

A Double Regularization Approach for Inverse Problems with Noisy Data and Inexact Operator

Ismael Rodrigo Bleyer Prof. Dr. Ronny Ramlau

Johannes Kepler Universität - Linz

Helsinki - April 18, 2011.

Der Wissenschaftsfonds.

supported by

Bleyer,	Ramlau

Overview

- Introduction
- 1st Case: noisy data
- 2nd Case: inexact operator and noisy data
- Proposed method
- Computational aspects
- □ Numerical illustration
- Conclusions and future work

Overview

Introduction

- 1st Case: noisy data
- 2nd Case: inexact operator and noisy data
- Proposed method
- Computational aspects
- Numerical illustration
- Conclusions and future work

Inverse of what?

We call *two problems inverses of one another* if the formulation of each involves all or part of the solution of the other. [J. Keller]

Consider a linear or non-linear operator equation

Ax = y or F(x) = y

Direct: given x, compute y = Ax (studied ealier or the easier one)

Inverse: given y, solve Ax = y (if there is solution)

"Inverse problems are concerned with determining causes for a desired or an observed effect" [Engl, Hanke, Naubauer]

Inverse problems most oft do not fulfill **Hadamard**'s postulate of well posedness.

It is called well-posed [Hadamard, 1902] if

- existence: for all admissible data, a solution exists;
- uniqueness: for all admissible data, a solution is unique;
- **stability:** the solution depends continuously on the data.

Hadamard (1865 - 1963)

Computational issues: observed effect has measurement errors or perturbations caused by noise

Bleyer,	Ramlau
---------	--------

Overview

Introduction

- 1st Case: noisy data
- 2nd Case: inexact operator and noisy data
- Proposed method
- Computational aspects
- Numerical illustration
- Conclusions and future work

Dieyer, Maimau	Bleyer,	Ramlau
----------------	---------	--------

Regularization

Solve $Ax = y_0$ out of the measurement y_{δ} with $||y_0 - y_{\delta}|| \le \delta$. Need apply some **regularization** technique

$$\underset{x}{\text{minimize}} \|Ax - y_{\delta}\|^2 + \alpha \|Lx\|^2.$$

Tikhonov regularization (Tik-R)

- fidelity term (based on LS);
- stabilization term (Hilbert space);
- regularization parameter α .

[Tihonov, 1963 & Phillips, 1962]

Tikhonov (1906 - 1993)

Tikhonov-type regularization

Exchange the quadract term by a general functional \mathcal{R} , namely a proper, convex and weakly lower semicontinuous functional:

$$\underset{x}{\text{minimize}} \|Ax - y_{\delta}\|^2 + \alpha \Re(x)$$

Also called: non-quadract regularization, convex regularization or generalized Tikhonov regularization.

Convergence rates (wrt Bregman distances)				
2004	linear	SC type I	Banach – Hilbert	Burger and Osher
2005	linear	SC type II	Banach – Hilbert	Resmerita
2006	nonlinear	SC type I and II	Banach – Banach	Resmerita and Scherzer
► Def. Bre	egman			Source Conditions

Blever.	Ramlau
,	

Subgradient

The Fenchel subdifferential of a functional $\mathcal{R}:\mathcal{U}\to[0,+\infty]$ at $\bar{u}\in\mathcal{U}$ is the set

 $\partial^{F} \mathcal{R}\left(\bar{u}\right) = \{\xi \in \mathcal{U}^{*} \mid \mathcal{R}(v) - \mathcal{R}(\bar{u}) \geq \left\langle \xi \right. , \, v - \bar{u} \right\rangle \, \forall v \in \mathcal{U} \}.$

First in 1960 by Moreau and Rockafellar and extended by Clark 1973.

Optimality condition:

If \overline{u} minimizes $\mathfrak R$ then

 $0\in\partial^{F}\mathcal{R}\left(\bar{u}\right)$

Blever,	Ramlau
,	

Example

Consider the function $\Re(u) = |u|$

Figure: Function (left) and its subdifferential (right).

Bleyer, Ramlau	JKU Linz	8 / 40

Iterative Soft-Shrinkage

Therefore we look the following minimization problem

$$J(k) = \min_{k} \|\tilde{F}k - g_{\delta}\|^{2} + \beta \Re(k).$$

Regularization term: weighted l_p -norm of k wrt an orthonormal basis $\{\phi_\lambda\}_\lambda$ of $L_2(\Omega^2)$,

$$||k||_{w,p}^p = \sum_{\lambda} w_{\lambda} |k_{\lambda}|^p,$$

where $k_\lambda = |\langle k$, $\phi_\lambda
angle|.$

Idea: apply a surrogate functional that removes the term $\tilde{F}^*\tilde{F}k$ Daubechies et al. [2004], adding a functional which depends of an auxiliary element u,

$$\Xi(k;u) = C \|k - u\|^{2} - \|\tilde{F}k - \tilde{F}u\|^{2}.$$

Bleyer, F	Ramlau
-----------	--------

Remark: for a suitable choice of C the whole functional is strictly convex.

