Rational general solutions of first order non-autonomous parametric ODEs

Ngô Lâm Xuân Châu

Research Institute for Symbolic Computation (RISC)

MEGA 2009

Outline

(1) Introduction
(2) Construction of solutions
(3) Differential algebra setting and Proof
(4) Algorithm and Example

Introduction

Feng and Gao have studied the rational general solutions of an autonomous ODE

$$
F\left(y, y^{\prime}\right)=0,
$$

where $F \in \mathbb{Q}[y, z]$.

Introduction

Feng and Gao have studied the rational general solutions of an autonomous ODE

$$
F\left(y, y^{\prime}\right)=0,
$$

where $F \in \mathbb{Q}[y, z]$.

- Formally view $F\left(y, y^{\prime}\right)=0$ as an algebraic curve $F(y, z)=0$.

Introduction

Feng and Gao have studied the rational general solutions of an autonomous ODE

$$
F\left(y, y^{\prime}\right)=0
$$

where $F \in \mathbb{Q}[y, z]$.

- Formally view $F\left(y, y^{\prime}\right)=0$ as an algebraic curve $F(y, z)=0$.
- If $y=f(x)$ is a nontrivial rational function, then

$$
\begin{gathered}
F\left(f(x), f(x)^{\prime}\right)=0 \Rightarrow\left(f(x), f^{\prime}(x)\right) \text { is a proper rational parametrization } \\
\text { of } F(y, z)=0 .
\end{gathered}
$$

Introduction

Feng and Gao have studied the rational general solutions of an autonomous ODE

$$
F\left(y, y^{\prime}\right)=0
$$

where $F \in \mathbb{Q}[y, z]$.

- Formally view $F\left(y, y^{\prime}\right)=0$ as an algebraic curve $F(y, z)=0$.
- If $y=f(x)$ is a nontrivial rational function, then

$$
\begin{gathered}
F\left(f(x), f(x)^{\prime}\right)=0 \Rightarrow\left(f(x), f^{\prime}(x)\right) \text { is a proper rational parametrization } \\
\qquad \text { of } F(y, z)=0
\end{gathered}
$$

- If $(r(x), s(x))$ is a proper rational parametrization of $F(y, z)=0$, then under certain "differential compatibility conditions" one obtains a rational general solution of $F\left(y, y^{\prime}\right)=0$ from $r(x)$.

We would like to study the rational general solutions of an non-autonomous ODE

$$
F\left(x, y, y^{\prime}\right)=0
$$

where $F \in \mathbb{Q}[x, y, z]$.

We would like to study the rational general solutions of an non-autonomous ODE

$$
F\left(x, y, y^{\prime}\right)=0
$$

where $F \in \mathbb{Q}[x, y, z]$.

- Formally view $F\left(x, y, y^{\prime}\right)=0$ as an implicit algebraic surface $F(x, y, z)=0$.

We would like to study the rational general solutions of an non-autonomous ODE

$$
F\left(x, y, y^{\prime}\right)=0
$$

where $F \in \mathbb{Q}[x, y, z]$.

- Formally view $F\left(x, y, y^{\prime}\right)=0$ as an implicit algebraic surface $F(x, y, z)=0$.
- A rational solution $y=f(x)$ defines a rational space curve

$$
\gamma(x)=\left(x, f(x), f^{\prime}(x)\right)
$$

on the surface $F(x, y, z)=0$.

We would like to study the rational general solutions of an non-autonomous ODE

$$
F\left(x, y, y^{\prime}\right)=0
$$

where $F \in \mathbb{Q}[x, y, z]$.

- Formally view $F\left(x, y, y^{\prime}\right)=0$ as an implicit algebraic surface $F(x, y, z)=0$.
- A rational solution $y=f(x)$ defines a rational space curve

$$
\gamma(x)=\left(x, f(x), f^{\prime}(x)\right)
$$

on the surface $F(x, y, z)=0$.

