Introduction	Proposed method	Main results	Algorithm	References
	000	000	000	

Regularization of linear integral equations with noisy data and noisy operator

Ismael Rodrigo Bleyer

Advisor Prof. Dr. Ronny Ramlau

Johannes Kepler Universität - Linz

Santiago, January 2010

Der Wissenschaftsfonds.

supported by

Introduction 00	Proposed method	Main results	Algorithm 000	References
Overview				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Proposed method	Main results	Algorithm 000	References
Overview				

Proposed method

Introduction ●○	Proposed method	Main results	Algorithm 000	References
General pro	oblem			

Consider a linear ill-posed problems of the form

$$K_0 f = g_0 \,,$$

where $K_0 : \mathcal{U} \to \mathcal{H}$ is a bounded linear operator between infinite dimensional real Hilbert spaces \mathcal{U} and \mathcal{H} .

• instead of $g_0 \in \mathscr{R}(K_0)$ we have **noisy data** $g_{\delta} \in Y$ with

$$\left\|g_0-g_\delta\right\|\leq\delta.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Introduction ●○	Proposed method	Main results	Algorithm 000	References
General pro	oblem			

Consider a linear ill-posed problems of the form

$$K_0 f = g_0 \,,$$

where $K_0 : \mathcal{U} \to \mathcal{H}$ is a bounded linear operator between infinite dimensional real Hilbert spaces \mathcal{U} and \mathcal{H} .

• instead of $g_0 \in \mathscr{R}(K_0)$ we have **noisy data** $g_{\delta} \in Y$ with

$$\left\|g_0-g_\delta\right\|\leq\delta.$$

• instead of $K_0 \in \mathscr{L}(\mathcal{U}, \mathcal{H})$ we have a **noisy operator** $K_{\epsilon} \in \mathscr{L}(\mathcal{U}, \mathcal{H})$ where

$$\left\|K_0 - \frac{K_{\epsilon}}{K_{\epsilon}}\right\| \leq \epsilon.$$

Introduction ○●	Proposed method	Main results ০০০	Algorithm 000	References
Difficulties				

Consider (linear) integral operator K_0 , function spaces \mathcal{U} and \mathcal{H}

$$\begin{array}{cccc} K_0: & \mathcal{U} & \longrightarrow & \mathcal{H} \\ f & \longmapsto & g_0 = K_0 f \end{array}, \end{array}$$

where

$$(K_0f)(s) := \int_{\Omega} k_0(s,t)f(t)dt$$
.

Introduction ○●	Proposed method	Main results ০০০	Algorithm 000	References
Difficulties				

Consider (linear) integral operator K_0 , function spaces \mathcal{U} and \mathcal{H}

$$\begin{array}{rcccc} K_0: & \mathcal{U} & \longrightarrow & \mathcal{H} \\ & f & \longmapsto & g_0 = K_0 f \end{array}, \end{array}$$

where

$$(K_0f)(s) := \int_{\Omega} k_0(s,t)f(t)dt$$
.

Inverse problem: given g_0 find function f.

Integral operator + kernel ($k \in L^2(\Omega^2)$, continuous) $\downarrow \downarrow$ compact and ill-posed

Measurements: data g_{δ} and kernel k_{ϵ} .

Introduction 00	Proposed method	Main results	Algorithm 000	References
Overview				

Introduction	Proposed method ●○○	Main results	Algorithm 000	References
How to solv	ve?			

• **Tikhonov regularization** is the most widely applied methods for solving ill-posed problems

minimize $\|K_{\epsilon}f - g_{\delta}\|^2$ subject to $\|Lf\|^2 \le M$,

• **Regularized total least square** is a method based on TLS Golub and Van Loan [1980], adding a stabilization term with respect to the solution *f*.

minimize
$$||K - K_{\epsilon}||^2 + ||g - g_{\delta}||^2$$

subject to $\begin{cases} Kf = g \\ ||Lf||^2 \le M. \end{cases}$

Remark: discretized, finite dimension problem.