Therefore the surrogate functional - extended functional is

$$J^{\text{Sur}}(k;u) = J(k) + \Xi(k;u)$$

= $\|\tilde{F}k - g_{\delta}\|^{2} + \beta \|k\|_{w,p}^{p} + C\|k - u\|^{2} - \|\tilde{F}k - \tilde{F}u\|^{2}$
= $\|\tilde{F}k\|^{2} + \|g_{\delta}\|^{2} - 2\langle \tilde{F}k , g_{\delta} \rangle + \beta \|k\|_{w,p}^{p} + C\|k\|^{2} + C\|u\|^{2}$
 $-2C\langle k , u \rangle - \|\tilde{F}k\|^{2} - \|\tilde{F}u\|^{2} + 2\langle \tilde{F}k , \tilde{F}u \rangle$
= $C\|k\|^{2} - 2\langle k , Cu - \tilde{F}^{*}(\tilde{F}u - g_{\delta}) \rangle + \beta \|k\|_{w,p}^{p} + c_{1}$

Writing k as a linear combination of an ONB $\{\phi_{\lambda}\}_{\lambda}$

$$J^{\mathrm{Sur}}(k;u) = \sum_{\lambda} C(k_{\lambda})^{2} - 2k_{\lambda} \left(Cu - \tilde{F}^{*}(\tilde{F}u - g_{\delta}) \right)_{\lambda} + \beta w_{\lambda} |k_{\lambda}|^{p} + c_{1}$$

Compute the minimizer of $J^{Sur}(k; u)$ wrt k for a given u. For a choice p = 1 the optimality condition (derivative) is

$$2Ck_{\lambda} = 2\left(Cu - \tilde{F}^*(\tilde{F}u - g_{\delta})\right)_{\lambda} - \beta w_{\lambda}\operatorname{sgn}(k_{\lambda}).$$

Under definition of soft-shrinkage operator

$$S_{\beta}(x) = \max\{\|x\| - \beta, 0\} \frac{x}{\|x\|}$$

or equivalent

$$\mathbb{S}_{\beta}\left(x\right) = \begin{cases} x - \beta \frac{x}{\|x\|} & \text{ if } \|x\| > \beta \\ 0 & \text{ if } \|x\| \le \beta \end{cases}$$

(1)

we end up

$$k_{\lambda} = \mathbb{S}_{\frac{w_{\lambda}}{C}\frac{\beta}{2}} \left(u - \frac{1}{C} [\tilde{F}^{*}(\tilde{F}u - g_{\delta})]_{\lambda} \right)$$

Bleyer,	Ramlau
---------	--------

1st Case: noisy data

An iterative approach can be done setting $u = k^n$ and so

$$k^{n+1} = \operatorname*{arg\,min}_{k} J^{\mathrm{Sur}}(k;k^{n})$$

for a initial guess k^0 .

Figure: Soft Shrinkage operator.

Bleyer, Ramlau	JKU Linz	12 / 40

Overview

Introduction

- 1st Case: noisy data
- 2nd Case: inexact operator and noisy data
- Proposed method
- Computational aspects
- Numerical illustration
- Conclusions and future work

Solve $A_0 x = y_0$ under the assumptions (i) noisy data $||y_0 - y_\delta|| \le \delta$. (ii) inexact operator $||A_0 - A_\epsilon|| \le \epsilon$.

What have been done so far?

■ linear case:

TLS: Total least squares by Golub and Van Loan [1980];

- **R-TLS**: Regularized TLS by Golub et al. [1999];
- **D-RTLS**: Dual R-TLS by Lu et al. [2007].

nonlinear case: no publication (?)

LS: y_{δ} and A_0 TLS: y_{δ} and A_{ϵ} minimize_y || $y - y_{\delta}$ ||_2minimize || $[A, y] - [A_{\epsilon}, y_{\delta}]$ ||_Fsubject to $y \in \mathscr{R}(A_0)$ subject to $y \in \mathscr{R}(A)$

Bleyer,	Ramlau	
---------	--------	--

Solve $A_0 x = y_0$ under the assumptions

- (i) noisy data $||y_0 y_\delta|| \le \delta$.
- (ii) inexact operator $\left\|A_0 A_{\boldsymbol{\epsilon}}\right\| \leq \epsilon$.
- What have been done so far?
 - linear case:
 - **TLS**: Total least squares by Golub and Van Loan [1980];
 - R-TLS: Regularized TLS by Golub et al. [1999];
 - D-RTLS: Dual R-TLS by Lu et al. [2007].
 - nonlinear case: no publication (?)

