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Introduction

Inverse of what?

We call two problems inverses of one another if the formulation of
each involves all or part of the solution of the other. [J. Keller]

Consider a linear or non-linear operator equation

Ax = y or F (x) = y

Direct: given x, compute y = Ax (studied ealier or the easier
one)

Inverse: given y, solve Ax = y (if there is solution)

“Inverse problems are concerned with determining causes for a
desired or an observed effect” [Engl, Hanke, Naubauer]
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Introduction

Inverse problems most oft do not fulfill Hadamard’s postulate of
well posedness.

It is called well-posed [Hadamard, 1902] if

existence: for all admissible data, a
solution exists;

uniqueness: for all admissible data, a
solution is unique;

stability: the solution depends
continuously on the data.

Hadamard (1865 – 1963)

Computational issues: observed effect has measurement errors or
perturbations caused by noise
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1st Case: noisy data

Regularization

Solve Ax = y0 out of the measurement yδ with
∥

∥y0 − yδ
∥

∥ ≤ δ.
Need apply some regularization technique

minimize
x

∥

∥Ax− yδ
∥

∥

2
+ α

∥

∥Lx
∥

∥

2
.

Tikhonov regularization (Tik-R)

fidelity term (based on LS);

stabilization term (Hilbert space);

regularization parameter α.

[Tihonov, 1963 & Phillips, 1962]

Tikhonov (1906 – 1993)
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1st Case: noisy data

Tikhonov-type regularization

Exchange the quadract term by a general functional R, namely a
proper, convex and weakly lower semicontinuous functional :

minimize
x

∥

∥Ax− yδ
∥

∥

2
+ αR(x)

Also called: non-quadract regularization, convex regularization or
generalized Tikhonov regularization.

Convergence rates (wrt Bregman distances)
2004 linear SC type I Banach – Hilbert Burger and Osher

2005 linear SC type II Banach – Hilbert Resmerita

2006 nonlinear SC type I and II Banach – Banach Resmerita and Scherzer

Def. Bregman Source Conditions
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1st Case: noisy data

Subgradient

The Fenchel subdifferential of a functional R : U → [0,+∞] at
ū ∈ U is the set

∂FR (ū) = {ξ ∈ U
∗ | R(v)− R(ū) ≥

〈

ξ , v − ū
〉

∀v ∈ U}.

First in 1960 by Moreau and Rockafellar and extended by Clark
1973.

Optimality condition:

If ū minimizes R then
0 ∈ ∂FR (ū)
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1st Case: noisy data

Example

Consider the function R(u) = |u|

Figure: Function (left) and its subdifferential (right).
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1st Case: noisy data

Iterative Soft-Shrinkage

Therefore we look the following minimization problem

J(k) = minimize
k

∥

∥F̃ k − gδ
∥

∥

2
+ βR(k).

Regularization term: weighted lp-norm of k wrt an orthonormal
basis {φλ}λ of L2(Ω

2),
∥

∥k
∥

∥

p

w,p
=

∑

λ

wλ|kλ|
p,

where kλ = |
〈

k , φλ
〉

|.

Idea: apply a surrogate functional that removes the term F̃ ∗F̃ k
Daubechies et al. [2004], adding a functional which depends of an
auxiliary element u,

Ξ(k;u) = C
∥

∥k − u
∥

∥

2
−

∥

∥F̃ k − F̃ u
∥

∥

2
.
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1st Case: noisy data

Remark: for a suitable choice of C the whole functional is strictly
convex.
Therefore the surrogate functional - extended functional is

JSur(k;u) = J(k) + Ξ(k;u)

=
∥

∥F̃ k − gδ
∥

∥

2
+ β

∥

∥k
∥

∥

p

w,p
+ C

∥

∥k − u
∥

∥

2
−
∥

∥F̃ k − F̃ u
∥

∥

2

=
∥

∥F̃ k
∥

∥

2
+
∥

∥gδ
∥

∥

2
− 2

〈

F̃ k , gδ
〉

+ β
∥

∥k
∥

∥

p

w,p
+ C

∥

∥k
∥

∥

2
+C

∥

∥u
∥

∥

2

−2C
〈

k , u
〉

−
∥

∥F̃ k
∥

∥

2
−
∥

∥F̃ u
∥

∥

2
+ 2

〈

F̃ k , F̃ u
〉

= C
∥

∥k
∥

∥

2
− 2

〈

k , Cu− F̃ ∗(F̃ u− gδ)
〉

+ β
∥

∥k
∥

∥

p

w,p
+ c1

Writing k as a linear combination of an ONB {φλ}λ

JSur(k;u) =
∑

λ

C(kλ)
2 − 2kλ

(

Cu− F̃ ∗(F̃ u− gδ)
)

