Rational Curves and Differential Equations

L.X.Châu Ngô
Supervisor: Prof. Dr. Franz Winkler, Project DK11

DK-Computational Mathematics (W1214), RISC, Johannes Kepler University, Linz, Austria

RESEARCH INSTITUTE FOR
SYMBOLIC COMPUTATION $|\mathrm{R}| \mathrm{SC}$

Alcalá de Henares
November 16, 2010

Outline

Basics on rational algebraic curves
General solutions of algebraic ODEs
Autonomous ODEs of order 1
GOAL - parametrizable non-autonomous ODEs of order 1
Solving the associated systems by parametrization
Some examples
Some solvable ODEs of order 1
Conclusion

Basics on rational algebraic curves

- An algebraic curve $F(s, t)=0$ is called a rational curve iff there is a non-constant rational mapping $\mathcal{P}(x)=(s(x), t(x))$ such that $F(s(x), t(x))=0$. Then $\mathcal{P}(x)$ is called a parametrization of $F(s, t)=0$.

Example on rational curves:

The circle

$$
s^{2}+(t-1)^{2}-1=0
$$

can be parametrized by

$$
\begin{aligned}
& \mathcal{P}(x)=\left(\frac{4 x}{x^{2}+4}, \frac{2 x^{2}}{x^{2}+4}\right) . \\
& x \longmapsto \mathcal{P}(x)=(s(x), t(x)) . \\
& x \longmapsto T(x) \longmapsto \mathcal{P}(T(x))=(s(T(x)), t(T(x))) .
\end{aligned}
$$

Basics on rational algebraic curves

- The rational parametrizations of a rational curve $F(s, t)=0$ are not unique.
- A rational parametrization is called proper iff it is an invertible rational mapping and its inverse is also rational. In the example,

$$
\mathcal{P}(x)=\left(\frac{4 x}{x^{2}+4}, \frac{2 x^{2}}{x^{2}+4}\right)
$$

is proper because its inverse is

$$
x=\frac{2 t}{s}
$$

- A degree bound for proper parametrizations of a rational algebraic curve is given in [SW01].

Basics on rational algebraic curves

- If $\mathcal{P}_{1}(x)=\left(s_{1}(x), t_{1}(x)\right)$ is a proper rational parametrization of $F(s, t)=0$ and $\mathcal{P}_{2}(x)=\left(s_{2}(x), t_{2}(x)\right)$ is any rational parametrization of $F(s, t)=0$, then there exists a rational function $T(x)$ such that

$$
\mathcal{P}_{2}(x)=\mathcal{P}_{1}(T(x)) .
$$

Moreover, if $\mathcal{P}_{2}(x)=\left(s_{2}(x), t_{2}(x)\right)$ is also proper, then $T(x)=\frac{a x+b}{c x+d}$ for some $a, b, c, d \in \overline{\mathbb{K}}$.

Basic notations in differential algebra

Let $\mathbb{K}(x)$ be the rational functions field over \mathbb{K}. Consider the usual derivation $\frac{d}{d x}$, denoted by ${ }^{\prime}$.

1. Differential rings: $\mathbb{K}(x)\{y\}:=\mathbb{K}(x)\left[y, y^{\prime}, y^{\prime \prime}, \ldots\right]$.
2. Differential polynomials: elements in $\mathbb{K}(x)\{y\}$.
3. Differential ideals: $F \in \mathbb{K}(x)\{y\},[F]:=<F, F^{\prime}, F^{\prime \prime}, \ldots>$.
4. Radical differential ideals: $\{F\}:=\sqrt{[F]}$.
5. Initials: Let n be the order of F. Then the coefficient of F with respect to $y^{(n)}$ is called the initial of F.
6. Separants: Let n be the order of F. Then $\frac{\partial F}{\partial y^{(n)}}$ is called the separant of F.
7. Quotient ideals: $\{F\}: S:=\{A \in \mathbb{K}(x)\{y\} \mid A S \in\{F\}\}$.

