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Introduction

Regularization methods for solving a linear ill-posed problems of the form

K0f = g0 , (1)

where K0 : U → H is a bounded linear operator between infinite dimensional real Hilbert
spaces U and H, have been extensively investigated when there exists noisy measurements
on the data:

• instead of g0 ∈ R(K0) we have a noisy right hand side gδ ∈ H with

‖g0 − gδ‖ ≤ δ. (2)

In real applications both elements K0 and g0 in (1) are contaminated by some noise. For a
more realistic situation we also assume:

• instead of K0 ∈ L (U, H) we have a noisy operator Kǫ ∈ L (U, H) with

‖K0 − Kǫ‖ ≤ ǫ. (3)

The numerical treatment of ill-posed problem (1) with noisy data (2) and (3) requires the
application of special regularization techniques.

Tikhonov regularization is the most widely applied methods for solving ill-posed problems
[6, 1].

minimize ‖Kǫf − gδ‖
2

subject to ‖Lf‖2 ≤ M,

Regularized total least square is a method based on TLS [3, 5], adding a stabilization
term with respect to the solution f .

minimize ‖K − Kǫ‖
2 + ‖g − gδ‖

2

subject to







Kf = g

‖Lf‖2 ≤ M.

Proposed method

Our approach is based on R-TLS method [2, 4]. We propose a solution of (1) for the case:
K0 : L2(Ω) → L2(Ω) is an integral equation

(

K0f
)

(s) =
∫

Ω
k0(s, t)f (t)dt

generated by the kernel k0(·, ·) ∈ L2(Ω2) and f (·) ∈ L2(Ω), with Ω ⊆ R
d.

The approximated solution is the pair (k, f ) which solves the following minimization problem

minimize T (k, f ) :=
1

2
J (k, f ) + β R (k) , (4a)

where
J (k, f ) = ‖K(k, f ) − gδ‖

2
L2(Ω) + α‖Lf‖2

L2(Ω) + τ‖k − kǫ‖
2
L2(Ω2) , (4b)

α, β are the regularization parameters to be chosen properly, τ is a weight parameter and

R (k) = ‖k‖L1(Ω2) . (4c)

Main results

We present some results about the quality of the method introduced in (4), for instance:
existence, stability and convergence.

Proposition 1.Let T be the functional defined on (4) and L be a positive defined operator.

Then T is positive, weak lower semicontinuous and coercive functional.

Theorem: Existence

Let the assumptions of Proposition 1 hold. Then there exists a global minimum of

minimize T (k, f ) .

Theorem: Stability

Let α, β > 0 the regularization parameters, L be a positive defined operator and
(gδj

)j, (kǫj
)j sequences where gδj

→ gδ and kǫj
→ kǫ. Associate with the noisy

data and noisy kernel compute a sequence of solutions (kj, f j)j, where (kj, f j) is a
minimizer of T with gδj

and kǫj
replaced by gδ and kǫ respectively. Then there exists

a convergent subsequence of (kj, f j)j and the limit of every convergent subsequence
is a minimizer of functional T .

Definition.We call (k†, f †) a 1
2‖L · ‖2 + η‖ · ‖1- minimizing solution if

(k†, f †) = arg min
(k,f )

{

1

2
‖Lf‖2 + η‖k‖1 | K(k, f ) = g0, k = k0

}

.

Theorem: Convergence

Let the noisy data gδj
and noisy kernel kǫj

with ‖gδj
− g0‖ ≤ δj and ‖kǫj

− k0‖ ≤ ǫj.
Let the regularization parameters αj = α(ǫj, δj) and βj = β(ǫj, δj) satisfy αj → 0,
βj → 0,

lim
j→∞

δ2
j + τǫ2

j

αj

= 0 and lim
j→∞

βj

αj

= η

for some 0 < η < ∞, as long as the sequence of noise level ǫj → 0, δj → 0.

Let the sequence (kj, f j)j :=
(

k
δj,ǫj

αj,βj
, f

δj,ǫj

αj,βj

)

j
be the solution of the (4) with re-

spective noisy data gδj
, noisy kernel kǫj

, regularization parameters αj, βj and weight
parameter τ . Then there exists a convergent subsequence of (kj, f j)j. The limit of
every convergent subsequence is a 1

2‖L · ‖2 + η‖ · ‖1- minimizing solution. Moreover,
if the minimizer (k†, f †) is unique, then

lim
j→∞

(kj, f j) = (k†, f †) .

Algorithm

Computing the first order optimality condition for the functional T , one can show the fol-
lowing result.

Theorem.The solution (k, f ) of (4) satisfies the system equation







(

K∗
kKk + αL∗L

)

(f )(t) = K∗
k(gδ)(t)

(

K∗
fKf + τI

)

(k)(s, t) =
(

K∗
f(gδ) + τkǫ

)

(s, t) − β sgn(k(s, t)),

for a.e. (s, t) ∈ Ω × Ω.

Aiming to solve such system of equations iteratively, we propose the iterative shrinkage-
thresholding algorithm:

Require: L, gδ, kǫ, τ and k0 ∈ L2(Ω2) ∩ L1(Ω2)
1: n = 0
2: repeat

3: choose α and β

4: kn+1 = Sβ

(

kn + K∗
fα

δ (kn)(gδ − Kfα
δ (kn)k

n) + τ (kǫ − kn)
)

5: until convergence

where the soft-shrinkage operator Sβ (·) is defined as

Sβ (x) =











x − β
x

|x|
, |x| > β

0 , |x| ≤ β

and for each iteration we solve the linear system

fα
δ (kn) =

(

K∗
knKkn + αL∗L

)−1
K∗

kngδ

for some regularization parameter α.
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