LS: y_{δ} and A_0 minimize_y $||y - y_{\delta}||_2$ subject to $y \in \mathscr{R}(A_0)$ **TLS**: y_{δ} and A_{ϵ} minimize $||[A, y] - [A_{\epsilon}, y_{\delta}]||_F$ subject to $y \in \mathscr{R}(A)$

21		
Bleyer,	Ramlau	

Illustration

Solve 1D problem: am = b, find the slope m. Ls noisy data Cases: 3 1. b_{δ} 2 2. a_{ϵ} 3. b_{δ} , a_{ϵ} -1 Solution: Ls solution -2 m = 1noisy right side true data -3 -2 -1 -4 -3 0 1 2 3 4 5 slope 45.7666

Example: $\arctan(1) = 45^{\circ}$ (Van Huffel and Vandewalle [1991]).

Bleyer, Ramlau	JKU Linz	14 / 40

Illustration

Example: $\arctan(1) = 45^{\circ}$ (Van Huffel and Vandewalle [1991]).

Bleyer, Ramlau	JKU Linz	14 / 40

Illustration

Example: $\arctan(1) = 45^{\circ}$ (Van Huffel and Vandewalle [1991]).

Bleyer, Ramlau	JKU Linz	14 / 40

R-TLS

The R-TLS method [Golub, Hansen, O'Leary, 1999]

minimize
$$||A - A_{\epsilon}||^{2} + ||y - y_{\delta}||^{2}$$

subject to $\begin{cases} Ax = y \\ ||Lx||^{2} \le M. \end{cases}$

If the inequality constraint is active, then
$$(A_{\epsilon}^{T}A_{\epsilon} + \alpha L^{T}L + \beta I)\hat{x} = A_{\epsilon}^{T}y_{\delta} \text{ and } ||L\hat{x}|| = M$$
with $\alpha = \mu(1 + ||\hat{x}||^{2}), \ \beta = -\frac{||A_{\epsilon}\hat{x} - y_{\delta}||^{2}}{1 + ||\hat{x}||^{2}} \text{ and } \mu > 0 \text{ is the Lagrange}$
multiplier.

Difficulty: requires a reliable bound M for the norm $\left\|Lx^{\dagger}\right\|^{2}$.

DR-TLS

The DR-TLS method [Lu et al., 2007]:

minimize
$$||Lx||^2$$

subject to $\begin{cases} Ax = y \\ ||y - y_{\delta}||^2 \le \delta \\ ||A - A_{\epsilon}||^2 \le \epsilon \end{cases}$ side condition

If the inequalities constraints are active, then

$$\begin{split} \left(A_{\epsilon}^{T}A_{\epsilon} + \alpha L^{T}L + \beta I\right)\tilde{x} &= A_{\epsilon}^{T}y_{\delta}\\ \text{with } \alpha &= \frac{\nu + \mu \|\tilde{x}\|^{2}}{\nu \mu}, \ \beta &= -\frac{\mu \|A_{\epsilon}\tilde{x} - y_{\delta}\|^{2}}{\nu + \mu \|\tilde{x}\|^{2}} \text{ and } \nu, \mu > 0 \text{ are Langrange}\\ \text{nultipliers. Moreover, } \|A_{\epsilon}\tilde{x} - y_{\delta}\| &= \delta + \epsilon \|\tilde{x}\|. \end{split}$$

Bleyer, Ramlau

Overview

Introduction

- 1st Case: noisy data
- □ 2nd Case: inexact operator and noisy data

Proposed method

- Computational aspects
- Numerical illustration
- Conclusions and future work

Consider the operator equation

 $B(k,f) = g_0$

where B is a bilinear operator (nonlinear)

and B is characterized by a function k_0 .

• $K \cdot = B(\tilde{k}, \cdot)$ compact linear operator for a fixed $\tilde{k} \in \mathcal{U}$ • $F \cdot = B(\cdot, \tilde{f})$ linear operator for a fixed $\tilde{f} \in \mathcal{V}$

Example:

$$B(k,f)(s) := \int_{\Omega} k(s,t)f(t)dt$$
.

Bleyer, F	Ramlau
-----------	--------

Consider the operator equation

 $B(k,f) = g_0$

where B is a bilinear operator (nonlinear)

and B is characterized by a function k_0 .

• $K \cdot = B(\tilde{k}, \cdot)$ compact linear operator for a fixed $\tilde{k} \in \mathcal{U}$ • $F \cdot = B(\cdot, \tilde{f})$ linear operator for a fixed $\tilde{f} \in \mathcal{V}$

Example:

$$B(k,f)(s) := \int_{\Omega} k(s,t)f(t)dt \,.$$

,	Bleyer,	Ramlau	
---	---------	--------	--

"Some mathematicians still have a kind of fear whenever they encounter a Fredholm integral equation of the first kind".