Lemma

Let F be an irreducible differential polynomial. The differential ideal $(\{F\}: S)$ is a prime differential ideal and

$$
\{F\}=(\{F\}: S) \cap\{F, S\}
$$

General solutions of algebraic ODEs

Definition

A generic zero of $(\{F\}: S)$ is called a general solution of $F=0$.
Example:

$$
\begin{gathered}
\text { Let } F=y^{\prime 2}-4 y . \text { Then } S=2 y^{\prime} ; F^{\prime}=2 y^{\prime} y^{\prime \prime}-4 y^{\prime}=2 y^{\prime}\left(y^{\prime \prime}-2\right) . \\
\{F\}: S=\left\{y^{\prime 2}-4 y, y^{\prime \prime}-2\right\}, \quad\{F, S\}=\left\{y^{\prime 2}-4 y, y^{\prime}\right\} . \\
\mathcal{Z}(\{F\}: S)=\left\{y=(x+c)^{2} \mid c \text { is any constant }\right\} . \\
\mathcal{Z}(\{F, S\})=\{y=0\} .
\end{gathered}
$$

Definition
A rational general solution of $F=0$ is a general solution of $F=0$ of the form

$$
y=\frac{a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}}
$$

where a_{i}, b_{j} are constants.

Autonomous algebraic ODEs (Feng and Gao, [FG04])

$$
F\left(y, y^{\prime}\right)=0, \quad F \in \mathbb{K}[y, z], \quad \operatorname{char}(\mathbb{K})=0
$$

where \mathbb{K} is a field of constants, y is an indeterminate over $\mathbb{K}(x)$.

- Key observation:

Non-trivial rational solutions

$$
\begin{gathered}
F\left(y, y^{\prime}\right)=0 \\
y=f(x) \\
y=g(T(x))
\end{gathered}
$$

Rational general solution is

$$
y=g(T(x+C))
$$

for arbitrary constant C.

Proper parametrizations

$$
\begin{aligned}
& F(y, z)=0 \\
& \left(f(x), f^{\prime}(x)\right) \\
& (\mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x}))
\end{aligned}
$$

Find $T(x)=\frac{a x+b}{c x+d}$ with

$$
\mathrm{g}^{\prime}(\mathrm{T}) \cdot \mathrm{T}^{\prime}=\mathrm{h}(\mathrm{~T})
$$

GOAL- Parametrizable non-autonomous ODEs of order 1, $F\left(x, y, y^{\prime}\right)=0, F \in \mathbb{K}[u, v, w]$.

Non-autonomous case $F\left(x, y, y^{\prime}\right)=0$

Non-autonomous case $F\left(x, y, y^{\prime}\right)=0$

- We assume that $F(x, y, z)=0$ has a proper parametrization

$$
\mathcal{P}(s, t)=\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)
$$

Then we associate to $F\left(x, y, y^{\prime}\right)=0$ an autonomous differential system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{f_{1}(s, t)}{g(s, t)} \tag{1}\\
t^{\prime}=\frac{f_{2}(s, t)}{g(s, t)}
\end{array}\right.
$$

which is called the associated system of $F\left(x, y, y^{\prime}\right)=0$ with respect to $\mathcal{P}(s, t)$,
where

$$
\begin{align*}
& f_{1}(s, t):=\frac{\partial \chi_{2}(s, t)}{\partial t}-\chi_{3}(s, t) \cdot \frac{\partial \chi_{1}(s, t)}{\partial t}, \\
& f_{2}(s, t):=\chi_{3}(s, t) \cdot \frac{\partial \chi_{1}(s, t)}{\partial s}-\frac{\partial \chi_{2}(s, t)}{\partial s}, \tag{2}\\
& g(s, t):=\frac{\partial \chi_{1}(s, t)}{\partial s} \cdot \frac{\partial \chi_{2}(s, t)}{\partial t}-\frac{\partial \chi_{1}(s, t)}{\partial t} \cdot \frac{\partial \chi_{2}(s, t)}{\partial s} .
\end{align*}
$$

