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Algebraic ODEs of order 1

Definition
An algebraic ordinary differential equation (ODE) of order 1 is
given by

F (x , y , y ′) = 0,

where

I F ∈ K[x , y , z ],

I y is an indeterminate over K(x),

I y ′ = dy
dx ,

I K is a field of constants (algebraically closed field of
characteristic 0).

The equation is called autonomous if its coefficients w.r.t. x are
zero except for the free coefficient, i.e., F ∈ K[y , z ].



General solutions of F (x , y , y ′) = 0

A rigorous definition of general solutions of F (x , y , y ′) = 0 can be
studied in the framework of differential algebra.

I Differential ring K(x){y} = K(x)[y , y ′, y ′′, . . .], δ = d
dx .

I Differential polynomial F ∈ K(x){y}.
I Differential ideal [F ] =< F , δF , δ2F , . . . >.

I Radical differential ideal {F} =
√

[F ].

We have a decomposition

{F} = ({F} : S) ∩ {F ,S},

where S is the separant of F (the partial derivative of F w.r.t the
highest derivative appearing in F ), i.e., we have

Z({F}) = Z({F} : S) ∪ Z({F ,S}).



General solutions of F (x , y , y ′) = 0

Definition
A generic zero of {F} : S is called a general solution of F = 0, i.e.,{

η is a zero of {F} : S ,

∀G ∈ K(x){y},G (η) = 0⇐⇒ G ∈ {F} : S .

I A rational general solution of F (x , y , y ′) = 0 is a general
solution of the form

y =
amxm + am−1xm−1 + · · ·+ a0

bnxn + bn−1xn−1 + · · ·+ b0
,

where ai , bj are constants in a differential extension field of K.



Autonomous case F (y , y ′) = 0 (R. Feng and X-S. Gao)

Observation: y = r(x) is a non-constant rational solution of
F (y , y ′) = 0 if and only if (r(x), r ′(x)) is a proper parametrization
of F (y , z) = 0.  rational curves

1. compute a proper rational parametrization (f (x), g(x)) of
F (y , z) = 0;

2. compute a rational function T (x) =
ax + b

cx + d
such that

f (T (x))′ = g(T (x)), i.e., T ′ =
g(T )

f ′(T )
;

3. if there is no such T (x), then there is NO rational solution;

4. else return the rational general solution

y = f (T (x + C ))

where C is an arbitrary constant.



Extend to parametrizable ODEs

Definition
An algebraic ordinary differential equation F (x , y , y ′) = 0 is called
a parametrizable ODE iff the surface F (x , y , z) = 0 is rational.

Observation: A non-constant rational solution r(x) of
F (x , y , y ′) = 0 is corresponding to the curve parametrized by
(x , r(x), r ′(x)) on the surface F (x , y , z) = 0.



Extend to parametrizable ODEs

F (y , y ′) = 0 F (x , y , y ′) = 0

rational curve F (y , z) = 0 rational surface F (x , y , z) = 0

P = (s, f (t), g(t)) P = (χ1(s, t), χ2(s, t), χ3(s, t))s ′ = 1

t ′ =
g(t)

f ′(t)


s ′ =

M1(s, t)

N1(s, t)

t ′ =
M2(s, t)

N2(s, t)

(1)

C(x) =

(
x + C ,

ax + b

cx + d

)
C(x) = (s(x), t(x))

P(C(x)) = (x + C , ϕ(x), ϕ′(x)) P(C(x)) = (x + C , ϕ(x), ϕ′(x))

y(x) := f (t(x − C )) y(x) := χ2(s(x − C ), t(x − C ))

F (y(x), y ′(x)) = 0 F (x , y(x), y ′(x)) = 0

where P(s, t) is a proper rational parametrization, C is an arbitrary
constant. The system (1) is called the associated system of
F (x , y , y ′) = 0 w.r.t P(s, t).



Associated systems of some special parametrizable ODEs
F (x , y , y ′) = 0.

Solvable for y ′ Solvable for y Solvable for x
ODE y ′ = G(x , y) y = G(x , y ′) x = G(y , y ′)
Surface z = G(x , y) y = G(x , z) x = G(y , z)
Parametrization (s, t, G(s, t)) (s, G(s, t), t) (G(s, t), s, t)

A.System

{
s′ = 1

t′ = G(s, t)

s′ = 1

t′ =
t − Gs(s, t)

Gt(s, t)

s′ = t

t′ =
1− tGs(s, t)

Gt(s, t)

where G(x , y) is a rational function.



Solving the associated system by parametrization method

Associated System


s ′ =

M1(s, t)

N1(s, t)

t ′ =
M2(s, t)

N2(s, t)
Irr. Inv. Alg. Curve Gs ·M1N2 + Gt ·M2N1 = G · K
Proper Rat. Para (s(x), t(x)), G (s(x), t(x)) = 0

Reparametrization T ′ =
1

s ′(T )
· M1(s(T ), t(T ))

N1(s(T ), t(T ))
if s ′(x) 6= 0

T ′ =
1

t ′(T )
· M2(s(T ), t(T ))

N2(s(T ), t(T ))
if t ′(x) 6= 0

T (x) =
ax + b

cx + d
Rational Solution (s(T (x)), t(T (x)))



Invariant algebraic curves

Definition
A (rational) algebraic curve G (s, t) = 0 is called a (rational)
invariant algebraic curve of the system (1) iff

Gs ·M1N2 + Gt ·M2N1 = G · K

for some polynomial K .