We want to solve

 $B(k_0, f) = g_0$

out of the measurements k_{ϵ} and g_{δ} with (i) noisy data $||g_0 - g_{\delta}||_{\mathcal{H}} \leq \delta$. (ii) inexact operator $||k_0 - k_{\epsilon}||_{\mathcal{H}} \leq \epsilon$.

Francesco Tricomi (1897-1978)

"Some mathematicians still have a kind of fear whenever they encounter a Fredholm integral equation of the first kind".

We want to solve

$$B(k_0, f) = g_0$$

out of the measurements k_ϵ and g_δ with

- (i) noisy data $\|g_0 g_\delta\|_{\mathcal{H}} \leq \delta$.
- (ii) inexact operator $\|k_0 k_{\epsilon}\|_{\mathcal{U}} \leq \epsilon$.

Francesco Tricomi (1897-1978)

We introduce the DBL-RTLS

 $\underset{k,f}{\text{minimize }} J(k,f) := T(k,f, \frac{k_{\epsilon}}{k_{\epsilon}}, g_{\delta}) + R(k,f)$ (2)

where

$$T(k, f, \mathbf{k}_{\epsilon}, g_{\delta}) = \frac{1}{2} \|B(k, f) - g_{\delta}\|_{\mathcal{H}}^{2} + \frac{\gamma}{2} \|k - \mathbf{k}_{\epsilon}\|_{\mathcal{U}}^{2}$$
$$R(k, f) = \frac{\alpha}{2} \|Lf\|_{\mathcal{V}}^{2} + \beta \mathcal{R}(k)$$

- T is based on TLS method, measures the discrepancy on both data and operator;
- α , β are the regularization parameters and γ is a scaling parameter;
- $\blacksquare L: \mathcal{V} \rightarrow \mathcal{V} \text{ is a linear bounded operator;}$
- double regularization was proposed by You and Kaveh [1996], R: U → [0, +∞] is proper convex function and w-lsc.

We introduce the DBL-RTLS

 $\underset{k,f}{\text{minimize }} J(k,f) := T(k,f, \boldsymbol{k_{\epsilon}}, g_{\delta}) + R(k,f)$ (2)

where

$$T(k, f, \mathbf{k}_{\epsilon}, g_{\delta}) = \frac{1}{2} \left\| B(k, f) - g_{\delta} \right\|_{\mathcal{H}}^{2} + \frac{\gamma}{2} \left\| k - \mathbf{k}_{\epsilon} \right\|_{\mathcal{U}}^{2}$$
$$R(k, f) = \frac{\alpha}{2} \left\| Lf \right\|_{\mathcal{V}}^{2} + \beta \mathcal{R}(k)$$

- T is based on TLS method, measures the discrepancy on both data and operator;
- α , β are the regularization parameters and γ is a scaling parameter;
- $L: \mathcal{V} \to \mathcal{V}$ is a linear bounded operator;
- double regularization was proposed by You and Kaveh [1996], $\mathcal{R}: U \rightarrow [0, +\infty]$ is proper convex function and w-lsc.

Main theoretical results

Assumption:

(A1) B is strongly continuous, ie, if $(k^n,f^n)\rightharpoonup (\bar{k},\bar{f})$ then $B(k^n,f^n)\rightarrow B(\bar{k},\bar{f})$

Proposition

Let J be the functional defined on (2) and L be a **bounded** and **positive** operator. Then J is **positive**, weak lower semi-continuous and coercive functional.

Theorem (existence)

Let the assumptions of Proposition 1 hold. Then there exists a **global minimum** of

minimize J(k, f).

Bleyer, I	Ramlau
-----------	--------

Theorem (stability)

 $\begin{aligned} & \delta_j \to \delta \text{ and } \epsilon_j \to \epsilon \\ & g_{\delta_j} \to g_{\delta} \text{ and } k_{\epsilon_j} \to k_{\epsilon} \\ & \alpha, \beta > 0 \\ & (k^j, f^j) \text{ is a minimizer of } J \text{ with } g_{\delta_j} \text{ and } k_{\epsilon_j} \\ & \text{ Then there exists a convergent subsequence of } (k^j, f^j)_j \\ & (k^{j_m}, f^{j_m}) \longrightarrow (\bar{k}, \bar{f}) \\ & \text{ where } (\bar{k}, \bar{f}) \text{ is a minimizer of } J \text{ with } g_{\delta}, k_{\epsilon}, \alpha \text{ and } \beta. \end{aligned}$

Bleyer, Ramlau	JKU Linz	21 / 40

Theorem (stability)

- $\delta_j o \delta$ and $\epsilon_j o \epsilon$
- $g_{\delta_j} \to g_{\delta}$ and $k_{\epsilon_j} \to k_{\epsilon}$
- $\bullet \ \alpha,\beta > 0$
- (k^j, f^j) is a minimizer of J with g_{δ_j} and k_{ϵ_j}
- Then there exists a convergent subsequence of $(k^j, f^j)_j$

$$(k^{j_m}, f^{j_m}) \longrightarrow (\bar{k}, \bar{f})$$

where (\bar{k}, \bar{f}) is a minimizer of J with $g_{\delta}, k_{\epsilon}, \alpha$ and β .

