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Hypergeometric Sequences

A sequence T : N → C is said to be hypergeometric if

∃ R ∈ C(n) s.t. T (n + 1) = R(n)T (n) for all n ≫ 0.
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Notation.

– For a sequence A(n), ∆(A) = A(n + 1)−A(n).

– For two hypergeometric sequences T (n), S(n), write

T ≡ S if T − S = ∆(H) for some hypergeometric sequence H(n).

Definition 1. A hypergeometric sequence T (n) is summable if T ≡ 0.

Summability. Given a hypergeometric sequence T (n), decide whether T ≡ 0.

Gosper algorithm [4] solves the summability problem.

Abramov–Petkovšek’s Reduction

Additive Decomposition. Given a hypergeometric sequence T (n), compute two hyper-
geometric sequences T1(n) and T2(n) s.t.

T = ∆(T1) + T2 and T ≡ 0 ⇐⇒ T2 = 0. (1)

Abramov–Petkovšek’s reduction (AP reduction) [1, 2] computes T1(n) and T2(n) in (1).

The AP reduction solves the summability problem as well.

Definition 2.

– p ∈ C[n] is shift-free if gcd(p(n), p(n + i)) = 1 for all i ∈ Z \ {0}.

– r ∈ C(n) with r = u/v is shift-reduced if gcd(u(n), v(n + i)) = 1 for all i ∈ Z.

– Let r = u/v be a shift-reduced rational function in C(n). A polynomial f ∈ C[n] is
strongly prime with r if either f ∈ C, or, for every irreducible factor p of f ,

p ∤ uv, p(n + i) ∤ u and p(n− i) ∤ v for all i ∈ Z+.

AP reduction. Given a hypergeometric sequence T (n), compute two hypergeometric se-
quences T1(n) and T2(n) such that the two conditions in (1) hold.

1. Compute three polynomials a, b, w ∈ C[n] such that

T ≡
(a

b
+
w

v

)

H (2)

where H(n + 1)/H(n) = u/v is shift-reduced, deg(a) < deg(b), gcd(a, b) = 1
and b is shift-free and strongly prime with u/v. Moreover, the degree of the nu-
merator w is bounded.

2. Consider the equation

u(n)y(n + 1)− v(n)y(n) = w(n). (3)

Summable case
b ∈ C∗ and w = 0 or

(3) has a polynomial solution
⇓

T2 = 0

Non-summable case
b /∈ C∗ or

(3) has no polynomial solution
⇓

T2 = (a/b + w/v)H

The sequence T1(n) can be constructed as the product of a rational function r(n) and the sequence H(n) incrementally.

Improved AP Reduction

Idea. Not only bound the degree of the numerator w in (2) as in [1, 2], but also reduce the
number of its terms as in [3].

Definition 3. Let K = u/v be shift-reduced. Define

φK : C[n] −→ C[n]
f (n) 7→ u(n)f (n + 1)− v(n)f (n).

Let NK = spanC
{

nℓ | ℓ ∈ N and ℓ 6= deg(g) for all g ∈ im(φK)
}

.

Key Lemma. The C-linear map φK is injective and C[n] = im(φK)⊕NK.

Improved AP reduction. Given a hypergeometric sequence T (n), compute two hyperge-
ometric sequences T1(n) and T2(n) s.t. the two conditions in (1) hold.

1. Compute (2) as in step 1 of AP reduction.

2. Compute the projection p of w in NK. Set

T2 :=
(a

b
+
p

v

)

H.

The sequence T1(n) can be constructed as the product of a rational function r(n) and the sequence H(n) incrementally.

The improved AP reduction avoids computing a polynomial solution of any auxiliary O∆E.

Experiments

We compare

– G: the Maple function Gosper in SumTools[Hypergeometric].

– S: a procedure that solves the summability problem based on improved AP, in which T1 is
not normalized if T is not summable.

– AP: the Maple function SumDecomposition in SumTools[Hypergeometric].

– IAP: the reduction algorithm of improved AP-reduction, in which T1 is always normalized.

Test suite:

T (n) :=
f (n)

g(n) · g(n + λ) · g(n + µ) · h(n) · h(n + λ) · h(n + µ)
·

n
∏

k=n0

u(k)

v(k)
,

where f, g, h ∈ Z[n] of respective degrees 20, 10 and 10, u(n), v(n) are the product of two
linear polynomials in Z[n], and λ, µ ∈ N with λ ≤ µ.

Input: T (n)

(λ, µ) G S AP IAP

[0, 0] 0.08 0.12 0.19 0.12

[5, 5] 0.42 0.52 4.80 0.64

[10, 10] 0.74 1.00 17.06 1.42

[10, 20] 3.05 2.08 66.50 4.30

[10, 30] 9.18 3.53 237.50 10.54

[10, 40] 20.38 5.20 482.34 24.02

Input: T (n + 1)− T (n)

(λ, µ) G S AP IAP

[0, 0] 1.22 1.46 2.83 1.44

[5, 5] 1.98 1.75 9.06 1.76

[10, 10] 2.55 1.87 19.21 1.89

[10, 20] 6.11 2.55 49.43 2.55

[10, 30] 16.27 2.66 111.77 2.70

[10, 40] 31.56 2.88 214.57 2.89

Timings (in sec.) measured on a Mac computer, 4GB RAM, 3.06 GHz Core 2 Duo processor.
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Experiments illustrate that the improved AP reduction is more efficient than both Gosper
algorithm and AP-reduction.

A Potential Application

Can one compute the minimal telescoper for a bivariate hypergeometric term by the improved
AP reduction, following the idea in [3]?

Advantage. Such an algorithm would separate the computation for telescopers from that
for certificates so as to improve efficiency.

Difficulty. The least common multiple of shift-free polynomials is not necessarily shift-free.
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