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1 Introduction

The ubiquity of hypergeometric terms in enumerative combinatorics is widely recognized, such as binomial
coefficients, power functions and factorials, etc. Let C be a field of characteristic zero. A univariate
term T (n) is said to be hypergeometric if its shift quotient T (n+ 1)/T (n) is in C(n).

A hypergeometric term T (n) is said to be hypergeometric-summable if there exists another hypergeo-
metric term G(n) such that

T (n) = G(n+ 1)−G(n). (1)

We abbreviate “hypergeometric-summable” as “summable” in the sequel.
There are two methods for determining whether a hypergeometric term is summable or not. One

is Gosper’s algorithm [5] that finds a hypergeometric term G(n) such that (1) holds whenever T (n) is
summable. The other is Abramov–Petkovšek’s reduction [1, 2] that computes an additive decomposition

T (n) = (T1(n+ 1)− T1(n)) + T2(n), (2)

where T1 is hypergeometric, and T2 is either hypergeometric or zero. It is shown that T is summable if
and only if T2 = 0.

Both methods amount to computing polynomial solutions of some auxiliary first-order linear difference
equations with polynomial coefficients. A difference between the two methods is that the second one also
provides us with a non-summable part when T is not summable.

We improve Abramov–Petkovšek’s reduction so that the additive decomposition (2) is computed with-
out solving any auxiliary linear difference equation. Computational experiments illustrate that the im-
proved Abramov–Petkovšek’s reduction is superior to the original one, and more efficient than Gosper’s
algorithm when a given hypergeometric input gets complicated. We will also report an on-going research
in computing the minimal telescoper for a bivariate hypergeometric term with the help of the improved
Abramov–Petkovšek’s reduction.
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2 Improved Abramov–Petkovšek’s reduction

To describe original and improved Abramov–Petkovšek’s reductions concisely, we need some terminologies.
A nonzero polynomial in C[n] is said to be shift-free if its two distinct roots do not differ by an integer.
A nonzero rational function is said to be shift-reduced if its numerator is co-prime with any shift of its
denominator. For two hypergeometric terms T (n) and H(n), we write T (n) ≡ H(n) if T (n) − H(n) is
summable. According to [1, 2], every hypergeometric term T (n) can be written as S(n)H(n), where S(n)
is in C(n) and H(n) is another hypergeometric term whose shift quotient is shift-reduced. We call the
shift quotient H(n+ 1)/H(n) a kernel of T (n) and S the corresponding shell.

From now on, we assume that T (n) is a hypergeometric term whose kernel is K and the corresponding
shell is S. Moreover, assume that K 6= 1, for otherwise, T (n) would be rational. We set K = u/v
with u, v ∈ C[n] and gcd(u, v) = 1.

Definition 2.1 An irreducible polynomial f in C[n] is said to be strongly prime with K if either f ∈ C
with f 6= 0, or f - uv, f(n+ i) - u and f(n− i) - v for all i ∈ Z+. A nonzero polynomial in C[n] is said to
be strongly prime with K if all its irreducible factors are strongly prime with K.

The original Abramov–Petkovšek’s reduction proceeds as follows. First, decompose T (n) as S(n)H(n),
where H(n) is a hypergeometric term with shift quotient K. Second, reduce the shell S to find polynomi-
als a, b, p ∈ C[n] such that

T (n) ≡
(a
b

+
p

v

)
H(n), (3)

where deg(a) < deg(b), gcd(a, b) = 1, and b is shift-free and strongly prime with K. Moreover, deg(b)
is minimal and deg(p) is bounded (see [2, Theorem 7]). At last, compute a polynomial solution of an
auxiliary first-order linear difference equation. If a polynomial solution is found, the algorithm constructs
a hypergeometric term G(n) such that (1) holds. Otherwise, T (n) is not summable.

Based on (3), we further reduce the number of terms of p using the idea in [4]. Define a C-linear
map φK : C[n] −→ C[n] with f(n) 7→ u(n)f(n + 1) − v(n)f(n) for all f(n) ∈ C[n]. It can be shown
that φK is injective. So

{
φK(xi) | i ∈ N

}
is a C-basis of im(φK). Set

NK = spanC

{
n` | ` ∈ N and ` 6= deg(g) for all g ∈ im(φK)

}
.

Then C[n] = im(φK) ⊕ NK . With the above C-basis of im(φK), we can easily find a C-basis of NK .
The two bases enable one to project a polynomial into im (φK) and NK by merely addition and scalar
multiplication in the C-linear space C[n].

Definition 2.2 A rational function r ∈ C(n) is called a (discrete) residual form w.r.t. K if r can be
decomposed as a/b + q/v, where a, b, q ∈ C[n], deg(a) < deg(b), gcd(a, b) = 1, b is shift-free and strongly
prime with K, and q belongs to NK .

Residual forms have the following property.

Proposition 2.3 If r is a nonzero residual form w.r.t. K, and H is a hypergeometric term with shift
quotient K, then rH is not summable.

We further reduce the polynomial p in (3) by the following steps: (i) Compute the projection q of p in NK .
(ii) Set H1 = φ−1K (p− q)H and r = a/b+ q/v. Then r is a residual form w.r.t. K. By (3) and the definition
of φK , we find that T (n) ≡ (a/b+ p/v)H(n) = H1(n + 1) − H1(n) + rH(n) ≡ rH(n). Thus, T (n) is
summable if and only if r = 0 by Proposition 2.3. This avoids the step to find a polynomial solution of
any auxiliary first-order linear difference equation.
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3 Computing telescopers

In [4], the authors use Hermite reduction for univariate hyperexponential functions to compute telescopers
for bivariate hyperexponential functions. It allows one to separate the computation of telescopers from
that of certificates. We try to translate their idea into the hypergeometric setting.

A bivariate term T (k, n) is said to be hypergeometric if its two shift quotients T (k + 1, n)/T (k, n)
and T (k, n + 1)/T (k, n) are in C(k, n). For two bivariate hypergeometric terms T1(k, n) and T2(k, n), we
write T1 ≡n T2 if T1 − T2 is summable w.r.t. n.

Let σk be the shift operator that maps k to k + 1. Then σjk(T ) = T (k + j, n). Applying the improved

Abramov–Petkovšek’s reduction to σjk(T (k, n)) w.r.t n, where j ranges from 0 to a nonnegative integer i,

we get σjk(T ) ≡n rjH, where H is another bivariate hypergeometric term whose shift quotient K w.r.t. n is
shift-reduced w.r.t. n, and rj is a residual form w.r.t. K. For univariate rational functions a0, . . . , ai ∈ C(k),
not all zero, we have

i∑
j=0

ajσ
j
k(T ) ≡n

i∑
j=0

ajrjH.

Clearly,
∑i

j=0 ajσ
j
k is a telescoper for T w.r.t. n if

∑i
j=0 ajrj = 0. Unfortunately, the converse is false. This

is because
∑i

j=0 ajrj is not necessarily a residual form, although all the rj ’s are. So Proposition 2.3 is not

applicable to
∑i

j=0 ajrj . This situation does not occur in the differential case [4]. To make Proposition 2.3
applicable, we will develop a new reduction by the Ore-Sato theorem [6, 7] and the criterion on the existence
of telescopers for hypergeometric terms [3].
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