- Assume in addition that the surface $F(x, y, z)=0$ is parametrized by a proper rational parametrization $\mathcal{P}(s, t)$. We will find the "differential compatibility conditions" on the coordinate functions of $\mathcal{P}(s, t)$.

Construction of solutions

Let

$$
\mathcal{P}(s, t)=\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)
$$

be a proper parametrization of $F(x, y, z)=0$, where

$$
\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t) \in \overline{\mathbb{Q}}(s, t) .
$$

Suppose that the inverse of $\mathcal{P}(s, t)$ is

$$
\mathcal{P}^{-1}(x, y, z)=(s(x, y, z), t(x, y, z))
$$

Construction of solutions

Let

$$
\mathcal{P}(s, t)=\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)
$$

be a proper parametrization of $F(x, y, z)=0$, where

$$
\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t) \in \overline{\mathbb{Q}}(s, t) .
$$

Suppose that the inverse of $\mathcal{P}(s, t)$ is

$$
\mathcal{P}^{-1}(x, y, z)=(s(x, y, z), t(x, y, z))
$$

In particular, if $y=f(x)$ is a rational solution of $F\left(x, y, y^{\prime}\right)=0$, then we obtain

$$
\mathcal{P}^{-1}\left(x, f(x), f^{\prime}(x)\right)=(s(x), t(x))
$$

Construction of solutions

Let

$$
\mathcal{P}(s, t)=\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)
$$

be a proper parametrization of $F(x, y, z)=0$, where

$$
\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t) \in \overline{\mathbb{Q}}(s, t) .
$$

Suppose that the inverse of $\mathcal{P}(s, t)$ is

$$
\mathcal{P}^{-1}(x, y, z)=(s(x, y, z), t(x, y, z))
$$

In particular, if $y=f(x)$ is a rational solution of $F\left(x, y, y^{\prime}\right)=0$, then we obtain

$$
\mathcal{P}^{-1}\left(x, f(x), f^{\prime}(x)\right)=(s(x), t(x))
$$

which defines a rational plane curve and satisfies the relation

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x \\
\chi_{2}(s(x), t(x))=f(x) \\
\chi_{3}(s(x), t(x))=f^{\prime}(x) .
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x \tag{1}\\
{\left[\chi_{2}(s(x), t(x))\right]^{\prime}=\chi_{3}(s(x), t(x))}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x \tag{1}\\
{\left[\chi_{2}(s(x), t(x))\right]^{\prime}=\chi_{3}(s(x), t(x))}
\end{array}\right.
$$

\Downarrow

$$
\left\{\begin{array}{l}
\frac{\partial \chi_{1}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{1}(s(x), t(x))}{\partial t} t^{\prime}(x)=1 \tag{2}\\
\frac{\partial \chi_{2}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{2}(s(x), t(x))}{\partial t} t^{\prime}(x)=\chi_{3}(s(x), t(x))
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x+c \tag{1}\\
{\left[\chi_{2}(s(x), t(x))\right]^{\prime}=\chi_{3}(s(x), t(x))}
\end{array}\right.
$$

\Downarrow

$$
\left\{\begin{array}{l}
\frac{\partial \chi_{1}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{1}(s(x), t(x))}{\partial t} t^{\prime}(x)=1 \tag{2}\\
\frac{\partial \chi_{2}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{2}(s(x), t(x))}{\partial t} t^{\prime}(x)=\chi_{3}(s(x), t(x))
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x+c \tag{1}\\
{\left[\chi_{2}(s(x), t(x))\right]^{\prime}=\chi_{3}(s(x), t(x))}
\end{array}\right.
$$

\Downarrow

$$
\left\{\begin{array}{l}
\frac{\partial \chi_{1}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{1}(s(x), t(x))}{\partial t} t^{\prime}(x)=1 \tag{2}\\
\frac{\partial \chi_{2}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{2}(s(x), t(x))}{\partial t} t^{\prime}(x)=\chi_{3}(s(x), t(x))
\end{array}\right.
$$

