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Introduction

Regularization methods for solving a linear ill-posed problems of the form

K()f = 90 ; (1)

where Ky : U — X is a bounded linear operator between infinite dimensional real Hilbert
spaces U and H, have been extensively investigated when there exists noisy measurements
on the data:

e instead of gy € Z(K,) we have a noisy right hand side g5 € 3 with

g0 — gs]| < 0. (2)

In real applications both elements K| and gy in (1) are contaminated by some noise. For a
more realistic situation we also assume:

e instead of K € .Z (U, H) we have a noisy operator K, € .Z (U, H) with

|Ko— K|l < e (3)

The numerical treatment of ill-posed problem (1) with noisy data (2) and (3) requires the
application of special regularization techniques.

Tikhonov regularization is the most widely applied methods for solving ill-posed problems
6, 1].
minimize [|K.f — gs||*
subject to ||Lf|]* < M,

Regularized total least squareis a method based on TLS [3, 5], adding a stabilization
term with respect to the solution f.

minimize ||K — K>+ |lg — gs|*

(
Kf=g

subject to 4
Lf|? < M.

{

Proposed method

y,

Our approach is based on R-TLS method [2, 4]. We propose a solution of (1) for the case:
Ky : L*(Q) — L*(Q) is an integral equation

(Kuf ) (s) = [ ks, t)f (1)

generated by the kernel kq(-,-) € L*(Q?) and f(-) € L*(2), with Q C R?.
The approximated solution is the pair (k, f) which solves the following minimization problem

minimize T (k, f) = %J(k, f)+BR(k), (4a)

where
T (k, ) = | K (k, f) = gsl| 72 + @ LS 1 Z20y + TIE = Kell 2002 5 (4b)

o, 3 are the regularization parameters to be chosen properly, 7 is a weight parameter and

R (k) =K Liqz - (4c)

Main results

J

We present some results about the quality of the method introduced in (4), for instance:
existence, stability and convergence.

Proposition 1. Let T' be the functional defined on (4) and L be a positive defined operator.
Then T is positive, weak lower semicontinuous and coercive functional.

Theorem: Existence

Let the assumptions of Proposition 1 hold. Then there exists a global minimum of

minimize T (k, f) .

Theorem: Stability

Let «, 5 > 0 the regularization parameters, L be a positive defined operator and
(95,)j, (ke,); sequences where g5, — gs and k., — k.. Associate with the noisy
data and noisy kernel compute a sequence of solutions (k7 f7);, where (k’, f7) is a
minimizer of 1" with g5 and k. replaced by gs and k. respectively. Then there exists
a convergent subsequence of (k7, f7); and the limit of every convergent subsequence
Is a minimizer of functional 7.

Definition. We call (k', f7) a 2||L - ||* + || - |li- minimizing solution if

, 1
(K, £1) = aag i CULFIE 4+ nllkl | K (k) = go.k = ko |

Theorem: Convergence

Let the noisy data gs, and noisy kernel k. with ||gs;, — go|| < d; and ||k, — ko|| < ;.
Let the regularization parameters a; = a(e;,9,) and 3; = B(€;, d;) satisfy a; — 0,

5; — 0,

0% + 7€ -
lim -2 J =0 and lim & =1
j—oo =00 O

for some 0 < 1 < 00, as long as the sequence of noise level ¢, — 0, 0, — 0.
Let the sequence (K7, f7); = (ki”]%j,fiigj)] be the solution of the (4) with re-
spective noisy data g;,, noisy kernel k., regularization parameters o, §; and weight
parameter 7. Then there exists a convergent subsequence of (k/, f7);. The limit of
every convergent subsequence is a £||L - ||*+ || - ||;- minimizing solution. Moreover,
if the minimizer (£, f1) is unique, then

i (K7, £7) = (T, f1).

J—00

Algorithm

J

Computing the first order optimality condition for the functional 1", one can show the fol-
lowing result.

Theorem. The solution (k, f) of (4) satisfies the system equation
(KiKi+aL L) (f)(t) = K;(gs)(t)
(K3Kp+7I)(k)(s,t) = (K}(gs) + 7he) (s, t) — Bsgn(k(s, 1)),

for a.e. (s,t) € §2 x (0.

Aiming to solve such system of equations iteratively, we propose the iterative shrinkage-
thresholding algorithm:

Require: L, gs, k., 7 and k" € L*(Q) N LY(Q?)

1. M = O
2. repeat
3, choose o and (3

4: kn—|—1 — 85 (kn _|_ K*éy(kn)(g(s — ng(kn)kn) _|_ T(ke — kn))
5. until convergence

where the soft-shrinkage operator 83 () is defined as

85(1‘) = ’56’

and for each iteration we solve the linear system
~1
fo(k") = (KK + aL*L) " Kfugs
for some regularization parameter «.
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