- Note that the associated system (1) is constructed in such a way that if $(s(x), t(x))$ is a rational solution of the system, then $\mathcal{P}(s(x), t(x))$ has the form

$$
\mathcal{P}(s(x), t(x))=\left(x+C, \varphi(x), \varphi^{\prime}(x)\right)
$$

for some constant C. Therefore,

$$
y=\chi_{2}(s(x-C), t(x-C))
$$

is a rational solution of $F\left(x, y, y^{\prime}\right)=0$.

Rational general solutions

Theorem ([NW10])

There is a one-to-one correspondence between rational general solutions of the algebraic differential equation $F\left(x, y, y^{\prime}\right)=0$, which is parametrized by $\mathcal{P}(s, t)$, and rational general solutions of its associated system with respect to $\mathcal{P}(s, t)$.

The associated systems of autonomous ODEs,

$F\left(y, y^{\prime}\right)=0$.

(A recovery of Feng and Gao's result)

$$
F\left(y, y^{\prime}\right)=0, F(f(t), g(t))=0, \mathcal{P}(s, t)=(s, f(t), g(t))
$$

The associated system w.r.t. $\mathcal{P}(s, t)$ is

$$
\left\{\begin{array}{l}
s^{\prime}=1 \\
t^{\prime}=\frac{g(t)}{f^{\prime}(t)} .
\end{array}\right.
$$

A rational general solution of the associated system is of the form

$$
s(x)=x+C, \quad t(x)=\frac{a x+b}{c x+d}
$$

where C is an arbitrary constant. A rational general solution of $F\left(y, y^{\prime}\right)=0$ is

$$
y=f(t(x-C))
$$

The autonomous system of ODEs of order 1

The associated system of a parametrizable ODE, $F\left(x, y, y^{\prime}\right)=0$, has the form

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{M_{1}(s, t)}{N_{1}(s, t)} \tag{3}\\
t^{\prime}=\frac{M_{2}(s, t)}{N_{2}(s, t)}
\end{array}\right.
$$

where $M_{1}, N_{1}, M_{2}, N_{2} \in \mathbb{K}[s, t], N_{1}, N_{2} \neq 0, \operatorname{gcd}\left(M_{1}, N_{1}\right)=1$, $\operatorname{gcd}\left(M_{2}, N_{2}\right)=1$ and \mathbb{K} is a field of constants (e.g. $\left.\mathbb{K}=\overline{\mathbb{Q}}\right)$.

1. Find the implicit equations $G(s, t)=0$ of the parametric solution curves $(s(x), t(x))$.
2. Parametrize $G(s, t)=0$ to obtain a rational solution.

Rational invariant algebraic curve

Lemma

Every non-trivial rational solution of the associated system (3) is corresponding to a rational algebraic curve, whose implicit equation $G(s, t)=0$ is satisfying the relation

$$
G_{s} \cdot M_{1} N_{2}+G_{t} \cdot M_{2} N_{1}=G \cdot K
$$

for some polynomial K.
Definition
A rational algebraic curve $G(s, t)=0$ is called a rational invariant algebraic curve of the system (3) iff

$$
G_{s} \cdot M_{1} N_{2}+G_{t} \cdot M_{2} N_{1}=G \cdot K
$$

for some polynomial K.