$\Downarrow \exists c$ constant

$$
\left\{\begin{array}{l}
\chi_{1}(s(x-c), t(x-c))=x \tag{3}\\
{\left[\chi_{2}(s(x-c), t(x-c))\right]^{\prime}=\chi_{3}(s(x-c), t(x-c))}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x+c \tag{1}\\
{\left[\chi_{2}(s(x), t(x))\right]^{\prime}=\chi_{3}(s(x), t(x))}
\end{array}\right.
$$

\Downarrow

$$
\left\{\begin{array}{l}
\frac{\partial \chi_{1}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{1}(s(x), t(x))}{\partial t} t^{\prime}(x)=1 \tag{2}\\
\frac{\partial \chi_{2}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{2}(s(x), t(x))}{\partial t} t^{\prime}(x)=\chi_{3}(s(x), t(x))
\end{array}\right.
$$

$\Downarrow \exists c$ constant

$$
\left\{\begin{array}{l}
\chi_{1}(s(x-c), t(x-c))=x \tag{3}\\
{\left[\chi_{2}(s(x-c), t(x-c))\right]^{\prime}=\chi_{3}(s(x-c), t(x-c))}
\end{array}\right.
$$

$y=\chi_{2}(s(x-c), t(x-c))$ is a rational solution of $F\left(x, y, y^{\prime}\right)=0$.

Consider the linear system (2)

$$
\left\{\begin{array}{l}
\frac{\partial \chi_{1}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{1}(s(x), t(x))}{\partial t} t^{\prime}(x)=1 \\
\frac{\partial \chi_{2}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{2}(s(x), t(x))}{\partial t} t^{\prime}(x)=\chi_{3}(s(x), t(x)) .
\end{array}\right.
$$

Consider the linear system (2)

$$
\left\{\begin{array}{l}
\frac{\partial \chi_{1}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{1}(s(x), t(x))}{\partial t} t^{\prime}(x)=1 \\
\frac{\partial \chi_{2}(s(x), t(x))}{\partial s} s^{\prime}(x)+\frac{\partial \chi_{2}(s(x), t(x))}{\partial t} t^{\prime}(x)=\chi_{3}(s(x), t(x)) .
\end{array}\right.
$$

Let

$$
\begin{align*}
& g(s, t):=\frac{\partial \chi_{1}(s, t)}{\partial s} \cdot \frac{\partial \chi_{2}(s, t)}{\partial t}-\frac{\partial \chi_{1}(s, t)}{\partial t} \cdot \frac{\partial \chi_{2}(s, t)}{\partial s} \\
& f_{1}(s, t):=\frac{\partial \chi_{2}(s, t)}{\partial t}-\chi_{3}(s, t) \cdot \frac{\partial \chi_{1}(s, t)}{\partial t} \tag{4}\\
& f_{2}(s, t):=\frac{\partial \chi_{2}(s, t)}{\partial s}-\chi_{3}(s, t) \cdot \frac{\partial \chi_{1}(s, t)}{\partial s}
\end{align*}
$$

There are two cases

$$
\text { either }\left\{\begin{array}{l}
g(s(x), t(x))=0 \tag{5}\\
f_{1}(s(x), t(x))=0
\end{array}\right.
$$

$$
\text { or }\left\{\begin{array}{l}
s^{\prime}(x)=\frac{f_{1}(s(x), t(x))}{g(s(x), t(x))} \\
t^{\prime}(x)=-\frac{f_{2}(s(x), t(x))}{g(s(x), t(x))}
\end{array}\right.
$$

There are two cases

$$
\text { either }\left\{\begin{array} { l }
{ g (s (x) , t (x)) = 0 } \tag{5}\\
{ f _ { 1 } (s (x) , t (x)) = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
s^{\prime}(x)=\frac{f_{1}(s(x), t(x))}{g(s(x), t(x))} \\
t^{\prime}(x)=-\frac{f_{2}(s(x), t(x))}{g(s(x), t(x))}
\end{array}\right.\right.
$$

The second system is called the associated system of the equation $F\left(x, y, y^{\prime}\right)=0$ with respect to $\mathcal{P}(s, t)$.

