F(s, t)=0$ of the system (1), i.e.,

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

$F \nmid M_{1}$ and $F \nmid M_{2}$.

Finding rational solutions by parametrizing invariant

 algebraic curves- Given an irreducible rational invariant algebraic curve $F(s, t)=0$ of the system (1), i.e.,

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

$F \nmid M_{1}$ and $F \nmid M_{2}$.

- Find rational parametrizations $(s(x), t(x))$ of $F(s, t)=0$ such that

$$
\left\{\begin{array}{l}
s^{\prime}(x)=\frac{N_{1}(s(x), t(x))}{M_{1}(s(x), t(x))} \\
t^{\prime}(x)=\frac{N_{2}(s(x), t(x))}{M_{2}(s(x), t(x))} .
\end{array}\right.
$$

Main theorem

Let $F(s, t)=0$ be a rational algebraic curve such that

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

$F \nmid M_{1}(s, t)$ and $F \nmid M_{2}(s, t)$.

Main theorem

Let $F(s, t)=0$ be a rational algebraic curve such that

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K
$$

$F \nmid M_{1}(s, t)$ and $F \nmid M_{2}(s, t)$. The rational system (1) has a non-trivial rational solution corresponding to $F(s, t)=0$ if and only if

Main theorem

Let $F(s, t)=0$ be a rational algebraic curve such that

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K,
$$

$F \nmid M_{1}(s, t)$ and $F \nmid M_{2}(s, t)$. The rational system (1) has a non-trivial rational solution corresponding to $F(s, t)=0$ if and only if for any proper rational parametrization $(s(x), t(x))$ of $F(s, t)=0$ there exists a linear fractional transformation

$$
T(x)=\frac{a x+b}{c x+d}
$$

satisfying the autonomous differential equation

$$
\begin{align*}
T^{\prime} & =\frac{N_{1}(s(T), t(T))}{M_{1}(s(T), t(T)) \cdot s^{\prime}(T)} \\
& =\frac{N_{2}(s(T), t(T))}{M_{2}(s(T), t(T)) \cdot t^{\prime}(T)} . \tag{4}
\end{align*}
$$

Main theorem

Let $F(s, t)=0$ be a rational algebraic curve such that

$$
F_{s} \cdot N_{1} M_{2}+F_{t} \cdot N_{2} M_{1}=F \cdot K,
$$

$F \nmid M_{1}(s, t)$ and $F \nmid M_{2}(s, t)$. The rational system (1) has a non-trivial rational solution corresponding to $F(s, t)=0$ if and only if for any proper rational parametrization $(s(x), t(x))$ of $F(s, t)=0$ there exists a linear fractional transformation

$$
T(x)=\frac{a x+b}{c x+d}
$$

satisfying the autonomous differential equation

$$
\begin{align*}
T^{\prime} & =\frac{N_{1}(s(T), t(T))}{M_{1}(s(T), t(T)) \cdot s^{\prime}(T)} \\
& =\frac{N_{2}(s(T), t(T))}{M_{2}(s(T), t(T)) \cdot t^{\prime}(T)} . \tag{4}
\end{align*}
$$

In that case the solution is given by

$$
\bar{s}(x)=s(T(x)), \quad \bar{t}(x)=t(T(x)) .
$$

Remarks

- Every non-trivial rational solution of the rational differential system (1) forms a proper parametrization of a rational algebraic curve.

Remarks

- Every non-trivial rational solution of the rational differential system (1) forms a proper parametrization of a rational algebraic curve.
- The rational solvability of the autonomous differential equation (4) does not depend on the choice of a proper rational parametrization of $F(s, t)=0$.

Remarks

- Every non-trivial rational solution of the rational differential system (1) forms a proper parametrization of a rational algebraic curve.
- The rational solvability of the autonomous differential equation (4) does not depend on the choice of a proper rational parametrization of $F(s, t)=0$.
- Let $(s(x), t(x))$ and $(\bar{s}(x), \bar{t}(x))$ be rational solutions of the differential system (1) corresponding to the same rational invariant algebraic curve $F(s, t)=0$. Then there exists a constant c such that

$$
(s(x+c), t(x+c))=(\bar{s}(x), \bar{t}(x)) .
$$

Example

Consider the rational system

$$
\left\{\begin{align*}
s^{\prime} & =\frac{-2(t-1)^{2}\left(s^{2}-(t-1)^{2}\right)}{\left((t-1)^{2}+s^{2}\right)^{2}} \tag{5}\\
t^{\prime} & =\frac{-4(t-1)^{3} s}{\left((t-1)^{2}+s^{2}\right)^{2}}
\end{align*}\right.
$$

Example

Consider the rational system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{-2(t-1)^{2}\left(s^{2}-(t-1)^{2}\right)}{\left((t-1)^{2}+s^{2}\right)^{2}} \tag{5}\\
t^{\prime}=\frac{-4(t-1)^{3} s}{\left((t-1)^{2}+s^{2}\right)^{2}}
\end{array}\right.
$$