Rational invariant algebraic curve

Lemma

Let $G(s, t)=0$ be a rational invariant algebraic curve of the system. If $(s(x), t(x))$ is a rational parametrization of $G(s, t)=0$ with $N_{1}(s(x), t(x)) \neq 0$ and $N_{2}(s(x), t(x)) \neq 0$, then

$$
s^{\prime}(x) \cdot \frac{M_{2}(s(x), t(x))}{N_{2}(s(x), t(x))}=t^{\prime}(x) \cdot \frac{M_{1}(s(x), t(x))}{N_{1}(s(x), t(x))} .
$$

- Recall that we look for the rational solutions of the system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{M_{1}(s, t)}{N_{1}(s, t)} \\
t^{\prime}=\frac{M_{2}(s, t)}{N_{2}(s, t)}
\end{array}\right.
$$

Definition
A rational invariant algebraic curve $G(s, t)=0$ of the system (3) is called a rational solution curve iff there is a parametrization of the curve $G(s, t)=0$ satisfying the system (3).

Reparametrization Theorem

Theorem ([Ngo10])

Let $G(s, t)=0$ be a rational invariant algebraic curve of the system (3) such that $G \nmid N_{1}$ and $G \nmid N_{2}$. Let $(s(x), t(x))$ be a proper rational parametrization of $G(s, t)=0$. Then $G(s, t)=0$ is a rational solution curve of the system (3) if and only if one of the following differential equations has a rational solution $T(x)$.

1. $T^{\prime}=\frac{1}{s^{\prime}(T)} \cdot \frac{M_{1}(s(T), t(T))}{N_{1}(s(T), t(T))}$ when $s^{\prime}(x) \not \equiv 0$.
2. $T^{\prime}=\frac{1}{t^{\prime}(T)} \cdot \frac{M_{2}(s(T), t(T))}{N_{2}(s(T), t(T))}$ when $t^{\prime}(x) \not \equiv 0$.
3. When $s^{\prime}(x) \not \equiv 0$ and $t^{\prime}(x) \not \equiv 0$, we can choose either of two differential equations (because of the lemma above).
If there is a rational solution for $T(x)$, then the rational solution of the system (3) corresponding to $G(s, t)=0$ is

$$
(s(T(x)), t(T(x)))
$$

Facts [Ngo10]

1. The rational solutions of

$$
T^{\prime}=\frac{1}{s^{\prime}(T)} \cdot \frac{M_{1}(s(T), t(T))}{N_{1}(s(T), t(T))} \quad \text { when } s^{\prime}(x) \not \equiv 0
$$

or

$$
T^{\prime}=\frac{1}{t^{\prime}(T)} \cdot \frac{M_{2}(s(T), t(T))}{N_{2}(s(T), t(T))} \quad \text { when } t^{\prime}(x) \not \equiv 0
$$

must be linear rational functions, i.e.,

$$
T(x)=\frac{a x+b}{c x+d}
$$

where a, b, c and d are constants.
2. The theorem does not depend on the choice of a proper rational parametrization $(s(x), t(x))$ of $G(s, t)=0$.
3. Every rational solution of the system (3) forms a proper rational parametrization of a rational algebraic curve.

How to find an invariant algebraic curve?

- Need a degree bound (Poincaré problem).
- When we have a degree bound, using undetermine coefficient method to find $G(s, t)$ with

$$
G_{s} \cdot M_{1} N_{2}+G_{t} \cdot M_{2} N_{1}=G \cdot K
$$

Example for invariant algebraic curves but not solution

curves

Consider the system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{-2(t-1)^{3}\left(-(t-1)^{2}+s^{2}\right)}{\left((t-1)^{2}+s^{2}\right)^{2}} \tag{4}\\
t^{\prime}=\frac{-4(t-1)^{4} s}{\left((t-1)^{2}+s^{2}\right)^{2}}
\end{array}\right.
$$

The set of invariant algebaric curves is

$$
\left\{t-1=0, s^{2}+t^{2}+(-1-C) t+C=0\right\}
$$

1. The line $t-1=0$ is a rational solution curve, corresponding to the rational solution $s(x)=c, t(x)=1$.
2. The family of curves

$$
s^{2}+t^{2}+(-1-C) t+C=0
$$

are not rational solution curves.

