A Double Regularization Approach for Inverse Problems with Noisy Data and Inexact Operator

Ismael Rodrigo Bleyer
Prof. Dr. Ronny Ramlau

Johannes Kepler Universität - Linz

Helsinki - April 18, 2011.
supported by

FШF
Der Wissenschaftsfonds.

Overview

\square Introduction
\square 1st Case: noisy data
\square 2nd Case: inexact operator and noisy data
\square Proposed method
\square Computational aspects
\square Numerical illustration
\square Conclusions and future work

Overview

\square Introduction
\square 1st Case: noisy data
\square 2nd Case: inexact operator and noisy data

- Proposed method
\square Computational aspects
\square Numerical illustration
Conclusions and future work

Inverse of what?

We call two problems inverses of one another if the formulation of each involves all or part of the solution of the other. [J. Keller]

Consider a linear or non-linear operator equation

$$
A x=y \quad \text { or } \quad F(x)=y
$$

■ Direct: given x, compute $y=A x$ (studied ealier or the easier one)
■ Inverse: given y, solve $A x=y$ (if there is solution)
"Inverse problems are concerned with determining causes for a desired or an observed effect" [Engl, Hanke, Naubauer]

Inverse problems most oft do not fulfill Hadamard's postulate of well posedness.

It is called well-posed [Hadamard, 1902] if
■ existence: for all admissible data, a solution exists;
■ uniqueness: for all admissible data, a solution is unique;
■ stability: the solution depends continuously on the data.

Computational issues: observed effect has measurement errors or perturbations caused by noise

Overview

\square Introduction

\square 1st Case: noisy data
\square 2nd Case: inexact operator and noisy data
\square Proposed method

- Computational aspects
\square Numerical illustration
\square Conclusions and future work

Regularization

Solve $A x=y_{0}$ out of the measurement y_{δ} with $\left\|y_{0}-y_{\delta}\right\| \leq \delta$. Need apply some regularization technique

$$
\underset{x}{\operatorname{minimize}}\left\|A x-y_{\delta}\right\|^{2}+\alpha\|L x\|^{2}
$$

Tikhonov regularization (Tik-R)
■ fidelity term (based on LS);
■ stabilization term (Hilbert space);

- regularization parameter α.
[Tihonov, 1963 \& Phillips, 1962]

Tikhonov (1906-1993)

Tikhonov-type regularization

Exchange the quadract term by a general functional \mathcal{R}, namely a proper, convex and weakly lower semicontinuous functional:

$$
\underset{x}{\operatorname{minimize}}\left\|A x-y_{\delta}\right\|^{2}+\alpha \mathcal{R}(x)
$$

Also called: non-quadract regularization, convex regularization or generalized Tikhonov regularization.

Convergence rates (wrt Bregman distances)

2004	linear	SC type I	Banach - Hilbert	Burger and Osher
2005	linear	SC type II	Banach - Hilbert	Resmerita
2006	nonlinear	SC type I and II	Banach - Banach	Resmerita and Scherzer

Subgradient

The Fenchel subdifferential of a functional $\mathcal{R}: \mathcal{U} \rightarrow[0,+\infty]$ at $\bar{u} \in \mathcal{U}$ is the set

$$
\partial^{F} \mathcal{R}(\bar{u})=\left\{\xi \in \mathcal{U}^{*} \mid \mathcal{R}(v)-\mathcal{R}(\bar{u}) \geq\langle\xi, v-\bar{u}\rangle \forall v \in \mathcal{U}\right\} .
$$

First in 1960 by Moreau and Rockafellar and extended by Clark 1973.

Optimality condition:
If \bar{u} minimizes \mathcal{R} then

$$
0 \in \partial^{F} \mathcal{R}(\bar{u})
$$

Example

Consider the function $\mathcal{R}(u)=|u|$

Figure: Function (left) and its subdifferential (right).

Iterative Soft-Shrinkage

Therefore we look the following minimization problem

$$
J(k)=\underset{k}{\operatorname{minimize}}\left\|\tilde{F} k-g_{\delta}\right\|^{2}+\beta \mathcal{R}(k) .
$$

Regularization term: weighted l_{p}-norm of k wrt an orthonormal basis $\left\{\phi_{\lambda}\right\}_{\lambda}$ of $L_{2}\left(\Omega^{2}\right)$,

$$
\|k\|_{w, p}^{p}=\sum_{\lambda} w_{\lambda}\left|k_{\lambda}\right|^{p}
$$

where $k_{\lambda}=\left|\left\langle k, \phi_{\lambda}\right\rangle\right|$.
Idea: apply a surrogate functional that removes the term $\tilde{F}^{*} \tilde{F} k$ Daubechies et al. [2004], adding a functional which depends of an auxiliary element u,

$$
\Xi(k ; u)=C\|k-u\|^{2}-\|\tilde{F} k-\tilde{F} u\|^{2}
$$

Remark: for a suitable choice of C the whole functional is strictly convex.
Therefore the surrogate functional - extended functional is