λ
+ βwλ|kλ|

p + c1
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1st Case: noisy data

Compute the minimizer of JSur(k;u) wrt k for a given u. For a
choice p = 1 the optimality condition (derivative) is

2Ckλ = 2
(

Cu− F̃ ∗(F̃ u− gδ)
)

λ
− βwλ sgn(kλ).

Under definition of soft-shrinkage operator

Sβ (x) = max{‖x‖ − β, 0}
x

‖x‖

or equivalent

Sβ (x) =

{

x− β x
‖x‖ if ‖x‖ > β

0 if ‖x‖ ≤ β
(1)

we end up

kλ = Swλ
C

β
2

(

u−
1

C
[F̃ ∗(F̃ u− gδ)]λ

)
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1st Case: noisy data

An iterative approach can be done setting u = kn and so

kn+1 = argmin
k

JSur(k; kn)

for a initial guess k0.
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Figure: Soft Shrinkage operator.
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2nd Case: inexact operator and noisy data

Solve A0x = y0 under the assumptions

(i) noisy data
∥

∥y0 − yδ
∥

∥ ≤ δ .

(ii) inexact operator
∥

∥A0 −Aǫ

∥

∥ ≤ ǫ .

What have been done so far?

linear case:

TLS: Total least squares by Golub and Van Loan [1980];
R-TLS: Regularized TLS by Golub et al. [1999];
D-RTLS: Dual R-TLS by Lu et al. [2007].

nonlinear case: no publication (?)

LS: yδ and A0

minimizey
∥

∥y − yδ
∥

∥

2
subject to y ∈ R(A0)

TLS: yδ and Aǫ

minimize
∥

∥[A, y]− [Aǫ, yδ]
∥

∥

F

subject to y ∈ R(A)
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2nd Case: inexact operator and noisy data

Illustration

Solve 1D problem: am = b, find the slope m.

Cases:

1. bδ

2. aǫ

3. bδ, aǫ

Solution:
m = 1

−4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

slope 45.7666

Ls noisy data

 

 

Ls solution

noisy right side

true data

Example: arctan(1) = 45o (Van Huffel and Vandewalle [1991]).

Bleyer, Ramlau JKU Linz 14 / 40



2nd Case: inexact operator and noisy data

Illustration

Solve 1D problem: am = b, find the slope m.

Cases:

1. bδ

2. aǫ

3. bδ, aǫ

Solution:
m = 1

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

slope 45.1487

Ls−2 noisy operator

 

 

Ls2 solution

noisy left side

true data

Example: arctan(1) = 45o (Van Huffel and Vandewalle [1991]).
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Illustration
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3. bδ, aǫ

Solution:
m = 1

−4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

slope 45.9078

TLS noisy data + noisy operator

 

 

TLS solution

noisy right + left side

true data

Example: arctan(1) = 45o (Van Huffel and Vandewalle [1991]).
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2nd Case: inexact operator and noisy data

R-TLS

The R-TLS method [Golub, Hansen, O’Leary, 1999]

minimize
∥

∥A−Aǫ

∥

∥

2
+
∥

∥y − yδ
∥

∥

2

subject to

{

Ax = y
∥

∥Lx
∥

∥

2
≤M .

If the inequality constraint is active, then

(

AT
ǫ Aǫ + αLTL+ βI

)

x̂ = AT
ǫ yδ and

∥

∥Lx̂
∥

∥ =M

with α = µ(1 +
∥

∥x̂
∥

∥

2
), β = −

∥

∥Aǫx̂− yδ
∥

∥

2

1 +
∥

∥x̂
∥

∥

2
and µ > 0 is the Lagrange

multiplier.