I Computing an irreducible invariant algebraic curve of the
system (1) is elementary (i.e., using undetermined coefficients
method) provided an upper bound of the degree of the
irreducible invariant algebraic curves.

I Such an upper bound is known in a generic case, the case in
which the system (1) has no dicritical singularities.



Definition
A rational invariant algebraic curve of the system (1) is called a
rational solution curve iff there is a rational parametrization of the
curve solving the system.

Theorem
The associated system has a rational general solution
corresponding to G (s, t) = 0 if and only if G (s, t) = 0 is a rational
solution curve and its coefficients contain an arbitrary constant.



Example 1
Consider the differential equation

y ′2 + 3y ′ − 2y − 3x = 0. (2)

It can be parametrized by

P1(s, t) =

(
t2 + 2s + st

s2
,− t2 + 3s

s2
,

t

s

)
.

The associated systems w.r.t. P1(s, t) is{
s ′ = st,

t ′ = s + t2.

The irreducible invariant algebraic curves are

{s = 0, t2 + 2s = 0, cs2 + t2 + 2s = 0},

where c is an arbitrary constant.



The rational general solution, corresponding to the curve
cs2 + t2 + 2s = 0, of the associated system is

s(x) = − 2

c + x2
, t(x) = − 2x

c + x2
.

Therefore, the rational general solution of (2) is

y =
1

2
((x + c)2 + 3c).



Rational first integrals

Definition
A first integral of the system

s ′ =
M1(s, t)

N1(s, t)
,

t ′ =
M2(s, t)

N2(s, t)
,

is a non-constant bivariate function W (s, t) such that

M1

N1
·Ws +

M2

N2
·Wt = 0. (3)

A first integral W (s, t) of the system (1) is called a rational first
integral iff W (s, t) is a rational function in s and t.



Associated System


s ′ =

M1(s, t)

N1(s, t)

t ′ =
M2(s, t)

N2(s, t)

Rational First Integral W =
U(s, t)

V (s, t)
,

M1

N1
·Ws +

M2

N2
·Wt = 0

Factorization in U − cV =
∏

i (Ai + αiBi )

K(c)[s, t] U,V ,Ai ,Bi ∈ K[s, t], gcd(U,V ) = 1

c is a trans. constant αi ∈ K(c)

Invariant Algebraic Curve Ai + αiBi = 0, ∀i



Rational general solutions and rational first integrals

Theorem
The system (1) has a rational general solution if and only if it has

a rational first integral
U

V
∈ K(s, t) with gcd(U,V ) = 1 and any

irreducible factor of U − cV in K(c)[s, t] determines a rational
solution curve for a transcendental constant c over K.

Lemma
The irreducible factors of U − cV over the field K(c) are conjugate
over K(c) and they appear in the form

A + αB,

where A,B ∈ K[s, t] and α ∈ K(c). Moreover, α is also a
transcendental constant over K because c is so.



Example 1 (cont.)

In Example 2, a rational first integral of the associated system{
s ′ = st,

t ′ = s + t2

is

W (s, t) =
(t2 + 2s)2

s4
.

We have

(t2 + 2s)2 − cs4 = (t2 + 2s −
√

cs2) · (t2 + 2s +
√

cs2).

Take G (s, t) = t2 + 2s +
√

cs2 as an invariant algebraic curve and
proceed as before.



Affine linear transformation on ODEs

(ongoing work with Prof. Rafael Sendra)
Consider the affine linear transformation (birational mapping)

φ(x , y , z) = (x , ay + bx , az + b) (4)

and its inverse

φ−1(X ,Y ,Z ) =

(
X ,

1

a
Y − b

a
X ,

1

a
Z − b

a

)
, (5)

where a, b are constants and a 6= 0.

I This mapping is compatible with the integral curves on the
surfaces F (x , y , z) = 0 and
G (X ,Y ,Z ) := F (φ−1(X ,Y ,Z )) = 0, i.e.,

(x , f (x), f ′(x)) 7−→ (x , af (x) + bx , af ′(x) + b) =: (x , g(x), g ′(x)).



Theorem
Let P(s, t) be a proper rational parametrization of F (x , y , z) = 0.
Then Q(s, t) = φ(P(s, t)) is a proper rational parametrization of
G (X ,Y ,Z ) and the associated system of G (X ,Y ,Y ′) = 0 w.r.t
Q(s, t) is the same as the one of F (x , y , y ′) = 0 w.r.t P(s, t).

Corollary

If F (x , y , y ′) = 0 is transformable into an autonomous ODE via
the affine change φ, then there exists a proper rational
parametrization P(s, t) of F (x , y , z) = 0 such that its associated
system is of the form s ′ = 1,

t ′ =
M(t)

N(t)
.



Affine linear transformation on ODEs - Example
The differential equation

y ′2 + 3y ′ − 2y − 3x = 0

is transformable into an autonomous ODE by y = Y − 3
2x , we

obtain

Y ′2 − 2Y − 9

4
= 0.

The last equation can be parametrized by

(
s,

t2

2
− 9

8
, t

)
. Its

associated system is {
s ′ = 1,

t ′ = 1.

It suggests to parametrize the first equation by

P2(s, t) =

(
s,

t2

2
− 3

2
s − 9

8
, t − 3

2

)
.



Conclusion

1. We solve for rational general solutions of a parametrizable
ODE via irreducible invariant algebraic curves of its associated
system.

2. We present a relation between rational general solutions of the
associated system and its rational first integrals. So we have
another algorithmic decision for existence of a rational general
solution via rational first integrals of the associated system.

3. We present a class of birational transformations on
parametrizable ODEs of order 1 preserving the associated
system.
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