Differential algebra notions

- $\overline{\mathbb{Q}}(x)$ the differential field of rational functions in x with usual derivation ${ }^{\prime}$.
- y an indeterminate over $\overline{\mathbb{Q}}(x)$.
- $\overline{\mathbb{Q}}(x)\{y\}$ the differential ring over $\overline{\mathbb{Q}}(x)$.
- Initial, separant of $F \in \overline{\mathbb{Q}}(x)\{y\}$ denoted by I and S respectively.

For any $G \in \overline{\mathbb{Q}}(x)\{y\}$ we have a unique representation

$$
I^{m} S^{n} G=Q_{k} F^{(k)}+Q_{k-1} F^{(k-1)}+\cdots+Q_{1} F^{\prime}+Q_{0} F+R
$$

where

- l is the initial of F, S is the separant of F,
- $m, n, k \in \mathbb{N}$,
- $F^{(i)}$ is the i-th derivative of F,
- $Q_{i}, R \in \overline{\mathbb{Q}}(x)\{y\}, R$ is reduced with respect to F.

The R is called the differential pseudo remainder of G with respect to F, denoted by

$$
\operatorname{sprem}(G, F)
$$

Definition

A rational solution

$$
\bar{y}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}}
$$

of $F\left(x, y, y^{\prime}\right)=0$ is called a rational general solution if for any differential polynomial $G \in \overline{\mathbb{Q}}(x)\{y\}$ we have

$$
G(\bar{y})=0 \Longleftrightarrow \operatorname{sprem}(G, F)=0
$$

Definition

Let $N_{1}(s, t), M_{1}(s, t), N_{2}(s, t), M_{2}(s, t) \in \overline{\mathbb{Q}}[s, t]$. A rational solution $(s(x), t(x))$ of the autonomous system

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{N_{1}(s, t)}{M_{1}(s, t)} \\
t^{\prime}=\frac{N_{2}(s, t)}{M_{2}(s, t)}
\end{array}\right.
$$

is called a rational general solution if for any $G \in \overline{\mathbb{Q}}(x)\{s, t\}$ we have

$$
G(s(x), t(x))=0 \Longleftrightarrow \operatorname{sprem}\left(G,\left[M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right]\right)=0
$$

Lemma

If $(s(x), t(x))$ is a rational general solution of the associated system (5) and $G \in \overline{\mathbb{Q}}(x)[s, t]$, then

$$
G(s(x), t(x))=0 \Longleftrightarrow G=0 .
$$

Theorem

If the associated system (5) has a rational general solution, then there exists a constant c such that

$$
\bar{y}=\chi_{2}(s(x-c), t(x-c))
$$

is a rational general solution of $F\left(x, y, y^{\prime}\right)=0$.

Proof of the theorem

Assume that $(s(x), t(x))$ is a rational general solution of the associated system (5).

Proof of the theorem

Assume that $(s(x), t(x))$ is a rational general solution of the associated system (5). Then there exists a constant c such that

$$
\bar{y}=\chi_{2}(s(x-c), t(x-c))
$$

is a rational solution of $F\left(x, y, y^{\prime}\right)=0$.

Proof of the theorem

Assume that $(s(x), t(x))$ is a rational general solution of the associated system (5). Then there exists a constant c such that

$$
\bar{y}=\chi_{2}(s(x-c), t(x-c))
$$

is a rational solution of $F\left(x, y, y^{\prime}\right)=0$. Let G be an arbitrary differential polynomial in $\overline{\mathbb{Q}}(x)\{y\}$ such that $G(\bar{y})=0$.