Difficulty: requires a reliable bound M for the norm
∥

∥Lx†
∥

∥

2
.
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2nd Case: inexact operator and noisy data

DR-TLS

The DR-TLS method [Lu et al., 2007]:

minimize
∥

∥Lx
∥

∥

2

subject to











Ax = y
∥

∥y − yδ
∥

∥

2
≤ δ

∥

∥A−Aǫ

∥

∥

2
≤ ǫ .

side condition

If the inequalities constraints are active, then

(

AT
ǫ Aǫ + αLTL+ βI

)

x̃ = AT
ǫ yδ

with α =
ν + µ

∥

∥x̃
∥

∥

2

νµ
, β = −

µ
∥

∥Aǫx̃− yδ
∥

∥

2

ν + µ
∥

∥x̃
∥

∥

2
and ν, µ > 0 are Langrange

multipliers. Moreover,
∥

∥Aǫx̃− yδ
∥

∥ = δ + ǫ
∥

∥x̃
∥

∥.
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Proposed method

Consider the operator equation

B(k, f) = g0

where B is a bilinear operator (nonlinear)

B : U× V −→ H

(k, f) 7−→ B(k, f)

and B is characterized by a function k0.

K· = B(k̃, ·) compact linear operator for a fixed k̃ ∈ U

F · = B(·, f̃) linear operator for a fixed f̃ ∈ V

∥

∥B(k0, ·)
∥

∥

V→H
≤

∥

∥k0
∥

∥

U
;

∥

∥B(k, f)
∥

∥

H
≤

∥

∥k
∥

∥

U

∥

∥f
∥

∥

V
;

Example:

B(k, f)(s) :=

∫

Ω
k(s, t)f(t)dt .
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Proposed method

“Some mathematicians still have a kind of fear whenever

they encounter a Fredholm integral equation of the first

kind”.

We want to solve

B(k0, f) = g0

out of the measurements kǫ and gδ with

(i) noisy data
∥

∥g0 − gδ
∥

∥

H
≤ δ .

(ii) inexact operator
∥

∥k0 − kǫ
∥

∥

U
≤ ǫ .

Francesco Tricomi (1897-1978)
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Proposed method

We introduce the DBL-RTLS

minimize
k,f

J (k, f) := T (k, f, kǫ, gδ) +R(k, f) (2)

where

T (k, f, kǫ, gδ) =
1

2

∥

∥B(k, f)− gδ
∥

∥

2

H
+
γ

2

∥

∥k − kǫ
∥

∥

2

U

R(k, f) =
α

2

∥

∥Lf
∥

∥

2

V
+ βR(k)

T is based on TLS method, measures the discrepancy on both
data and operator;
α, β are the regularization parameters and γ is a scaling
parameter;
L : V → V is a linear bounded operator;
double regularization was proposed by You and Kaveh
[1996], R : U → [0,+∞] is proper convex function and w-lsc.
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Proposed method

Main theoretical results

Assumption:

(A1) B is strongly continuous, ie, if (kn, fn)⇀ (k̄, f̄) then
B(kn, fn) → B(k̄, f̄)

Proposition

Let J be the functional defined on (2) and L be a bounded and

positive operator. Then J is positive, weak lower

semi-continuous and coercive functional.

Theorem (existence)

Let the assumptions of Proposition 1 hold. Then there exists a

global minimum of

minimize J (k, f) .
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Proposed method

Theorem (stability)

δj → δ and ǫj → ǫ

gδj → gδ and kǫj → kǫ

α, β > 0

(kj , f j) is a minimizer of J with gδj and kǫj

Then there exists a convergent subsequence of (kj , f j)j

(kjm , f jm) −→ (k̄, f̄)

where (k̄, f̄) is a minimizer of J with gδ, kǫ, α and β.
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Proposed method

Consider the convex functional

Φ(k, f) :=
1

2

∥

∥Lf
∥

∥

2
+ ηR(k)

where the parameter η represents the different scaling of f and k.