$$
\begin{aligned}
J^{\operatorname{Sur}}(k ; u)= & J(k)+\Xi(k ; u) \\
= & \left\|\tilde{F} k-g_{\delta}\right\|^{2}+\beta\|k\|_{w, p}^{p}+C\|k-u\|^{2}-\|\tilde{F} k-\tilde{F} u\|^{2} \\
= & \|\tilde{F} k\|^{2}+\left\|g_{\delta}\right\|^{2}-2\left\langle\tilde{F} k, g_{\delta}\right\rangle+\beta\|k\|_{w, p}^{p}+C\|k\|^{2}+C\|u\|^{2} \\
& -2 C\langle k, u\rangle-\|\tilde{F} k\|^{2}-\|\tilde{F} u\|^{2}+2\langle\tilde{F} k, \tilde{F} u\rangle \\
= & C\|k\|^{2}-2\left\langle k, C u-\tilde{F}^{*}\left(\tilde{F} u-g_{\delta}\right)\right\rangle+\beta\|k\|_{w, p}^{p}+c_{1}
\end{aligned}
$$

Writing k as a linear combination of an ONB $\left\{\phi_{\lambda}\right\}_{\lambda}$
$J^{\operatorname{Sur}}(k ; u)=\sum_{\lambda} C\left(k_{\lambda}\right)^{2}-2 k_{\lambda}\left(C u-\tilde{F}^{*}\left(\tilde{F} u-g_{\delta}\right)\right)_{\lambda}+\beta w_{\lambda}\left|k_{\lambda}\right|^{p}+c_{1}$

Compute the minimizer of $J^{\operatorname{Sur}}(k ; u)$ wrt k for a given u. For a choice $p=1$ the optimality condition (derivative) is

$$
2 C k_{\lambda}=2\left(C u-\tilde{F}^{*}\left(\tilde{F} u-g_{\delta}\right)\right)_{\lambda}-\beta w_{\lambda} \operatorname{sgn}\left(k_{\lambda}\right) .
$$

Under definition of soft-shrinkage operator

$$
\mathcal{S}_{\beta}(x)=\max \{\|x\|-\beta, 0\} \frac{x}{\|x\|}
$$

or equivalent

$$
\mathcal{S}_{\beta}(x)= \begin{cases}x-\beta \frac{x}{\|x\|} & \text { if }\|x\|>\beta \tag{1}\\ 0 & \text { if }\|x\| \leq \beta\end{cases}
$$

we end up

$$
k_{\lambda}=\mathcal{S}_{\frac{w_{\lambda}}{C} \frac{\beta}{2}}\left(u-\frac{1}{C}\left[\tilde{F}^{*}\left(\tilde{F} u-g_{\delta}\right)\right]_{\lambda}\right)
$$

An iterative approach can be done setting $u=k^{n}$ and so

$$
k^{n+1}=\underset{k}{\arg \min } J^{\mathrm{Sur}}\left(k ; k^{n}\right)
$$

for a initial guess k^{0}.

Figure: Soft Shrinkage operator.

Overview

\square Introduction

\square 1st Case: noisy data
\square 2nd Case: inexact operator and noisy data
\square Proposed method
\square Computational aspects
\square Numerical illustration
\square Conclusions and future work

Solve $A_{0} x=y_{0}$ under the assumptions
(i) noisy data $\left\|y_{0}-y_{\delta}\right\| \leq \delta$.
(ii) inexact operator $\left\|A_{0}-A_{\epsilon}\right\| \leq \epsilon$.

What have been done so far?

- linear case:
- TLS: Total least squares by Golub and Van Loan [1980];

■ R-TLS: Regularized TLS by Golub et al. [1999];
■ D-RTLS: Dual R-TLS by Lu et al. [2007].

- nonlinear case: no publication (?)

Solve $A_{0} x=y_{0}$ under the assumptions
(i) noisy data $\left\|y_{0}-y_{\delta}\right\| \leq \delta$.
(ii) inexact operator $\left\|A_{0}-A_{\epsilon}\right\| \leq \epsilon$.

What have been done so far?
■ linear case:

- TLS: Total least squares by Golub and Van Loan [1980];

■ R-TLS: Regularized TLS by Golub et al. [1999];
■ D-RTLS: Dual R-TLS by Lu et al. [2007].
■ nonlinear case: no publication (?)

LS: y_{δ} and A_{0} $\begin{array}{ll}\text { minimize }_{y} & \left\|y-y_{\delta}\right\|_{2} \\ \text { subject to } & y \in \mathscr{R}\left(A_{0}\right)\end{array}$

TLS: y_{δ} and A_{ϵ}

$$
\begin{array}{cc}
\operatorname{minimize} & \left\|[A, y]-\left[A_{\epsilon}, y_{\delta}\right]\right\|_{F} \\
\text { subject to } & y \in \mathscr{R}(A)
\end{array}
$$

Illustration

Solve 1D problem: $a m=b, \quad$ find the slope m.