Consider the convex functional

$$\Phi(k,f) := \frac{1}{2} \left\| Lf \right\|^2 + \eta \Re(k)$$

where the parameter η represents the different scaling of f and k.

For convergence results we need to define

Definition

We call (k^\dagger, f^\dagger) a $\Phi ext{-minimizing solution}$ if

$$(k^{\dagger}, f^{\dagger}) = \operatorname*{arg\,min}_{(k,f)} \{ \Phi(k,f) \mid B(k,f) = g_0 \}.$$

Bleyer,	Ramlau
---------	--------

Theorem (convergence)

$$\begin{aligned} & \delta_j \to 0 \text{ and } \epsilon_j \to 0 \\ & = \left\| g_{\delta_j} - g_0 \right\| \leq \delta_j \text{ and } \left\| k_{\epsilon_j} - k_0 \right\| \leq \epsilon_j \\ & \alpha_j = \alpha(\epsilon_j, \delta_j) \text{ and } \beta_j = \beta(\epsilon_j, \delta_j), \text{ s.t. } \alpha_j \to 0, \ \beta_j \to 0, \\ & \lim_{j \to \infty} \frac{\delta_j^2 + \gamma \epsilon_j^2}{\alpha_j} = 0 \quad \text{and} \quad \lim_{j \to \infty} \frac{\beta_j}{\alpha_j} = \eta \\ & = (k^j, f^j) \text{ is a minimizer of } J \text{ with } g_{\delta_j}, \ k_{\epsilon_j}, \ \alpha_j \text{ and } \beta_j \\ & = \text{ Then there exists } a \text{ convergent subsequence of } (k^j, f^j)_j \end{aligned}$$

where $(k^{\dagger}, f^{\dagger})$ is a Φ -minimizing solution.

Bleyer,	Ramlau
---------	--------

Theorem (convergence)

where $(k^{\dagger}, f^{\dagger})$ is a Φ -minimizing solution.

Bleyer,	Ramlau
---------	--------

Overview

Introduction

- 1st Case: noisy data
- □ 2nd Case: inexact operator and noisy data
- Proposed method
- Computational aspects
- Numerical illustration
- Conclusions and future work

Optimality condition

If the pair (\bar{k}, \bar{f}) is a minimizer of J(k, f), then $(0, 0) \in \partial J(\bar{k}, \bar{f})$.

Theorem

Let $J: \mathcal{U} \times \mathcal{V} \to \mathbb{R}$ be a nonconvex functional,

$$J(u,v) = \varphi(u) + Q(u,v) + \psi(v)$$

where Q is a nonlinear differentiable term and φ, ψ are lsc convex functions. Then

$$\begin{aligned} \partial J(u,v) &= \{ \partial \varphi \left(u \right) + D_u Q(u,v) \} \times \{ \partial \psi \left(v \right) + D_v Q(u,v) \} \\ &= \{ \partial_u J(u,v) \} \times \{ \partial_v J(u,v) \} \end{aligned}$$

Remark:

- is difficult to solve wrt both (k, f)
- \blacksquare J is bilinear and biconvex (linear and convex to each one)
- applied alternating minimization method.

```
Alternating minimization algorithm

Require: g_{\delta}, k_{\epsilon}, L, \gamma, \alpha, \beta

1: n = 0

2: repeat

3: f^{n+1} \in \arg\min_{f} J(k, f|k^{n})

4: k^{n+1} \in \arg\min_{k} J(k, f|f^{n+1})

5: until convergence
```

Dieyer, Maimau	Bleyer,	Ramlau
----------------	---------	--------

Remark:

- is difficult to solve wrt both (k, f)
- \blacksquare J is bilinear and biconvex (linear and convex to each one)
- applied alternating minimization method.