Proof of the theorem

Assume that $(s(x), t(x))$ is a rational general solution of the associated system (5). Then there exists a constant c such that

$$
\bar{y}=\chi_{2}(s(x-c), t(x-c))
$$

is a rational solution of $F\left(x, y, y^{\prime}\right)=0$. Let G be an arbitrary differential polynomial in $\overline{\mathbb{Q}}(x)\{y\}$ such that $G(\bar{y})=0$. Let

$$
R=\operatorname{prem}(G, F)
$$

be the differential pseudo remainder of G with respect to F. We have to prove that $R=0$.

Proof of the theorem

Assume that $(s(x), t(x))$ is a rational general solution of the associated system (5). Then there exists a constant c such that

$$
\bar{y}=\chi_{2}(s(x-c), t(x-c))
$$

is a rational solution of $F\left(x, y, y^{\prime}\right)=0$. Let G be an arbitrary differential polynomial in $\overline{\mathbb{Q}}(x)\{y\}$ such that $G(\bar{y})=0$. Let

$$
R=\operatorname{prem}(G, F)
$$

be the differential pseudo remainder of G with respect to F. We have to prove that $R=0$. Note that the order of R is 1 and

$$
\begin{gathered}
R\left(x, \bar{y}, \bar{y}^{\prime}\right)=0 \\
\text { where }\left(x, \bar{y}, \bar{y}^{\prime}\right)=\mathcal{P}(s(x-c), t(x-c))
\end{gathered}
$$

Assume that $R \neq 0$. Consider

$$
R(\mathcal{P}(s, t))=R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=\frac{W(s, t)}{Z(s, t)} \in \overline{\mathbb{Q}}(s, t)
$$

Assume that $R \neq 0$. Consider

$$
R(\mathcal{P}(s, t))=R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=\frac{W(s, t)}{Z(s, t)} \in \overline{\mathbb{Q}}(s, t) .
$$

We have

$$
R\left(x, \bar{y}, \bar{y}^{\prime}\right)=0 \Longrightarrow W(s(x-c), t(x-c))=0
$$

Assume that $R \neq 0$. Consider

$$
R(\mathcal{P}(s, t))=R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=\frac{W(s, t)}{Z(s, t)} \in \overline{\mathbb{Q}}(s, t) .
$$

We have

$$
R\left(x, \bar{y}, \bar{y}^{\prime}\right)=0 \Longrightarrow W(s(x-c), t(x-c))=0
$$

On the other hand, $(s(x-c), t(x-c))$ is also a rational general solution of (5), it follows from the Lemma (3) that $W(s, t)=0$.

Assume that $R \neq 0$. Consider

$$
R(\mathcal{P}(s, t))=R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=\frac{W(s, t)}{Z(s, t)} \in \overline{\mathbb{Q}}(s, t) .
$$

We have

$$
R\left(x, \bar{y}, \bar{y}^{\prime}\right)=0 \Longrightarrow W(s(x-c), t(x-c))=0
$$

On the other hand, $(s(x-c), t(x-c))$ is also a rational general solution of (5), it follows from the Lemma (3) that $W(s, t)=0$. Thus

$$
R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=0
$$

Assume that $R \neq 0$. Consider

$$
R(\mathcal{P}(s, t))=R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=\frac{W(s, t)}{Z(s, t)} \in \overline{\mathbb{Q}}(s, t) .
$$

We have

$$
R\left(x, \bar{y}, \bar{y}^{\prime}\right)=0 \Longrightarrow W(s(x-c), t(x-c))=0
$$

On the other hand, $(s(x-c), t(x-c))$ is also a rational general solution of (5), it follows from the Lemma (3) that $W(s, t)=0$. Thus

$$
R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=0
$$

Since F is irreducible and $\operatorname{deg}_{y^{\prime}} R<\operatorname{deg}_{y^{\prime}} F$, we have $R=0$. Therefore, \bar{y} is a rational general solution of $F\left(x, y, y^{\prime}\right)=0$.