Cases:

1. b_{δ}
2. a_{ϵ}
3. b_{δ}, a_{ϵ}

Solution:
$m=1$

Example: $\arctan (1)=45^{\circ}$ (Van Huffel and Vandewalle [1991]).

Illustration

Solve 1D problem: $a m=b, \quad$ find the slope m.

Cases:

1. b_{δ}
2. a_{ϵ}
3. b_{δ}, a_{ϵ}

Solution:
$m=1$

Example: $\arctan (1)=45^{\circ}$ (Van Huffel and Vandewalle [1991]).

Illustration

Solve 1D problem: $a m=b, \quad$ find the slope m.

Cases:

1. b_{δ}
2. a_{ϵ}
3. b_{δ}, a_{ϵ}

Solution:
$m=1$

Example: $\arctan (1)=45^{\circ}$ (Van Huffel and Vandewalle [1991]).

R-TLS

The R-TLS method [Golub, Hansen, O'Leary, 1999]

$$
\begin{array}{ll}
\operatorname{minimize} & \left\|A-A_{\epsilon}\right\|^{2}+\left\|y-y_{\delta}\right\|^{2} \\
\text { subject to } & \left\{\begin{array}{l}
A x=y \\
\|L x\|^{2} \leq M .
\end{array}\right.
\end{array}
$$

If the inequality constraint is active, then

$$
\left(A_{\epsilon}^{T} A_{\epsilon}+\alpha L^{T} L+\beta I\right) \hat{x}=A_{\epsilon}^{T} y_{\delta} \text { and }\|L \hat{x}\|=M
$$

with $\alpha=\mu\left(1+\|\hat{x}\|^{2}\right), \beta=-\frac{\left\|A_{\epsilon} \hat{x}-y_{\delta}\right\|^{2}}{1+\|\hat{x}\|^{2}}$ and $\mu>0$ is the Lagrange multiplier.

Difficulty: requires a reliable bound M for the norm $\left\|L x^{\dagger}\right\|^{2}$.

DR-TLS

The DR-TLS method [Lu et al., 2007]:

$$
\begin{array}{cc}
\operatorname{minimize} & \|L x\|^{2} \\
\text { subject to } & \left\{\begin{array}{l}
A x=y \\
\left\|y-y_{\delta}\right\|^{2} \leq \delta \\
\left\|A-A_{\epsilon}\right\|^{2} \leq \epsilon .
\end{array} \quad\right. \text { side condition }
\end{array}
$$

If the inequalities constraints are active, then

$$
\begin{aligned}
& \qquad\left(A_{\epsilon}^{T} A_{\epsilon}+\alpha L^{T} L+\beta I\right) \tilde{x}=A_{\epsilon}^{T} y_{\delta} \\
& \text { with } \alpha=\frac{\nu+\mu\|\tilde{x}\|^{2}}{\nu \mu}, \beta=-\frac{\mu\left\|A_{\epsilon} \tilde{x}-y_{\delta}\right\|^{2}}{\nu+\mu\|\tilde{x}\|^{2}} \text { and } \nu, \mu>0 \text { are Langrange } \\
& \text { multipliers. Moreover, }\left\|A_{\epsilon} \tilde{x}-y_{\delta}\right\|=\delta+\epsilon\|\tilde{x}\| \text {. }
\end{aligned}
$$

Overview

\square Introduction

\square 1st Case: noisy data
\square 2nd Case: inexact operator and noisy data
\square Proposed method
\square Computational aspects
\square Numerical illustration
\square Conclusions and future work

Consider the operator equation

$$
B(k, f)=g_{0}
$$

where B is a bilinear operator (nonlinear)

$$
\begin{aligned}
B: \mathcal{U} \times \mathcal{V} & \longrightarrow \mathcal{H} \\
(k, f) & \longmapsto B(k, f)
\end{aligned}
$$

and B is characterized by a function k_{0}.
■ $K \cdot=B(\tilde{k}, \cdot)$ compact linear operator for a fixed $\tilde{k} \in \mathcal{U}$
■ $F \cdot=B(\cdot, \tilde{f})$ linear operator for a fixed $\tilde{f} \in \mathcal{V}$

- $\left\|B\left(k_{0}, \cdot\right)\right\|_{\mathcal{V} \rightarrow \mathcal{H}} \leq\left\|k_{0}\right\|_{\mathcal{U}}$;

■ $\|B(k, f)\|_{\mathcal{H}} \leq\|k\|_{\mathcal{U}}\|f\|_{\mathcal{V}}$;
Example:

Consider the operator equation

$$
B(k, f)=g_{0}
$$

where B is a bilinear operator (nonlinear)

$$
\begin{aligned}
B: \mathcal{U} \times \mathcal{V} & \longrightarrow \mathcal{H} \\
(k, f) & \longmapsto B(k, f)
\end{aligned}
$$

and B is characterized by a function k_{0}.
■ $K \cdot=B(\tilde{k}, \cdot)$ compact linear operator for a fixed $\tilde{k} \in \mathcal{U}$
■ $F \cdot=B(\cdot, \tilde{f})$ linear operator for a fixed $\tilde{f} \in \mathcal{V}$
■ $\left\|B\left(k_{0}, \cdot\right)\right\|_{\mathcal{V} \rightarrow \mathcal{H}} \leq\left\|k_{0}\right\|_{\mathcal{U}}$;
■ $\|B(k, f)\|_{\mathcal{H}} \leq\|k\|_{\mathcal{U}}\|f\|_{\mathcal{V}}$;
Example:

$$
B(k, f)(s):=\int_{\Omega} k(s, t) f(t) d t
$$

"Some mathematicians still have a kind of fear whenever they encounter a Fredholm integral equation of the first kind".

Francesco Tricomi (1897-1978)
"Some mathematicians still have a kind of fear whenever they encounter a Fredholm integral equation of the first kind".

We want to solve

$$
B\left(k_{0}, f\right)=g_{0}
$$

out of the measurements k_{ϵ} and g_{δ} with
(i) noisy data $\left\|g_{0}-g_{\delta}\right\|_{\mathcal{H}} \leq \delta$.
(ii) inexact operator $\left\|k_{0}-k_{\epsilon}\right\|_{u} \leq \epsilon$.

Francesco Tricomi (1897-1978)

We introduce the DBL-RTLS

$$
\begin{equation*}
\underset{k, f}{\operatorname{minimize}} J(k, f):=T\left(k, f, k_{\epsilon}, g_{\delta}\right)+R(k, f) \tag{2}
\end{equation*}
$$

where

$$
R(k, f)=\frac{\alpha}{2}\|L f\|_{\nu}^{2}+\beta \mathcal{R}(k)
$$

- T is based on TLS method, measures the discrepancy on both data and operator;
- α, β are the regularization parameters and γ is a scaling parameter;
■ $L: \mathcal{V} \rightarrow \mathcal{V}$ is a linear bounded operator;
- double regularization was proposed by You and Kaveh [1996], $\mathcal{R}: U \rightarrow[0,+\infty]$ is proper convex function and w-Isc.

We introduce the DBL-RTLS

$$
\begin{equation*}
\underset{k, f}{\operatorname{minimize}} J(k, f):=T\left(k, f, k_{\epsilon}, g_{\delta}\right)+R(k, f) \tag{2}
\end{equation*}
$$

where

$$
\begin{gathered}
T\left(k, f, k_{\epsilon}, g_{\delta}\right)=\frac{1}{2}\left\|B(k, f)-g_{\delta}\right\|_{\mathcal{H}}^{2}+\frac{\gamma}{2}\left\|k-k_{\epsilon}\right\|_{u}^{2} \\
R(k, f)=\frac{\alpha}{2}\|L f\|_{\mathcal{V}}^{2}+\beta \mathcal{R}(k)
\end{gathered}
$$

■ T is based on TLS method, measures the discrepancy on both data and operator;

- α, β are the regularization parameters and γ is a scaling parameter;
■ $L: \mathcal{V} \rightarrow \mathcal{V}$ is a linear bounded operator;
■ double regularization was proposed by You and Kaveh [1996], $\mathcal{R}: U \rightarrow[0,+\infty]$ is proper convex function and w-Isc.

Main theoretical results

Assumption:

(A1) B is strongly continuous, ie, if $\left(k^{n}, f^{n}\right) \rightharpoonup(\bar{k}, \bar{f})$ then $B\left(k^{n}, f^{n}\right) \rightarrow B(\bar{k}, \bar{f})$

Proposition

Let J be the functional defined on (2) and L be a bounded and positive operator. Then J is positive, weak lower semi-continuous and coercive functional.

Theorem (existence)

Let the assumptions of Proposition 1 hold. Then there exists a global minimum of

$$
\operatorname{minimize} J(k, f) \text {. }
$$

Theorem (stability)

- $\delta_{j} \rightarrow \delta$ and $\epsilon_{j} \rightarrow \epsilon$
- $g_{\delta_{j}} \rightarrow g_{\delta}$ and $k_{\epsilon_{j}} \rightarrow k_{\epsilon}$
- $\alpha, \beta>0$
- $\left(k^{j}, f^{j}\right)$ is a minimizer of J with $g_{\delta_{j}}$ and $k_{\epsilon_{j}}$
- Then there exists a convergent subsequence of $\left(k^{j}, f^{j}\right)_{j}$
where (\bar{k}, \bar{f}) is a minimizer of J with $g_{\delta}, k_{\epsilon}, \alpha$ and β.