Alternating minimization algorithm

```
Require: g_{\delta}, k_{\epsilon}, L, \gamma, \alpha, \beta
```

```
1: n = 0
```

- 2: repeat
- 3: $f^{n+1} \in \operatorname{arg\,min}_f J(k, f|k^n)$
- 4: $k^{n+1} \in \operatorname{arg\,min}_k J(k, f|f^{n+1})$
- 5: until convergence

Proposition

The sequence generated by the function $J(k^n, f^n)$ is non-increasing,

$$J(k^{n+1}, f^{n+1}) \le J(k^n, f^{n+1}) \le J(k^n, f^n).$$

Assumptions:

(A1) B is strongly continuous, ie, if $(k^n, f^n) \rightharpoonup (\bar{k}, \bar{f})$ then $B(k^n, f^n) \rightarrow B(\bar{k}, \bar{f})$

(A2) B is weakly sequentially closed, ie, if $(k^n, f^n) \rightharpoonup (\bar{k}, \bar{f})$ and $B(k^n, f^n) \rightharpoonup g$ then $B(\bar{k}, \bar{f}) = g$

(A3) the adjoint of B' is strongly continuous, ie, if $(k^n, f^n) \rightarrow (\bar{k}, \bar{f})$ then $B'(k^n, f^n)^* z \rightarrow B'(\bar{k}, \bar{f})^* z$, $\forall z \in \mathscr{D}(B')$

Blever,	Ramlau

Proposition

The sequence generated by the function $J(k^n, f^n)$ is non-increasing,

$$J(k^{n+1}, f^{n+1}) \le J(k^n, f^{n+1}) \le J(k^n, f^n).$$

Assumptions:

- (A1) B is strongly continuous, ie, if $(k^n, f^n) \rightarrow (\bar{k}, \bar{f})$ then $B(k^n, f^n) \rightarrow B(\bar{k}, \bar{f})$
- (A2) B is weakly sequentially closed, ie, if $(k^n, f^n) \rightharpoonup (\bar{k}, \bar{f})$ and $B(k^n, f^n) \rightharpoonup g$ then $B(\bar{k}, \bar{f}) = g$
- (A3) the adjoint of B' is strongly continuous, ie, if $\begin{array}{c} (k^n,f^n) \rightharpoonup (\bar{k},\bar{f}) \text{ then } B'(k^n,f^n)^*z \rightarrow B'(\bar{k},\bar{f})^*z, \\ \forall z \in \mathscr{D}(B') \end{array}$

Theorem

Given regularization parameters $0 < \underline{\alpha} \leq \alpha$ and β , compute AM algorithm. The sequence $\{(k^{n+1}, f^{n+1})\}_{n+1}$ has a weakly convergent subsequence, namely $(k^{n_j+1}, f^{n_j+1}) \rightharpoonup (\bar{k}, \bar{f})$ and the limit has the property

 $J(\bar{k},\bar{f}) \leq J(\bar{k},f) \quad \text{ and } \quad J(\bar{k},\bar{f}) \leq J(k,\bar{f})$

for all $f \in \mathcal{V}$ and for all $k \in \mathcal{U}$.

Proposition

Let $\{(k^n, f^n)\}_n$ be a weakly convergent sequence generated by AM algorithm, where $k^n \rightarrow \bar{k}$ and $f^n \rightarrow \bar{f}$. Then there exists a subsequence $\{k^{n_j}\}_{n_j}$ such that $k^{n_j} \rightarrow \bar{k}$ and there exists $\{\xi_k^{n_j}\}_{n_j}$ with $\xi_k^{n_j} \in \partial_k J(k^{n_j}, f^{n_j})$ such that $\xi_k^{n_j} \rightarrow 0$.

Theorem

Given regularization parameters $0 < \underline{\alpha} \leq \alpha$ and β , compute AM algorithm. The sequence $\{(k^{n+1}, f^{n+1})\}_{n+1}$ has a weakly convergent subsequence, namely $(k^{n_j+1}, f^{n_j+1}) \rightharpoonup (\bar{k}, \bar{f})$ and the limit has the property

 $J(\bar{k},\bar{f}) \leq J(\bar{k},f) \quad \text{ and } \quad J(\bar{k},\bar{f}) \leq J(k,\bar{f})$

for all $f \in \mathcal{V}$ and for all $k \in \mathcal{U}$.

Proposition

Let $\{(k^n, f^n)\}_n$ be a weakly convergent sequence generated by AM algorithm, where $k^n \rightarrow \bar{k}$ and $f^n \rightarrow \bar{f}$. Then there exists a subsequence $\{k^{n_j}\}_{n_j}$ such that $k^{n_j} \rightarrow \bar{k}$ and there exists $\{\xi_k^{n_j}\}_{n_j}$ with $\xi_k^{n_j} \in \partial_k J(k^{n_j}, f^{n_j})$ such that $\xi_k^{n_j} \rightarrow 0$.