For convergence results we need to define

Definition

We call (k†, f †) a Φ-minimizing solution if

(k†, f †) = argmin
(k,f)

{Φ(k, f) | B(k, f) = g0} .
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Proposed method

Theorem (convergence)

δj → 0 and ǫj → 0
∥

∥gδj − g0
∥

∥ ≤ δj and
∥

∥kǫj − k0
∥

∥ ≤ ǫj

αj = α(ǫj , δj) and βj = β(ǫj , δj), s.t. αj → 0, βj → 0,

limj→∞

δ2j + γǫ2j
αj

= 0 and limj→∞
βj
αj

= η

(kj , f j) is a minimizer of J with gδj , kǫj , αj and βj

Then there exists a convergent subsequence of (kj , f j)j

(kjm , f jm) −→ (k†, f †)

where (k†, f †) is a Φ-minimizing solution.
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Computational aspects
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Computational aspects

Optimality condition

If the pair (k̄, f̄) is a minimizer of J (k, f), then (0, 0) ∈ ∂J
(

k̄, f̄
)

.

Theorem

Let J : U× V → R be a nonconvex functional,

J(u, v) = ϕ(u) +Q(u, v) + ψ(v)

where Q is a nonlinear differentiable term and ϕ, ψ are lsc convex

functions. Then

∂J(u, v) = {∂ϕ (u) +DuQ(u, v)} × {∂ψ (v) +DvQ(u, v)}

= {∂uJ(u, v)} × {∂vJ(u, v)}
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Computational aspects

Remark:

is difficult to solve wrt both (k, f)

J is bilinear and biconvex (linear and convex to each one)

applied alternating minimization method.

Alternating minimization algorithm

Require: gδ , kǫ, L, γ, α, β
1: n = 0
2: repeat

3: fn+1 ∈ argminf J(k, f |k
n)

4: kn+1 ∈ argmink J(k, f |f
n+1)

5: until convergence
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Computational aspects

Proposition

The sequence generated by the function J(kn, fn) is
non-increasing,

J(kn+1, fn+1) ≤ J(kn, fn+1) ≤ J(kn, fn).

Assumptions:

(A1) B is strongly continuous, ie, if (kn, fn)⇀ (k̄, f̄) then
B(kn, fn) → B(k̄, f̄)

(A2) B is weakly sequentially closed, ie, if (kn, fn)⇀ (k̄, f̄) and
B(kn, fn)⇀ g then B(k̄, f̄) = g

(A3) the adjoint of B′ is strongly continuous, ie, if
(kn, fn)⇀ (k̄, f̄) then B′(kn, fn)∗z → B′(k̄, f̄)∗z,
∀z ∈ D(B′)
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(A3) the adjoint of B′ is strongly continuous, ie, if
(kn, fn)⇀ (k̄, f̄) then B′(kn, fn)∗z → B′(k̄, f̄)∗z,
∀z ∈ D(B′)
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Computational aspects

Theorem

Given regularization parameters 0 < α ≤ α and β, compute AM

algorithm. The sequence {(kn+1, fn+1)}n+1 has a weakly

convergent subsequence, namely (knj+1, fnj+1)⇀ (k̄, f̄) and the

limit has the property

J(k̄, f̄) ≤ J(k̄, f) and J(k̄, f̄) ≤ J(k, f̄)

for all f ∈ V and for all k ∈ U.

Proposition

Let {(kn, fn)}n be a weakly convergent sequence generated by

AM algorithm, where kn ⇀ k̄ and fn ⇀ f̄ . Then there exists a

subsequence {knj}nj such that knj → k̄ and there exists {ξ
nj

k }nj

with ξ
nj

k ∈ ∂kJ(k
nj , fnj) such that ξ

nj

k → 0.
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Computational aspects

Proposition

Let {n} be a subsequence of N such that the sequence

{(kn, fn)}n generated by AM algorithm satisfies kn → k̄ and

fn ⇀ f̄ . Then fnj → f̄ and there exists {ξ
nj

f }nj with

ξ
nj

f ∈ ∂fJ(k
nj , fnj) such that ξ

nj

f → 0.

Remark: Graph of subdifferential mapping is sw-closed, ie, if
vn → v̄ and ξn ⇀ ξ̄ with ξn ∈ ∂ϕ (vn), then ξ ∈ ∂ϕ (v̄).