Theorem (stability)

- $\delta_{j} \rightarrow \delta$ and $\epsilon_{j} \rightarrow \epsilon$
- $g_{\delta_{j}} \rightarrow g_{\delta}$ and $k_{\epsilon_{j}} \rightarrow k_{\epsilon}$
- $\alpha, \beta>0$
- $\left(k^{j}, f^{j}\right)$ is a minimizer of J with $g_{\delta_{j}}$ and $k_{\epsilon_{j}}$
- Then there exists a convergent subsequence of $\left(k^{j}, f^{j}\right)_{j}$

$$
\left(k^{j_{m}}, f^{j_{m}}\right) \longrightarrow(\bar{k}, \bar{f})
$$

where (\bar{k}, \bar{f}) is a minimizer of J with $g_{\delta}, k_{\epsilon}, \alpha$ and β.

Consider the convex functional

$$
\Phi(k, f):=\frac{1}{2}\|L f\|^{2}+\eta \mathcal{R}(k)
$$

where the parameter η represents the different scaling of f and k.
For convergence results we need to define

Definition

We call $\left(k^{\dagger}, f^{\dagger}\right)$ a Φ-minimizing solution if

$$
\left(k^{\dagger}, f^{\dagger}\right)=\underset{(k, f)}{\arg \min }\left\{\Phi(k, f) \mid B(k, f)=g_{0}\right\} .
$$

Theorem (convergence)

- $\delta_{j} \rightarrow 0$ and $\epsilon_{j} \rightarrow 0$

■ $\left\|g_{\delta_{j}}-g_{0}\right\| \leq \delta_{j}$ and $\left\|k_{\epsilon_{j}}-k_{0}\right\| \leq \epsilon_{j}$
■ $\alpha_{j}=\alpha\left(\epsilon_{j}, \delta_{j}\right)$ and $\beta_{j}=\beta\left(\epsilon_{j}, \delta_{j}\right)$, s.t. $\alpha_{j} \rightarrow 0, \beta_{j} \rightarrow 0$,

$$
\lim _{j \rightarrow \infty} \frac{\delta_{j}^{2}+\gamma \epsilon_{j}^{2}}{\alpha_{j}}=0 \quad \text { and } \quad \lim _{j \rightarrow \infty} \frac{\beta_{j}}{\alpha_{j}}=\eta
$$

- $\left(k^{j}, f^{j}\right)$ is a minimizer of J with $g_{\delta_{j}}, k_{\epsilon_{j}}, \alpha_{j}$ and β_{j}
- Then there exists a convergent subsequence of $\left(k^{j}, f^{j}\right)_{j}$
where $\left(k^{\dagger}, f^{\dagger}\right)$ is a Φ-minimizing solution.

Theorem (convergence)

- $\delta_{j} \rightarrow 0$ and $\epsilon_{j} \rightarrow 0$

■ $\left\|g_{\delta_{j}}-g_{0}\right\| \leq \delta_{j}$ and $\left\|k_{\epsilon_{j}}-k_{0}\right\| \leq \epsilon_{j}$
■ $\alpha_{j}=\alpha\left(\epsilon_{j}, \delta_{j}\right)$ and $\beta_{j}=\beta\left(\epsilon_{j}, \delta_{j}\right)$, s.t. $\alpha_{j} \rightarrow 0, \beta_{j} \rightarrow 0$,

$$
\lim _{j \rightarrow \infty} \frac{\delta_{j}^{2}+\gamma \epsilon_{j}^{2}}{\alpha_{j}}=0 \quad \text { and } \quad \lim _{j \rightarrow \infty} \frac{\beta_{j}}{\alpha_{j}}=\eta
$$

■ $\left(k^{j}, f^{j}\right)$ is a minimizer of J with $g_{\delta_{j}}, k_{\epsilon_{j}}, \alpha_{j}$ and β_{j}

- Then there exists a convergent subsequence of $\left(k^{j}, f^{j}\right)_{j}$

$$
\left(k^{j_{m}}, f^{j_{m}}\right) \longrightarrow\left(k^{\dagger}, f^{\dagger}\right)
$$

where $\left(k^{\dagger}, f^{\dagger}\right)$ is a Φ-minimizing solution.

Overview

\square Introduction

\square 1st Case: noisy data

- 2nd Case: inexact operator and noisy data
\square Proposed method
\square Computational aspects
\square Numerical illustration
\square Conclusions and future work

Optimality condition

If the pair (\bar{k}, \bar{f}) is a minimizer of $J(k, f)$, then $(0,0) \in \partial J(\bar{k}, \bar{f})$.

Theorem

Let $J: \mathcal{U} \times \mathcal{V} \rightarrow \mathbb{R}$ be a nonconvex functional,

$$
J(u, v)=\varphi(u)+Q(u, v)+\psi(v)
$$

where Q is a nonlinear differentiable term and φ, ψ are Isc convex functions. Then

$$
\begin{aligned}
\partial J(u, v) & =\left\{\partial \varphi(u)+D_{u} Q(u, v)\right\} \times\left\{\partial \psi(v)+D_{v} Q(u, v)\right\} \\
& =\left\{\partial_{u} J(u, v)\right\} \times\left\{\partial_{v} J(u, v)\right\}
\end{aligned}
$$

Remark:

■ is difficult to solve wrt both (k, f)
■ J is bilinear and biconvex (linear and convex to each one)
■ applied alternating minimization method.