Proposition

Let $\{n\}$ be a subsequence of \mathbb{N} such that the sequence $\{(k^n, f^n)\}_n$ generated by AM algorithm satisfies $k^n \to \bar{k}$ and $f^n \to \bar{f}$. Then $f^{n_j} \to \bar{f}$ and there exists $\{\xi_f^{n_j}\}_{n_j}$ with $\xi_f^{n_j} \in \partial_f J(k^{n_j}, f^{n_j})$ such that $\xi_f^{n_j} \to 0$.

Remark: Graph of subdifferential mapping is sw-closed, ie, if $v_n \to \bar{v}$ and $\xi_n \to \bar{\xi}$ with $\xi_n \in \partial \varphi(v_n)$, then $\xi \in \partial \varphi(\bar{v})$.

Theorem

Let $\{(k^n, f^n)\}_n$ be the sequence generated by the AM algorithm, then there exists a subsequence converging towards to a critical point of J, i.e.,

 $(0,0)\in\partial J\left(ar{k},ar{f}
ight).$

Proposition

Let $\{n\}$ be a subsequence of \mathbb{N} such that the sequence $\{(k^n, f^n)\}_n$ generated by AM algorithm satisfies $k^n \to \bar{k}$ and $f^n \to \bar{f}$. Then $f^{n_j} \to \bar{f}$ and there exists $\{\xi_f^{n_j}\}_{n_j}$ with $\xi_f^{n_j} \in \partial_f J(k^{n_j}, f^{n_j})$ such that $\xi_f^{n_j} \to 0$.

Remark: Graph of subdifferential mapping is sw-closed, ie, if $v_n \to \bar{v}$ and $\xi_n \rightharpoonup \bar{\xi}$ with $\xi_n \in \partial \varphi(v_n)$, then $\xi \in \partial \varphi(\bar{v})$.

Theorem

Let $\{(k^n, f^n)\}_n$ be the sequence generated by the AM algorithm, then there exists a subsequence converging towards to a critical point of J, i.e.,

 $(0,0) \in \partial J\left(\bar{k},\bar{f}\right).$

Short comments

For minimization on k we follow Daubechies et al. [2004].

- \blacksquare penalty term: $\Re(k)=\sum_\lambda \omega_\lambda |k_\lambda|$ where $k_\lambda=|\big\langle k$, $\phi_\lambda\big\rangle|$
- apply surrogate functional extended functional

$$\tilde{J}^{Sur}(k,u) = \tilde{J}(k) + C \left\| k - u \right\| - \left\| \tilde{F}k - \tilde{F}u \right\|$$

 $\quad \tilde{B}(k,f):(k,f)\longmapsto (B(k,f),k) \text{ and } \left\|(x,y)\right\|_{\gamma} = \left\|x\right\| + \gamma \left\|y\right\|$ = combine with **soft-shrinkage** operator

$$\mathcal{S}_{\beta}(x) = \max\{\left\|x\right\| - \beta, 0\}\frac{x}{\left\|x\right\|}$$

$$\bullet k_{\lambda}^{n+1} = \mathbb{S}_{\frac{\omega_{\lambda}}{2}\frac{\beta}{\gamma C}} \left(k_{\lambda}^{n} - \frac{1}{C} (k_{\lambda}^{n} - k_{\epsilon\lambda}) - \frac{1}{C\alpha} [F^{*}(Fk^{n} - g_{\delta})]_{\lambda} \right)$$

Overview

Introduction

- 1st Case: noisy data
- 2nd Case: inexact operator and noisy data
- Proposed method
- Computational aspects
- Numerical illustration
- Conclusions and future work

Numerical illustration

First numerical result

Convolution in 1D

$$\int_{\Omega} k(s-t)f(t)dt = g(s)$$

- characteristic kernel and gaussian function;
- **•** space: $\Omega = [0, 1]$, discretization: N = 2048 points;
- Haar wavelet for $\{\phi\}_{\lambda}$ and J = 10;
- initial guess: $k^0 = k_{\epsilon}$, $\tau = 1.0$;
- A. relative error: 10% and 10%.
- **B**. relative error: 0.1% and 0.1%.

3leyer, Ramlau	JKU Linz	31 / 40

eyer,	Ramlau	
-------	--------	--

Overview

Introduction

- 1st Case: noisy data
- 2nd Case: inexact operator and noisy data
- Proposed method
- Computational aspects
- Numerical illustration
- Conclusions and future work

Dieyer, Maimau	Bleyer,	Ramlau
----------------	---------	--------

Conclusions and future work

So far:

- introduced a method for nonlinear equation (bilinear operator) with noisy data and inexact operator;
- proved existence, stability and convergence;
- suggested an iterative implementation;
- proved convergence of AM algorithm to a critical point;

For further work:

- study of source conditions;
- prove convergence rates (k and f);
- how to choose the best regularization parameter?
- a priori and a posteriori choice;
- implementations and numerical experiments (2D);