In fact, it is enough to ask for irreducible invariant algebraic curves of the polynomial system

$$
\left\{\begin{array}{l}
s^{\prime}=s^{2}-(t-1)^{2} \tag{6}\\
t^{\prime}=2 s(t-1)
\end{array}\right.
$$

Example

Consider the rational system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{-2(t-1)^{2}\left(s^{2}-(t-1)^{2}\right)}{\left((t-1)^{2}+s^{2}\right)^{2}} \tag{5}\\
t^{\prime}=\frac{-4(t-1)^{3} s}{\left((t-1)^{2}+s^{2}\right)^{2}}
\end{array}\right.
$$

In fact, it is enough to ask for irreducible invariant algebraic curves of the polynomial system

$$
\left\{\begin{array}{l}
s^{\prime}=s^{2}-(t-1)^{2} \tag{6}\\
t^{\prime}=2 s(t-1)
\end{array}\right.
$$

They are

$$
\begin{aligned}
& t-1=0, \alpha(t-1)+s=0,-\alpha(t-1)+s=0 \\
& s^{2}+t^{2}+(-1-C) t+C=0
\end{aligned}
$$

where $\alpha=\operatorname{RootOf}\left(Z^{2}+1\right), C$ is an arbitrary constant.

- Consider the line $t-1=0$. It can be parametrized by

$$
R=(x, 1) .
$$

Then we find a rational function $T(x)$ such that

$$
T^{\prime}=0
$$

Thus it gives us a solution $\bar{s}(x)=C, \bar{t}(x)=1$.

- Consider the rational invariant algebraic curve

$$
F(s, t)=s^{2}+t^{2}+(-1-C) t+C=0 .
$$

- Consider the rational invariant algebraic curve

$$
F(s, t)=s^{2}+t^{2}+(-1-C) t+C=0 .
$$

A proper rational parametrization is

$$
R=\left(\frac{(C-1) x}{1+x^{2}}, \frac{C x^{2}+1}{1+x^{2}}\right)
$$

- Consider the rational invariant algebraic curve

$$
F(s, t)=s^{2}+t^{2}+(-1-C) t+C=0 .
$$

A proper rational parametrization is

$$
R=\left(\frac{(C-1) x}{1+x^{2}}, \frac{C x^{2}+1}{1+x^{2}}\right)
$$

We find a rational function $T(x)$ such that

$$
T^{\prime}=\frac{-2 T^{2}}{C-1}
$$

- Consider the rational invariant algebraic curve

$$
F(s, t)=s^{2}+t^{2}+(-1-C) t+C=0 .
$$

A proper rational parametrization is

$$
R=\left(\frac{(C-1) x}{1+x^{2}}, \frac{C x^{2}+1}{1+x^{2}}\right)
$$

We find a rational function $T(x)$ such that

$$
T^{\prime}=\frac{-2 T^{2}}{C-1}
$$

Hence

$$
T(x)=\frac{C-1}{2 x} .
$$

Therefore, a rational solution corresponding to $F(s, t)=0$ is

$$
\bar{s}(x)=\frac{2(C-1)^{2} x}{4 x^{2}+(C-1)^{2}}, \quad \bar{t}(x)=\frac{C(C-1)^{2}+4 x^{2}}{4 x^{2}+(C-1)^{2}} .
$$

The system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{-2(t-1)^{3}\left(-(t-1)^{2}+s^{2}\right)}{\left((t-1)^{2}+s^{2}\right)^{2}} \tag{7}\\
t^{\prime}=\frac{-4(t-1)^{4} s}{\left((t-1)^{2}+s^{2}\right)^{2}}
\end{array}\right.
$$

has no rational solution different from the constant solutions $s(x)=C, t(x)=1$.

The system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{-2(t-1)^{3}\left(-(t-1)^{2}+s^{2}\right)}{\left((t-1)^{2}+s^{2}\right)^{2}} \tag{7}\\
t^{\prime}=\frac{-4(t-1)^{4} s}{\left((t-1)^{2}+s^{2}\right)^{2}}
\end{array}\right.
$$

has no rational solution different from the constant solutions $s(x)=C, t(x)=1$. Because it has the same set of invariant algebraic curves and the autonomous differential equation for the transformation,

$$
T^{\prime}=\frac{-2 T^{4}}{1+T^{2}}
$$

has no rational solution.

Conclusion

1. We have provided a method for finding rational solutions of the differential system (1) using proper parametrizations of rational invariant algebraic curves.
2. We have proven that every rational solution of the differential system (1) forms a proper parametrization for its corresponding rational invariant algebraic curve.

Future works

1. We would like to study rational solutions of some special systems and differential equations.
e.g.

$$
y^{\prime}=R(x, y)
$$

where $R(x, y)$ is a rational function in x and y. This is equivalent to looking at the system

$$
\left\{\begin{array}{l}
y^{\prime}=R(x, y) \\
x^{\prime}=1
\end{array}\right.
$$

2. Study a degree bound for rational solutions of the differential equation

$$
y^{\prime}=R(x, y)
$$

Thank you for your attention!

