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Introduction
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General problem

Consider a linear ill-posed problems of the form

Kof = 0o,

where Kg : U — H is a bounded linear operator between infinite
dimensional real Hilbert spaces U and K.

@ instead of gy € Z(Ko) we have noisy data gs € Y with

|90 — 95| < 6.
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General problem

Consider a linear ill-posed problems of the form

Kof = 0o,

where Kg : U — H is a bounded linear operator between infinite
dimensional real Hilbert spaces U and K.

@ instead of gy € Z(Ko) we have noisy data gs € Y with

|90 — 95| < 6.

@ instead of Ko € .Z (U, H) we have a noisy operator
Ke € Z (U, H) where

Ko~ k.|| < e
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Difficulties

Consider (linear) integral operator Ko, function spaces U and H

Ko: U — H

o [

Kof /kost

where
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Introduction

oe

Difficulties

Consider (linear) integral operator Ko, function spaces U and H

Ko: U — H

o [

Kof /kost

Inverse problem: given g find function f.

where

Integral operator + kernel (k € L2(?), continuous)

4

compact and ill-posed

Measurements: data gs and kernel k..
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Proposed method
[ lele}

How to solve?

@ Tikhonov regularization is the most widely applied
methods for solving ill-posed problems

minimize [|K.f — gs||°
subject to  ||Lf||* < M,

@ Regularized total least square is a method based on TLS
Golub and Van Loan [1980], adding a stabilization term
with respect to the solution f.

minimize ||K — KgHz +|jg— gaHz
Kf =g

subject to H'—sz <M.

Remark: discretized, finite dimension problem.
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Main idea

Based on R-TLS

minimize ||K —K.||* + ||lg — gs|°
Kf =g

bject t
EE Ut em.
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Proposed method
(o] le}

Main idea

Based on R-TLS

minimize [|K — K.||* + ||Kf — gs]|°
K[ <N

bject t
TR U em.

This problem can be rewritten as an unrestricted minimization
problem

minimize||Kf — gs]|* + a||LF||® + ||K — K||* + 5]|K|

)

where « and [ are called regularization parameters.
Remark: K := K(k, ) is a bilinear operator and

2 2 2 2 2
1Kk D)2y < Kz [IFlz@) o Kz -2i0) < [Kliz@z)
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Proposed method

In summary, we compute the approximate solution via
minimization problem

minimize T (k,f) = %J (k) + R (K) , (1)J

where
J(k,f) = [[K(kT) ~ 95Hi2(9) +O‘HLin2(Q) + k- keHEZ(QZ) )

«, (3 are the regularization parameters, 7 is a weight parameter
and

R (k) = HkHLl(QZ)'
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Main results
[ Jele)

Main results: theoretical

Proposition

Let T be the functional defined on (1) and L be a positive
defined operator. Then T is positive , weak lower
semi-continuous and coercive functional.

Theorem (existence)

Let the assumptions of Proposition 1 hold. Then there exists a
global minimum  of

minimize T (k,f) .
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Theorem (stability)

Let o, 8 > O the regularization parameters, L be a positive
defined operator and (g; )j, (k;); sequences where g5, — gs
and k, — k.. Associate with the noi_sy _data and no_isy_ kernel
compute a sequence of solutions (K, f!);, where (K, f!) is a
minimizer of T with g5 and k., replaced by g; and k.
respectively. Then there exists a convergent subsequence of
(kj,fj),- and the limit of every convergent subsequence is a
minimizer of functional T.

(Kim fim) (K, F) := argmin T(k, f)
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Theorem (stability)

Let o, 8 > O the regularization parameters, L be a positive
defined operator and (g; )j, (k;); sequences where g5, — gs
and k., — k.. Associate with the noisy data and noisy kernel
compute a sequence of solutions (K, f!);, where (K, f)) is a
minimizer of T with g5 and k., replaced by g; and k.
respectively. Then there exists a convergent subsequence of
(kj,fj),- and the limit of every convergent subsequence is a
minimizer of functional T.

(Kim fim) (K, F) := argmin T(k, f)

Definition

| \

We call (kt,f1) a 3||L ||+ n||-||,- minimizing solution if

(kM 1) = ar?krgln{—HLfH + K|, | ka):go,k:ko}.
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Main results
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Theorem (Convergence)

Let the noisy data g; and noisy kernel k., with ||g; — gol| < 6
and ||k, — ko|| < ¢. Let the regularization parameters
aj = a(q,(sj) and B = ﬂ(q,(Sj) satisfy aj— 0, G — 0,

2 2
im 39 _o and lim A=y,

jmoo  qj j—oo @
for some 0 < 1 < oo, as long as the sequence of noise level
¢ — 0,9 — 0.
Let the sequence (K, fl); := (kfﬂjf{fj%})l be the solution of the
(1) with respective noisy data gy, noisy kernel k., regularization
parameters o, 5 and weight parameter 7. Then there exists a
convergent subsequence of (K,f));. The limit of every
convergent subsequence is a 3||L H2 + 7)||+|| ;- minimizing
solution . Moreover, if the minimizer (k, 1) is unique, then

lim (ld f1) — (kT £T) bo/15
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Computational aspects

Optimality condition: if the pair (k, f) is a minimizer of T (k, f),
then
0€dT (k.f) =9(3 (k. f) + BR (k)
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Algorithm
@00

Computational aspects

Optimality condition: if the pair (k, f) is a minimizer of T (k, f),
then
0€dT (k.f) =9(3 (k. f) + BR (k)

We know

Yy —2( | e DR GASS LTV ]
g ’ (KiKk + aL*L)f — Kfgs LV L2(02)xL2(Q2)

and [Justen and Ramlau, 2009]
IR (k(s,1)) = sgn(k(s, 1)) for a.e. (s 1) € Q2

where
. .
sgn(z) = {E} 270
{£eC | €| <1} otherwise

11/15



Algorithm
(o] le}

Candidates for a minimizer of our problem have to fulfill the
optimality condition:

(KiKk + al*L)f = K{igs
(KfKs + 71k = Kfgs + ke — B sgn(k)

where Ky = K(k, -) and Ks = K(-, f) are linear operator.

12/15



Algorithm
(o] le}

Candidates for a minimizer of our problem have to fulfill the
optimality condition:

(KiKk + al*L)f = K{igs
(KfKs + 71k = Kfgs + ke — B sgn(k)

where Ky = K(k, -) and Ks = K(-, f) are linear operator.

Remark: iterative development
@ first equation: f depends of k and «.

f(K) = (KiKk + al*L) TKigs.
@ second equation: add k in both sides

KM = (K4 Ky gs + ke — (K7 Ke + 71)K") — B sgn(K”).
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Algorithm

Such formulation leads us to apply the soft-shrinkage operator
85( - ), defined as

X
X=f—= , X>p
s,00 = 0 T
0 , X <8
We update k as following way
K™t = 85(K" + Kigs + 7k — (K{ K + 71)K") .
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Algorithm

Such formulation leads us to apply the soft-shrinkage operator
85( - ), defined as

X
801 = {Xﬁx X >4
0 X <8

We update k as following way
K™ = 85(K" + Kfgs + 7k — (K{Kr + 71)K") .

Require: L,gs, k., 7 and k® € L2(Q?) N LY(Q?)
1: n=0
2: repeat
3: choose « and 3
4 k! — Sg (kn I Kf}(kn)(gg = ngx(kn)kn) + 7(ke — kn))
5. until convergence
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Thank you for your attention!
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