Remark:

■ is difficult to solve wrt both (k, f)
■ J is bilinear and biconvex (linear and convex to each one)
■ applied alternating minimization method.

Alternating minimization algorithm

Require: $g_{\delta}, k_{\epsilon}, L, \gamma, \alpha, \beta$
1: $n=0$
2: repeat
$\begin{array}{ll}\text { 3: } & f^{n+1} \in \arg \min _{f} J\left(k, f \mid k^{n}\right) \\ \text { 4: } & k^{n+1} \in \arg \min _{k} J\left(k, f \mid f^{n+1}\right)\end{array}$
5: until convergence

Proposition

The sequence generated by the function $J\left(k^{n}, f^{n}\right)$ is non-increasing,

$$
J\left(k^{n+1}, f^{n+1}\right) \leq J\left(k^{n}, f^{n+1}\right) \leq J\left(k^{n}, f^{n}\right)
$$

Assumptions:

(A1) B is strongly continuous, ie, if $\left(k^{n}, f^{n}\right)-(\bar{k}, f)$ then
(A2) B is weakly sequentially closed, ie, if $\left(k^{n}, f^{n}\right) \rightharpoonup(k, f)$ and
(A3) the adjoint of B^{\prime} is strongly continuous, ie, if

Proposition

The sequence generated by the function $J\left(k^{n}, f^{n}\right)$ is non-increasing,

$$
J\left(k^{n+1}, f^{n+1}\right) \leq J\left(k^{n}, f^{n+1}\right) \leq J\left(k^{n}, f^{n}\right)
$$

Assumptions:

(A1) B is strongly continuous, ie, if $\left(k^{n}, f^{n}\right) \rightharpoonup(\bar{k}, \bar{f})$ then $B\left(k^{n}, f^{n}\right) \rightarrow B(\bar{k}, \bar{f})$
(A2) B is weakly sequentially closed, ie, if $\left(k^{n}, f^{n}\right) \rightharpoonup(\bar{k}, \bar{f})$ and $B\left(k^{n}, f^{n}\right) \rightharpoonup g$ then $B(\bar{k}, \bar{f})=g$
(A3) the adjoint of B^{\prime} is strongly continuous, ie, if

$$
\begin{aligned}
& \left(k^{n}, f^{n}\right) \rightharpoonup(\bar{k}, \bar{f}) \text { then } B^{\prime}\left(k^{n}, f^{n}\right)^{*} z \rightarrow B^{\prime}(\bar{k}, \bar{f})^{*} z, \\
& \forall z \in \mathscr{D}\left(B^{\prime}\right)
\end{aligned}
$$

Theorem

Given regularization parameters $0<\underline{\alpha} \leq \alpha$ and β, compute $A M$ algorithm. The sequence $\left\{\left(k^{n+1}, f^{n+1}\right)\right\}_{n+1}$ has a weakly convergent subsequence, namely $\left(k^{n_{j}+1}, f^{n_{j}+1}\right) \rightharpoonup(\bar{k}, \bar{f})$ and the limit has the property

$$
J(\bar{k}, \bar{f}) \leq J(\bar{k}, f) \quad \text { and } \quad J(\bar{k}, \bar{f}) \leq J(k, \bar{f})
$$

for all $f \in \mathcal{V}$ and for all $k \in \mathcal{U}$.

Let $\left\{\left(k^{n}, f^{n}\right)\right\}_{n}$ be a weakly convergent sequence generated by AM algorithm, where $k^{n} \rightharpoonup k$ and $f^{n} \rightharpoonup \bar{f}$. Then there exists a subsequence such that $k^{n_{j}} \rightarrow \bar{k}$ and there exists

Theorem

Given regularization parameters $0<\underline{\alpha} \leq \alpha$ and β, compute $A M$ algorithm. The sequence $\left\{\left(k^{n+1}, f^{n+1}\right)\right\}_{n+1}$ has a weakly convergent subsequence, namely $\left(k^{n_{j}+1}, f^{n_{j}+1}\right) \rightharpoonup(\bar{k}, \bar{f})$ and the limit has the property

$$
J(\bar{k}, \bar{f}) \leq J(\bar{k}, f) \quad \text { and } \quad J(\bar{k}, \bar{f}) \leq J(k, \bar{f})
$$

for all $f \in \mathcal{V}$ and for all $k \in \mathcal{U}$.

Proposition

Let $\left\{\left(k^{n}, f^{n}\right)\right\}_{n}$ be a weakly convergent sequence generated by AM algorithm, where $k^{n} \rightharpoonup \bar{k}$ and $f^{n} \rightharpoonup \bar{f}$. Then there exists a subsequence $\left\{k^{n_{j}}\right\}_{n_{j}}$ such that $k^{n_{j}} \rightarrow \bar{k}$ and there exists $\left\{\xi_{k}^{n_{j}}\right\}_{n_{j}}$ with $\xi_{k}^{n_{j}} \in \partial_{k} J\left(k^{n_{j}}, f^{n_{j}}\right)$ such that $\xi_{k}^{n_{j}} \rightarrow 0$.