Bleyer,	Ramlau
Dicyci,	rtannaa

Conclusions and future work

So far:

- introduced a method for nonlinear equation (bilinear operator) with noisy data and inexact operator;
- proved existence, stability and convergence;
- suggested an iterative implementation;
- proved convergence of AM algorithm to a critical point;

For further work:

- study of source conditions;
- prove convergence rates (k and f);
- how to choose the best regularization parameter?
- a priori and a posteriori choice;
- implementations and numerical experiments (2D);

- I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Comm. Pure Appl. Math.*, 57(11):1413–1457, 2004. ISSN 0010-3640.
- G. H. Golub and C. F. Van Loan. An analysis of the total least squares problem. SIAM J. Numer. Anal., 17(6): 883–893, 1980. ISSN 0036-1429.
- G. H. Golub, P. C. Hansen, and D. P. O'leary. Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl, 21:185–194, 1999.
- S. Lu, S. V. Pereverzev, and U. Tautenhahn. Regularized total least squares: computational aspects and error bounds. Technical Report 30, Ricam, Linz, Austria, 2007. URL http://www.ricam.oeav.ac.at/publications/reports/07/rep07-30.pdf.
- S. Van Huffel and J. Vandewalle. The total least squares problem, volume 9 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. ISBN 0-89871-275-0. Computational aspects and analysis, With a foreword by Gene H. Golub.
- Y.-L. You and M. Kaveh. A regularization approach to joint blur identification and image restoration. Image Processing, IEEE Transactions on, 5(3):416 –428, mar 1996. ISSN 1057-7149.

Dicyci, itannau	Bleyer,	Ramlau
-----------------	---------	--------

Thank you for your kind attention!

Questions?

Bleyer,	Ramlau	
Dicyci,	rtannaa	

Reminder Bregman distance

Bleyer, Ramlau

Reminder Bregman distance

Reminder Bregman distance

Bregman distance: $\xi = \{\mathcal{R}'(u)\}$

$$D(v,u) = \Re(v) - \Re(u) - \langle \xi , v - u \rangle.$$

Generalized Bregman distances: subgradient $\xi \in \mathcal{U}^*$

 $D\left(v,u\right) = \left\{D^{\xi}\left(v,u\right) := \Re(v) - \Re(u) - \left\langle\xi \right. , \left.v - u\right\rangle \, \mid \, \xi \in \partial \Re\left(u\right)\right\}.$

▶ Back

Bleyer, Ramlau	JKU Linz	37 / 40

Source condition

Consider a nonlinear operator $F: X \rightarrow Y$ and the the nonlinear equation

F(x) = y.

Measurement y_{δ} with $||y - y_{\delta}|| \leq \delta$.

Study of Source conditions: how fast a solution of the Tikhonov-type functional

$$J_{\alpha}(x) = \left\| F(x) - y_{\delta} \right\|^{2} + \alpha \Psi(x)$$

converges to the Ψ -minimizing solution x^{\dagger} .

Bleyer,	Ramlau
---------	--------

Theorem [Schock, '84]

Without any further assumptions, the convergence

 $x^{\delta}_{lpha}
ightarrow x^{\dagger}$ as $\delta
ightarrow 0$

can (and will) be arbitrarily slow.

The way out...

Source and Nonlinearity conditions

Assume that there is $\xi \in \partial \Psi(x^{\dagger})$ and $w \in Y^*$ such that

 $\xi = F'(x^{\dagger})^* w, \qquad (S)$

and that – locally near x^{\dagger} – we have

 $\left\|F(x) - F(x^{\dagger}) - F'(x^{\dagger})(x - x^{\dagger})\right\| \le cD_{\Psi}^{\xi}(x, x^{\dagger}), \qquad (NL)$

where c < 1/||w||.

Selected convergence rate results for MDP

MDP: Morozov's discrepancy principle.

dist	rate	lin	sparse	ℓ_p	src/nl cond	due to
D_{Ψ} D_{Ψ}	$\stackrel{\mathbb{O}(\delta)}{\mathbb{O}(\delta)}$	√		_	(S) (S) & (NL)	[Bonesky '09] [Anezngruber, Ramlau '10]
. . .	$\begin{array}{c} \mathbb{O}(\delta^{1/p}) \\ \mathbb{O}(\delta^{1/2}) \\ \mathbb{O}(\delta^{1/p}) \end{array}$	\checkmark	\checkmark	$2 \le p$ $p \in (1,2)$ $p \in [1,2)$	(S) & (NL) (S) (S)	[Grasmair, Haltmeier, Scherzer '09] (for Residual Method)
.	$\mathbb{O}(\delta^{1/r})$			-	(VIE)	[Anzengruber, Ramlau '11]
						Back

Blever.	Ramlau	
,,		