Consider the rational invariant algebraic curve

$$
s^{2}+t^{2}+(-1-C) t+C=0
$$

A proper rational parametrization is

$$
R=\left(\frac{(C-1) x}{1+x^{2}}, \frac{C x^{2}+1}{1+x^{2}}\right)
$$

The equation for reparametrization

$$
T^{\prime}=\frac{-2 T^{4}}{1+T^{2}}
$$

has NO rational solution. Therefore,

$$
s^{2}+t^{2}+(-1-C) t+C=0
$$

is not a rational solution curve.

Example 1

Consider the linear differential equation

$$
F\left(x, y, y^{\prime}\right) \equiv-(1+2 x) y^{\prime}+2 y-24 x^{2}-32 x^{3}=0
$$

The algebraic surface $F(x, y, z)=0$ has a proper parametrization

$$
\mathcal{P}(s, t)=\left(s-\frac{t}{2}, 4 s^{2}-t^{2}+2 t, 16 s t-4 t^{2}-16 s^{2}+4 t\right) .
$$

The associated system with respect to $\mathcal{P}(s, t)$ is

$$
\left\{\begin{array}{l}
s^{\prime}=-2 s+t+1 \\
t^{\prime}=-4 s+2 t
\end{array}\right.
$$

- The family of irreducible invariant algebraic curves is

$$
4 s^{2}-4 s t+t^{2}+2 t-C=0
$$

- At infinity the system is given by

$$
\left\{\begin{array}{l}
u^{\prime}=-(u-2)^{2}-(u-2) v-2 v \\
v^{\prime}=-v(u-2+v)
\end{array}\right.
$$

It has a unique singularity at $(2,0)$. In fact, this is a non-dicritical singularity. Since the degree of the system is 1 , by [Car94], the degree of any irreducible invariant algebraic curve of the system is bounded by $1+2=3$.

A proper parametrization of the family

$$
4 s^{2}-4 s t+t^{2}+2 t-C=0
$$

is

$$
\left(-\frac{1}{2} \cdot \frac{4 \sqrt{C} x^{2}+4 x-\sqrt{C}}{4 x^{2}-4 x+1},-2 \cdot \frac{2 \sqrt{C} x+1-\sqrt{C}}{4 x^{2}-4 x+1}\right) .
$$

The differential equation for the reparametrization is

$$
T^{\prime}=2\left(T-\frac{1}{2}\right)^{2}
$$

Thus

$$
T(x)=\frac{x-1}{2 x}
$$

It follows that the rational general solution of the associated system is

$$
s(x)=-x^{2}+(1+\sqrt{C}) x-\frac{1}{2} \sqrt{C}, t(x)=2(-x+\sqrt{C}) x .
$$

We have

$$
\chi_{1}(s(x), t(x))=x-\frac{1}{2} \sqrt{C} .
$$

Substituting $s=s\left(x+\frac{1}{2} \sqrt{C}\right)$ and $t=t\left(x+\frac{1}{2} \sqrt{C}\right)$ into $\chi_{2}(s, t)$ we get the rational general solution of the differential equation $F\left(x, y, y^{\prime}\right)=0$,

$$
y(x)=-8 x^{3}+2 C x+C
$$

Example 2

Consider the differential equation

$$
F\left(x, y, y^{\prime}\right) \equiv y^{\prime 3}-4 x y y^{\prime}+8 y^{2}=0
$$

The algebraic surface $F(x, y, z)=0$ has a proper parametrization

$$
\mathcal{P}(s, t)=\left(t,-4 s^{2} \cdot(2 s-t),-4 s \cdot(2 s-t)\right) .
$$

The associated system with respect to $\mathcal{P}(s, t)$ is

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{1}{2} \\
t^{\prime}=1
\end{array}\right.
$$

Similarly, we can solve the system to obtain

$$
s(x)=\frac{x}{2}, t(x)=x-C
$$

where C is an arbitrary constant. Therefore, the rational general solution of the differential equation $F\left(x, y, y^{\prime}\right)=0$ is

$$
y(x)=-C(x+C)^{2} .
$$

Some solvable classes

(joint work with J. Rafael Sendra)

Theorem
The following classes are solvable via their associated systems.