Introduction 00	Proposed method o●o	Main results	Algorithm 000	References
Main idea				

minimize
$$||K - K_{\epsilon}||^{2} + ||g - g_{\delta}||^{2}$$

subject to $\begin{cases} Kf = g \\ ||Lf||^{2} \le M. \end{cases}$

Introduction 00	Proposed method o●o	Main results	Algorithm 000	References
Main idea				

minimize
$$\|K - K_{\epsilon}\|^{2} + \|Kf - g_{\delta}\|^{2}$$

subject to $\begin{cases} \|Lf\|^{2} \leq M. \end{cases}$

Introduction 00	Proposed method o●o	Main results	Algorithm 000	References
Main idea				

minimize
$$\|K - K_{\epsilon}\|^{2} + \|Kf - g_{\delta}\|^{2}$$

subject to $\begin{cases} \|K\| \leq N \\ \|Lf\|^{2} \leq M. \end{cases}$

Introduction	Proposed method ○●○	Main results	Algorithm 000	References
Main idea				

minimize
$$||K - K_{\epsilon}||^{2} + ||Kf - g_{\delta}||^{2}$$

subject to $\begin{cases} ||K|| \leq N \\ ||Lf||^{2} \leq M. \end{cases}$

This problem can be rewritten as an unrestricted minimization problem

minimize
$$\|Kf - g_{\delta}\|^2 + \alpha \|Lf\|^2 + \|K - K_{\epsilon}\|^2 + \beta \|K\|$$
,

where α and β are called regularization parameters. Remark: K := K(k, f) is a bilinear operator and

$$\|K(k,f)\|_{L^{2}(\Omega)}^{2} \leq \|k\|_{L^{2}(\Omega^{2})}^{2} \|f\|_{L^{2}(\Omega)}^{2} , \|K\|_{L^{2}(\Omega) \to L^{2}(\Omega)}^{2} \leq \|k\|_{L^{2}(\Omega^{2})}^{2}$$

Introduction	Proposed method ○O●	Main results	Algorithm 000	References
Proposed r	nethod			

In summary, we compute the approximate solution via minimization problem

minimize
$$T(k,f) := \frac{1}{2}J(k,f) + \beta \Re(k)$$
, (1)

where

$$I(k,f) = \|K(k,f) - g_{\delta}\|_{L^{2}(\Omega)}^{2} + \alpha \|Lf\|_{L^{2}(\Omega)}^{2} + \tau \|k - k_{\epsilon}\|_{L^{2}(\Omega^{2})}^{2},$$

 $\alpha,\,\beta$ are the regularization parameters, τ is a weight parameter and

$$\mathcal{R}(k) = \left\|k\right\|_{L^1(\Omega^2)}.$$

Introduction 00	Proposed method	Main results	Algorithm 000	References
Overview				

Introduction 00	Proposed method	Main results ●○○	Algorithm 000	References
Main result	s: theoretical			

Proposition

Let *T* be the functional defined on (1) and *L* be a positive defined operator. Then *T* is **positive**, **weak lower semi-continuous** and **coercive** functional.

Theorem (existence)

Let the assumptions of Proposition 1 hold. Then there exists a **global minimum** of

minimize T(k,f).

Introduction	Proposed method	Main results	Algorithm	References
		000		

Theorem (stability)

Let $\alpha, \beta > 0$ the regularization parameters, *L* be a **positive** defined operator and $(g_{\delta_j})_j$, $(k_{\epsilon_j})_j$ sequences where $g_{\delta_j} \to g_{\delta}$ and $k_{\epsilon_j} \to k_{\epsilon}$. Associate with the noisy data and noisy kernel compute a sequence of solutions $(k^j, f^j)_j$, where (k^j, f^j) is a minimizer of *T* with g_{δ_j} and k_{ϵ_j} replaced by g_{δ} and k_{ϵ} respectively. Then there **exists** a convergent subsequence of $(k^j, f^j)_j$ and the limit of every convergent subsequence is a **minimizer** of functional *T*.

$$(k^{j_m}, f^{j_m}) \longrightarrow (\bar{k}, \bar{f}) := \arg\min T(k, f)$$

Introduction	Proposed method	Main results	Algorithm	References
		000		

Theorem (stability)