Theorem

Let {(kn, fn)}n be the sequence generated by the AM algorithm,

then there exists a subsequence converging towards to a critical

point of J , i.e.,
(0, 0) ∈ ∂J

(

k̄, f̄
)

.
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Computational aspects

Short comments

For minimization on k we follow Daubechies et al. [2004].

penalty term: R(k) =
∑

λ ωλ|kλ| where kλ = |
〈

k , φλ
〉

|

apply surrogate functional - extended functional

J̃Sur(k, u) = J̃(k) + C
∥

∥k − u
∥

∥−
∥

∥F̃ k − F̃ u
∥

∥

B̃(k, f) : (k, f) 7−→ (B(k, f), k) and
∥

∥(x, y)
∥

∥

γ
=

∥

∥x
∥

∥+ γ
∥

∥y
∥

∥

combine with soft-shrinkage operator

Sβ (x) = max{
∥

∥x
∥

∥− β, 0}
x

∥

∥x
∥

∥

kn+1
λ = Sωλ

2

β
γC

(

knλ − 1
C
(knλ − kǫλ)−

1
Cα

[F ∗(Fkn − gδ)]λ
)
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Numerical illustration

First numerical result

Convolution in 1D
∫

Ω
k(s− t)f(t)dt = g(s)

characteristic kernel and gaussian function;

space: Ω = [0, 1], discretization: N = 2048 points;

Haar wavelet for {φ}λ and J = 10;

initial guess: k0 = kǫ, τ = 1.0;

A. relative error: 10% and 10%.

B. relative error: 0.1% and 0.1%.
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Numerical illustration
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Numerical illustration
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Conclusions and future work

Conclusions and future work

So far:

introduced a method for nonlinear equation (bilinear operator)
with noisy data and inexact operator;

proved existence, stability and convergence;

suggested an iterative implementation;

proved convergence of AM algorithm to a critical point;

For further work:

study of source conditions;

prove convergence rates (k and f);

how to choose the best regularization parameter?

a priori and a posteriori choice;

implementations and numerical experiments (2D);
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Thank you for your kind attention!

Questions?
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Appendix

Reminder Bregman distance

R(u)

u v

R(v)

U

R
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Appendix

Reminder Bregman distance

R(u)

u v

R(u) +
〈

R
′(u) , v − u

〉

R(v)

U

R

D (v, u)
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Appendix

Bregman distance: ξ = {R′(u)}

D (v, u) = R(v)− R(u)−
〈

ξ , v − u
〉

.

Generalized Bregman distances: subgradient ξ ∈ U∗

D (v, u) =
{

Dξ (v, u) := R(v) − R(u)−
〈

ξ , v − u
〉

| ξ ∈ ∂R (u)
}

.

Back
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Appendix

Source condition

Consider a nonlinear operator F : X → Y and the the nonlinear equation

F (x) = y.

Measurement yδ with
∥

∥y − yδ
∥

∥ ≤ δ.

Study of Source conditions: how fast a solution of the Tikhonov-type
functional

Jα(x) =
∥

∥F (x)− yδ
∥

∥

2
+ αΨ(x)

converges to the Ψ-minimizing solution x†.
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Appendix

Theorem [Schock, ’84]

Without any further assumptions, the convergence

xδα → x† as δ → 0

can (and will) be arbitrarily slow.

The way out...

Source and Nonlinearity conditions

Assume that there is ξ ∈ ∂Ψ(x†) and w ∈ Y ∗ such that

ξ = F ′(x†)∗w, (S)

and that – locally near x† – we have

∥

∥F (x) − F (x†)− F ′(x†)(x − x†)
∥

∥ ≤ cDξ
Ψ
(x, x†), (NL)

where c < 1/
∥

∥w
∥

∥.
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Appendix

Selected convergence rate results for MDP

MDP: Morozov’s discrepancy principle.

dist rate lin sparse ℓp src/nl cond due to

DΨ O(δ) X – (S) [Bonesky ’09]
DΨ O(δ) – (S) & (NL) [Anezngruber, Ramlau ’10]

‖.‖ O(δ1/p) 2 ≤ p (S) & (NL) [Grasmair, Haltmeier,

‖.‖ O(δ1/2) X p ∈ (1, 2) (S) Scherzer ’09]

‖.‖ O(δ1/p) X X p ∈ [1, 2) (S) (for Residual Method)

‖.‖ O(δ1/r) – (VIE) [Anzengruber, Ramlau ’11]

Back
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