Proposition

Let $\{n\}$ be a subsequence of \mathbb{N} such that the sequence $\left\{\left(k^{n}, f^{n}\right)\right\}_{n}$ generated by AM algorithm satisfies $k^{n} \rightarrow \bar{k}$ and $f^{n} \rightharpoonup \bar{f}$. Then $f^{n_{j}} \rightarrow \bar{f}$ and there exists $\left\{\xi_{f}^{n_{j}}\right\}_{n_{j}}$ with $\xi_{f}^{n_{j}} \in \partial_{f} J\left(k^{n_{j}}, f^{n_{j}}\right)$ such that $\xi_{f}^{n_{j}} \rightarrow 0$.

Remark: Graph of subdifferential mapping is sw-closed, ie, if $v_{n} \rightarrow \bar{v}$ and $\xi_{n} \rightharpoonup \bar{\xi}$ with $\xi_{n} \in \partial \varphi\left(v_{n}\right)$, then $\xi \in \partial \varphi(\bar{v})$.

Proposition

Let $\{n\}$ be a subsequence of \mathbb{N} such that the sequence $\left\{\left(k^{n}, f^{n}\right)\right\}_{n}$ generated by AM algorithm satisfies $k^{n} \rightarrow \bar{k}$ and $f^{n} \rightharpoonup \bar{f}$. Then $f^{n_{j}} \rightarrow \bar{f}$ and there exists $\left\{\xi_{f}^{n_{j}}\right\}_{n_{j}}$ with $\xi_{f}^{n_{j}} \in \partial_{f} J\left(k^{n_{j}}, f^{n_{j}}\right)$ such that $\xi_{f}^{n_{j}} \rightarrow 0$.

Remark: Graph of subdifferential mapping is sw-closed, ie, if $v_{n} \rightarrow \bar{v}$ and $\xi_{n} \rightharpoonup \bar{\xi}$ with $\xi_{n} \in \partial \varphi\left(v_{n}\right)$, then $\xi \in \partial \varphi(\bar{v})$.

Theorem

Let $\left\{\left(k^{n}, f^{n}\right)\right\}_{n}$ be the sequence generated by the AM algorithm, then there exists a subsequence converging towards to a critical point of J, i.e.,

$$
(0,0) \in \partial J(\bar{k}, \bar{f}) .
$$

Short comments

For minimization on k we follow Daubechies et al. [2004].
■ penalty term: $\mathcal{R}(k)=\sum_{\lambda} \omega_{\lambda}\left|k_{\lambda}\right|$ where $k_{\lambda}=\left|\left\langle k, \phi_{\lambda}\right\rangle\right|$
■ apply surrogate functional - extended functional

$$
\tilde{J}^{S u r}(k, u)=\tilde{J}(k)+C\|k-u\|-\|\tilde{F} k-\tilde{F} u\|
$$

■ $\tilde{B}(k, f):(k, f) \longmapsto(B(k, f), k)$ and $\|(x, y)\|_{\gamma}=\|x\|+\gamma\|y\|$
■ combine with soft-shrinkage operator

$$
\mathcal{S}_{\beta}(x)=\max \{\|x\|-\beta, 0\} \frac{x}{\|x\|}
$$

■ $k_{\lambda}^{n+1}=\mathcal{S}_{\frac{\omega_{\lambda}}{2} \frac{\beta}{\gamma C}}\left(k_{\lambda}^{n}-\frac{1}{C}\left(k_{\lambda}^{n}-k_{\epsilon \lambda}\right)-\frac{1}{C \alpha}\left[F^{*}\left(F k^{n}-g_{\delta}\right)\right]_{\lambda}\right)$

Overview

\square Introduction

\square 1st Case: noisy data

- 2nd Case: inexact operator and noisy data
\square Proposed method
- Computational aspectsNumerical illustration
Conclusions and future work

First numerical result

Convolution in 1D

$$
\int_{\Omega} k(s-t) f(t) d t=g(s)
$$

- characteristic kernel and gaussian function;

■ space: $\Omega=[0,1]$, discretization: $N=2048$ points;
■ Haar wavelet for $\{\phi\}_{\lambda}$ and $J=10$;
■ initial guess: $k^{0}=k_{\epsilon}, \tau=1.0$;

- A. relative error: 10% and 10%.

■ B. relative error: 0.1% and 0.1%.