Let $\alpha, \beta > 0$ the regularization parameters, *L* be a **positive defined** operator and $(g_{\delta_j})_j$, $(k_{\epsilon_j})_j$ sequences where $g_{\delta_j} \to g_{\delta}$ and $k_{\epsilon_j} \to k_{\epsilon}$. Associate with the noisy data and noisy kernel compute a sequence of solutions $(k^j, f^j)_j$, where (k^j, f^j) is a minimizer of *T* with g_{δ_j} and k_{ϵ_j} replaced by g_{δ} and k_{ϵ} respectively. Then there **exists** a convergent subsequence of $(k^j, f^j)_j$ and the limit of every convergent subsequence is a **minimizer** of functional *T*.

$$(k^{j_m}, f^{j_m}) \longrightarrow (\bar{k}, \bar{f}) := \arg\min T(k, f)$$

Definition

We call $(k^{\dagger}, f^{\dagger})$ a $\frac{1}{2} \|L \cdot\|^2 + \eta \|\cdot\|_1$ - minimizing solution if

$$(k^{\dagger}, f^{\dagger}) = \underset{(k,f)}{\operatorname{arg\,min}} \left\{ \frac{1}{2} \left\| Lf \right\|^2 + \eta \left\| k \right\|_1 \ | \ K(k,f) = g_0, k = k_0 \right\}.$$

) Q (♥ 9/15

Introduction 00	Proposed method	Main results oo●	Algorithm 000	References
Theore	em (Convergence)			
Let the	noisy data g_{δ_i} and	noisy kernel k_{ϵ_i}	with $\ g_{\delta_i} - g_0\ $	$\leq \delta_i$

and $\|\mathbf{k}_{\epsilon_j} - \mathbf{k}_0\| \le \epsilon_j$. Let the regularization parameters $\alpha_j = \alpha(\epsilon_j, \delta_j)$ and $\beta_j = \beta(\epsilon_j, \delta_j)$ satisfy $\alpha_j \to 0, \beta_j \to 0$,

$$\lim_{j \to \infty} \frac{\delta_j^2 + \tau \epsilon_j^2}{\alpha_j} = 0 \quad \text{and} \quad \lim_{j \to \infty} \frac{\beta_j}{\alpha_j} = \eta$$

for some $0 < \eta < \infty$, as long as the sequence of noise level $\epsilon_j \rightarrow 0, \, \delta_j \rightarrow 0$. Let the sequence $(k^j, f^j)_j := (k_{\alpha_j,\beta_j}^{\delta_j,\epsilon_j}, f_{\alpha_j,\beta_j}^{\delta_j,\epsilon_j})_j$ be the solution of the (1) with respective noisy data g_{δ_j} , noisy kernel k_{ϵ_j} , regularization parameters α_j, β_j and weight parameter τ . Then there exists a **convergent subsequence** of $(k^j, f^j)_j$. The limit of every convergent subsequence is a $\frac{1}{2} ||L \cdot ||^2 + \eta || \cdot ||_1$ - **minimizing solution**. Moreover, if the minimizer $(k^{\dagger}, f^{\dagger})$ is unique, then

 $\lim (k^j, f^j) = (k^{\dagger}, f^{\dagger}).$

Introduction 00	Proposed method	Main results	Algorithm	References
Overview				

Proposed method

Introduction	Proposed method	Main results	Algorithm ●00	References
Computatio	onal aspects			

Optimality condition: if the pair (\bar{k},\bar{f}) is a minimizer of T(k,f), then

$$0 \in \partial T\left(\bar{k}, \bar{f}\right) = \partial \left(J\left(\bar{k}, \bar{f}\right) + \beta \Re\left(\bar{k}\right)\right)$$

Compute	tional concete			
			000	
Introduction	Proposed method	Main results	Algorithm	References

Computational aspects

Optimality condition: if the pair (\bar{k},\bar{f}) is a minimizer of T(k,f), then

$$0 \in \partial T\left(\bar{k}, \bar{f}\right) = \partial \left(J\left(\bar{k}, \bar{f}\right) + \beta \Re\left(\bar{k}\right)\right)$$

We know

$$J'(k,f)(u,v) = 2 \left\langle \left[\begin{array}{c} (K_f^*K_f + \tau I)k - (\tau k_\epsilon + K_f^*g_\delta) \\ (K_k^*K_k + \alpha L^*L)f - K_k^*g_\delta \end{array} \right], \left[\begin{array}{c} u \\ v \end{array} \right] \right\rangle_{L^2(\Omega^2) \times L^2(\Omega)}$$

and [Justen and Ramlau, 2009]

$$\partial \Re \left(k(s,t)
ight) = \operatorname{sgn}(k(s,t))$$
 for a.e. $(s,t) \in \Omega^2$

where

$$\operatorname{sgn}(z) = \begin{cases} \left\{ \frac{z}{|z|} \right\} & \text{if } z \neq 0\\ \{\xi \in \mathbb{C} \mid |\xi| \le 1\} & \text{otherwise} \end{cases}$$