Algorithm

- Input: $F\left(x, y, y^{\prime}\right)=0$,

A proper parametrization $\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right) \in \overline{\mathbb{Q}}(s, t)$ of $F(x, y, z)=0$

- Output: A rational general solution of $F\left(x, y, y^{\prime}\right)=0$.
(1) Compute $f_{1}(s, t), f_{2}(s, t), g(s, t)$ as in (4)
(2) Solve the associated system of ODEs for a rational general solution $(s(x), t(x))$

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{f_{1}(s, t)}{g(s, t)} \\
t^{\prime}=-\frac{f_{2}(s, t)}{g(s, t)}
\end{array}\right.
$$

(3) Compute the constant $c:=\chi_{1}(s(x), t(x))-x$
(3) Return $y=\chi_{2}(s(x-c), t(x-c))$.

Example

$$
F\left(x, y, y^{\prime}\right) \equiv y^{\prime 3}-4 x y y^{\prime}+8 y^{2}=0
$$

Example

$$
F\left(x, y, y^{\prime}\right) \equiv y^{\prime 3}-4 x y y^{\prime}+8 y^{2}=0 .
$$

A proper rational parametrization of $F(x, y, z)=0$ is

$$
\mathcal{P}(s, t)=\left(t,-4 s^{2}(2 s-t),-4 s(2 s-t)\right) .
$$

Example

$$
F\left(x, y, y^{\prime}\right) \equiv y^{\prime 3}-4 x y y^{\prime}+8 y^{2}=0
$$

A proper rational parametrization of $F(x, y, z)=0$ is

$$
\mathcal{P}(s, t)=\left(t,-4 s^{2}(2 s-t),-4 s(2 s-t)\right) .
$$

We compute

$$
\begin{gathered}
g(s, t)=8 s(3 s-t) \\
f_{1}(s, t)=4 s(3 s-t), f_{2}(s, t)=-8 s(3 s-t)
\end{gathered}
$$

Example

$$
F\left(x, y, y^{\prime}\right) \equiv y^{\prime 3}-4 x y y^{\prime}+8 y^{2}=0 .
$$

A proper rational parametrization of $F(x, y, z)=0$ is

$$
\mathcal{P}(s, t)=\left(t,-4 s^{2}(2 s-t),-4 s(2 s-t)\right) .
$$

We compute

$$
\begin{gathered}
g(s, t)=8 s(3 s-t) \\
f_{1}(s, t)=4 s(3 s-t), f_{2}(s, t)=-8 s(3 s-t)
\end{gathered}
$$

The associated system is

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{1}{2} \\
t^{\prime}=1
\end{array}\right.
$$

Solving this associated system we obtain a rational general solution

$$
s(x)=\frac{x}{2}+c_{2}, t(x)=x+c_{1}
$$

for arbitrary constants c_{1}, c_{2}.

Solving this associated system we obtain a rational general solution

$$
s(x)=\frac{x}{2}+c_{2}, t(x)=x+c_{1}
$$

for arbitrary constants c_{1}, c_{2}. Therefore,

$$
c_{1}=t(x)-x
$$

Solving this associated system we obtain a rational general solution

$$
s(x)=\frac{x}{2}+c_{2}, t(x)=x+c_{1}
$$

for arbitrary constants c_{1}, c_{2}. Therefore,

$$
c_{1}=t(x)-x
$$

and the rational general solution of $F\left(x, y, y^{\prime}\right)=0$ is

$$
\bar{y}=-4 s^{2}\left(x-c_{1}\right)\left[2 s\left(x-c_{1}\right)-t\left(x-c_{1}\right)\right]=-C(x+C)^{2}
$$

where $C=2 c_{2}-c_{1}$ is an arbitrary constant.

Thank you for your attention!