Overview

\square Introduction

\square 1st Case: noisy data

- 2nd Case: inexact operator and noisy data
\square Proposed method
- Computational aspects
\square Numerical illustration
\square Conclusions and future work

Conclusions and future work

So far:

- introduced a method for nonlinear equation (bilinear operator) with noisy data and inexact operator;
■ proved existence, stability and convergence;
■ suggested an iterative implementation;
■ proved convergence of AM algorithm to a critical point;
For further work:
■ study of source conditions;
- prove convergence rates (k and f);
- how to choose the best regularization parameter?
- a priori and a posteriori choice;
- implementations and numerical experiments (2D);

Conclusions and future work

So far:

- introduced a method for nonlinear equation (bilinear operator) with noisy data and inexact operator;
■ proved existence, stability and convergence;
■ suggested an iterative implementation;
■ proved convergence of AM algorithm to a critical point;
For further work:
■ study of source conditions;
■ prove convergence rates (k and f);
■ how to choose the best regularization parameter?
■ a priori and a posteriori choice;
■ implementations and numerical experiments (2D);
I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math., 57(11):1413-1457, 2004. ISSN 0010-3640.
G. H. Golub and C. F. Van Loan. An analysis of the total least squares problem. SIAM J. Numer. Anal., 17(6): 883-893, 1980. ISSN 0036-1429.
G. H. Golub, P. C. Hansen, and D. P. O'leary. Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl, 21:185-194, 1999.
S. Lu, S. V. Pereverzev, and U. Tautenhahn. Regularized total least squares: computational aspects and error bounds. Technical Report 30, Ricam, Linz, Austria, 2007. URL
http://www.ricam.oeaw.ac.at/publications/reports/07/rep07-30.pdf.
S. Van Huffel and J. Vandewalle. The total least squares problem, volume 9 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. ISBN 0-89871-275-0. Computational aspects and analysis, With a foreword by Gene H. Golub.
Y.-L. You and M. Kaveh. A regularization approach to joint blur identification and image restoration. Image Processing, IEEE Transactions on, 5(3):416-428, mar 1996. ISSN 1057-7149.

Thank you for your kind attention!

Questions?

Reminder Bregman distance

Reminder Bregman distance

Reminder Bregman distance

Bregman distance: $\xi=\left\{\mathcal{R}^{\prime}(u)\right\}$

$$
D(v, u)=\mathcal{R}(v)-\mathcal{R}(u)-\langle\xi, v-u\rangle
$$

Generalized Bregman distances: subgradient $\xi \in \mathcal{U}^{*}$

$$
D(v, u)=\left\{D^{\xi}(v, u):=\mathcal{R}(v)-\mathcal{R}(u)-\langle\xi, v-u\rangle \mid \xi \in \partial \mathcal{R}(u)\right\} .
$$

Source condition

Consider a nonlinear operator $F: X \rightarrow Y$ and the the nonlinear equation

$$
F(x)=y .
$$

Measurement y_{δ} with $\left\|y-y_{\delta}\right\| \leq \delta$.
Study of Source conditions: how fast a solution of the Tikhonov-type functional

$$
J_{\alpha}(x)=\left\|F(x)-y_{\delta}\right\|^{2}+\alpha \Psi(x)
$$

converges to the Ψ-minimizing solution x^{\dagger}.

Theorem [Schock, '84]

Without any further assumptions, the convergence

$$
x_{\alpha}^{\delta} \rightarrow x^{\dagger} \quad \text { as } \quad \delta \rightarrow 0
$$

can (and will) be arbitrarily slow.
The way out...

Source and Nonlinearity conditions

Assume that there is $\xi \in \partial \Psi\left(x^{\dagger}\right)$ and $w \in Y^{*}$ such that

$$
\begin{equation*}
\xi=F^{\prime}\left(x^{\dagger}\right)^{*} w, \tag{S}
\end{equation*}
$$

and that - locally near x^{\dagger} - we have

$$
\begin{equation*}
\left\|F(x)-F\left(x^{\dagger}\right)-F^{\prime}\left(x^{\dagger}\right)\left(x-x^{\dagger}\right)\right\| \leq c D_{\Psi}^{\xi}\left(x, x^{\dagger}\right), \tag{NL}
\end{equation*}
$$

where $c<1 /\|w\|$.

Selected convergence rate results for MDP

MDP: Morozov's discrepancy principle.

dist	rate	lin	sparse	ℓ_{p}	src/nl cond	due to		
D_{Ψ}	$\mathcal{O}(\delta)$	\checkmark	-	(S)	[Bonesky '09]			
D_{Ψ}	$\mathcal{O}(\delta)$			-	(S) \& (NL)	[Anezngruber, Ramlau '10]		
$\\|\cdot\\|$	$\mathcal{O}\left(\delta^{1 / p}\right)$			$2 \leq p$	(S) \& (NL)	[Grasmair, Haltmeier,		
$\\|\cdot\\|$	$\mathcal{O}\left(\delta^{1 / 2}\right)$	\checkmark		$p \in(1,2)$	(S)	Scherzer '09]		
$\\|\cdot\\|$	$\mathcal{O}\left(\delta^{1 / p}\right)$	\checkmark	\checkmark	$p \in[1,2)$	(S)	(for Residual Method)		
$\\|\cdot\\|$	$\mathcal{O}\left(\delta^{1 / r}\right)$			-	(VIE)	[Anzengruber, Ramlau '11]		