- $F\left(y, y^{\prime}\right)=0, F(y, z)=0$ is a rational curve;
- $F\left(y-\frac{\beta(x-\gamma)}{\alpha}, y^{\prime}\right)=0, F(y, z)=0$ is a rational curve;
- $F\left(x-\frac{\alpha(y-\gamma)}{\beta}, y^{\prime}\right)=0, F(y, z)=0$ is a rational curve; where α, β and γ are constants.

Some solvable classes

$$
\begin{array}{c|c}
F\left(y-\frac{\beta(x-\gamma)}{\alpha}, y^{\prime}\right)=0 & F\left(x-\frac{\alpha(y-\gamma)}{\beta}, y^{\prime}\right)=0 \\
\mathcal{P}(s, t)=\left(\begin{array}{c}
\gamma(s), g(s))=0 \\
f(s) \\
g(s)
\end{array}\right)+t \cdot\left(\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right) & F(f(s), g(s))=0 \\
\left\{\begin{array}{c}
\mathcal{P}(s, t)=\left(\begin{array}{c}
f(s) \\
\gamma \\
g(s)
\end{array}\right)+t \cdot\left(\begin{array}{l}
\alpha \\
\beta \\
0
\end{array}\right) \\
t^{\prime}=\frac{\beta-\alpha g(s)}{-\alpha f^{\prime}(s)}
\end{array}\right. \\
\begin{array}{l}
t^{\prime}
\end{array} \\
\left\{\begin{array}{l}
s^{\prime}=\frac{\beta-\alpha g(s)}{\beta f^{\prime}(s)} \\
t^{\prime}=\frac{g(s)}{\beta}
\end{array}\right.
\end{array}
$$

Some solvable classes

Theorem

Let $F\left(x, y, y^{\prime}\right)=0$ be a parametrizable ODE of order 1. Then

$$
F\left(x, y, y^{\prime}\right)=0 \text { and } F\left(x, b x+a y, b+a y^{\prime}\right)=0
$$

have the same associated systems, where $a, b \in \mathbb{K}$ and $a \neq 0$. In particular, if $F\left(x, y, y^{\prime}\right)=0$ is solvable, then
$F\left(x, b x+a y, b+a y^{\prime}\right)=0$ is solvable.

Conclusion

Reference

[Car94] Manuel M. Carnicer
The Poincaré Problem in the Nondicritical Case Annals of Mathematics, 140(2), 289-294, 1994.
[Ngo10] L.X.Châu Ngô
Finding rational solutions of rational systems of autonomous ODEs
RISC Report Series, 10-02, 2010.
[NW10] L.X.Châu Ngô and F. Winkler
Rational general solutions of first order non-autonomous parametrizable ODEs
J. Symbolic Computation, 45(12), 1426-1441, 2010.
[SW01] J.R. Sendra and F. Winkler
Tracing index of rational curve parametrizations
Comp.Aided Geom.Design, 18, 771-795, 2001.
[Ngo0409] L.X.Châu Ngô
Rational general solutions of first order non-autonomous parametric ODEs
DK Report Series, 04-2009.
[Ngo0509] L.X.Châu Ngô
A criterion for existence of rational general solutions of planar systems of ODEs
DK Report Series, 05-2009.
[FG06] R. Feng and X-S. Gao
A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs
J. Symbolic Computation, 41:739-762, 2006.
[FG04] R. Feng and X-S. Gao
Rational general solutions of algebraic ordinary differential equations
Proc. ISSAC2004. ACM Press, New York, 155-162, 2004.

Thank you for your attention!

!Gracias por su atención!

Cảm ơn sự chú ý của bạn!