Introduction	Proposed method	Main results	Algorithm	References
			000	

Candidates for a minimizer of our problem have to fulfill the optimality condition:

$$\begin{cases} (K_k^* K_k + \alpha L^* L) f = K_k^* g_\delta \\ (K_f^* K_f + \tau I) k = K_f^* g_\delta + \tau k_\epsilon - \beta \operatorname{sgn}(k) \end{cases}$$

イロト イポト イヨト イヨト

12/15

where $K_k = K(k, \cdot)$ and $K_f = K(\cdot, f)$ are linear operator.

Introduction	Proposed method	Main results	Algorithm	References
			000	

Candidates for a minimizer of our problem have to fulfill the optimality condition:

$$\begin{cases} (K_k^* K_k + \alpha L^* L) f = K_k^* g_\delta \\ (K_f^* K_f + \tau I) k = K_f^* g_\delta + \tau k_\epsilon - \beta \operatorname{sgn}(k) \end{cases}$$

where $K_k = K(k, \cdot)$ and $K_f = K(\cdot, f)$ are linear operator.

Remark: iterative development

• first equation: f depends of k and α .

$$f^{\alpha}_{\delta}(k) = \left(K^*_k K_k + \alpha L^* L\right)^{-1} K^*_k g_{\delta}.$$

• second equation: add k in both sides

$$k^{n+1} = \left(k^n + K_f^* g_{\delta} + \tau k_{\epsilon} - (K_f^* K_f + \tau I) k^n\right) - \beta \operatorname{sgn}(k^n).$$

Introduction	Proposed method	Main results	Algorithm 00•	References
Algorithm				

Such formulation leads us to apply the soft-shrinkage operator $S_{\beta}(\cdot)$, defined as

$$\mathbb{S}_{eta}ig(xig) = egin{cases} x - eta rac{x}{|x|} & , \ |x| > eta \ 0 & , \ |x| \leq eta \,. \end{cases}$$

We update *k* as following way

$$k^{n+1} = \mathbb{S}_{\beta} \left(k^n + K_f^* g_{\delta} + \tau k_{\epsilon} - (K_f^* K_f + \tau I) k^n \right).$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Introduction	Proposed method	Main results	Algorithm 00•	References
Algorithm				

Such formulation leads us to apply the soft-shrinkage operator $S_{\beta}(\cdot)$, defined as

$$\mathbb{S}_{\beta}(x) = egin{cases} x - eta rac{x}{|x|} & , \ |x| > eta \ 0 & , \ |x| \leq eta \,. \end{cases}$$

We update k as following way

$$k^{n+1} = \mathbb{S}_{\beta} \left(k^n + K_f^* g_{\delta} + \tau k_{\epsilon} - (K_f^* K_f + \tau I) k^n \right).$$

Require: $L, g_{\delta}, k_{\epsilon}, \tau$ and $k^{0} \in L^{2}(\Omega^{2}) \cap L^{1}(\Omega^{2})$ 1: n = 02: **repeat** 3: choose α and β 4: $k^{n+1} = S_{\beta}(k^{n} + K^{*}_{f^{\alpha}_{\delta}(k^{n})}(g_{\delta} - K_{f^{\alpha}_{\delta}(k^{n})}k^{n}) + \tau(k_{\epsilon} - k^{n}))$ 5: **until** convergence

Introduction	Proposed method	Main results	Algorithm	References

- G. H. Golub and C. F. Van Loan. An analysis of the total least squares problem. *SIAM J. Numer. Anal.*, 17(6):883–893, 1980. ISSN 0036-1429.
- L. Justen and R. Ramlau. A general framework for soft-shrinkage with applications to blind deconvolution and wavelet denoising. *Applied and Computational Harmonic Analysis*, 26(1):43–63, 2009.

Introduction	Proposed method	Main results	Algorithm	References

Thank you for your attention!