

A Double Regularization Approach for Inverse Problems with Noisy Data and Inexact Operator

Ismael Rodrigo Bleyer Prof. Dr. Ronny Ramlau

Johannes Kepler Universität - Linz

Florianópolis - September, 2011.

Der Wissenschaftsfonds.

supported by

Bleyer,	Ramlau

Overview

Introduction

Proposed method: DBL-RTLS

Computational aspects

Numerical illustration

Outline and future work

Overview

Introduction

Proposed method: DBL-RTLS

Computational aspects

- Numerical illustration
- Outline and future work

Bleyer,	Ramlau
---------	--------

Inverse problems

"Inverse problems are concerned with determining causes for a desired or an observed effect" [Engl, Hanke, and Neubauer, 2000]

Consider a linear operator equation

 $A\mathbf{x} = y.$

Inverse problems most oft do not fulfill **Hadamard**'s postulate [1902] of well posedness (**existence, uniqueness** and **stability**).

Computational issues: observed effect has measurement *errors* or perturbations caused by *noise*.

Bleyer,	Ramlau
---------	--------

1st Case: noisy data

Solve $Ax = y_0$ out of the measurement y_δ with $||y_0 - y_\delta|| \le \delta$. Need apply some **regularization** technique

$$\underset{x}{\text{minimize}} \|Ax - y_{\delta}\|^{2} + \alpha \|Lx\|^{2}.$$

Tikhonov regularization

- fidelity term (based on LS);
- regularization parameter α ;
- stabilization term (quadratic).

[Tikhonov, 1963, Phillips, 1962]

1st Case: noisy data

Solve $Ax = y_0$ out of the measurement y_δ with $||y_0 - y_\delta|| \le \delta$. Need apply some **regularization** technique

$$\underset{x}{\operatorname{minimize}} \|Ax - y_{\delta}\|^{2} + \alpha \mathcal{R}(x).$$

Tikhonov-type regularization

- fidelity term (based on LS);
- regularization parameter α ;
- R is a proper, convex and weakly lower semicontinuous functional.

[Burger and Osher, 2004, Resmerita, 2005]

Subgradient

The Fenchel subdifferential of a functional $\mathcal{R}:\mathcal{U}\to[0,+\infty]$ at $\bar{u}\in\mathcal{U}$ is the set

 $\partial^{F} \mathcal{R}\left(\bar{u}\right) = \{\xi \in \mathcal{U}^{*} \ | \ \mathcal{R}(v) - \mathcal{R}(\bar{u}) \geq \left\langle \xi \right. , \ v - \bar{u} \right\rangle \ \forall v \in \mathcal{U} \}.$

First in 1960 by Moreau & Rockafellar and extended by Clark 1973.

Optimality condition:

If $ar{u}$ minimizes ${\mathfrak R}$ then

 $0\in\partial^{F}\mathcal{R}\left(\bar{u}\right)$

Bleyer, Ramlau	JKU Linz	5 / 27

Example

Consider the function $\Re(u) = |u|$

Figure: Function (left) and its subdifferential (right).

Bleyer, Ramlau	JKU Linz	6 / 27

2nd Case: inexact operator and noisy data

Solve $A_0 x = y_0$ under the assumptions

- (i) noisy data $||y_0 y_\delta|| \le \delta$.
- (ii) inexact operator $\left\|A_0 A_{\boldsymbol{\epsilon}}\right\| \leq \epsilon$.

What have been done so far?

Linear case - based on TLS [Golub and Van Loan, 1980]:
R-TLS: Regularized TLS [Golub et al., 1999];
D-RTLS: Dual R-TLS [Lu et al., 2007].

■ *Nonlinear case*: no publication (?)

LS: y_{δ} and A_0

 $\begin{array}{ll} \text{minimize}_y & \left\| y - y_\delta \right\|_2 \\ \text{subject to} & y \in \mathscr{R}(A_0) \end{array}$

TLS: y_{δ} and A_{ϵ}

minimize subject to $egin{aligned} A, y &= [A_{\epsilon}, y_{\delta}] \ y \in \mathscr{R}(A) \end{aligned}$

2nd Case: inexact operator and noisy data

Solve $A_0 x = y_0$ under the assumptions

- (i) noisy data $||y_0 y_\delta|| \le \delta$.
- (ii) inexact operator $\left\|A_0 A_{\epsilon}\right\| \leq \epsilon$.

What have been done so far?

Linear case - based on TLS [Golub and Van Loan, 1980]:

R-TLS: Regularized TLS [Golub et al., 1999];

■ **D-RTLS**: Dual R-TLS [Lu et al., 2007].

■ *Nonlinear case*: no publication (?)

LS: y_{δ} and A_0

$\operatorname{minimize}_y$	$\ y-y_{\delta}\ _2$
subject to	$y \in \mathscr{R}(A_0)$

TLS: y_{δ} and A_{ϵ}

0.0	<u> </u>
minimize	$\left\ [A, y] - [A_{\epsilon}, y_{\delta}] \right\ _{F}$
subject to	$y \in \mathscr{R}(A)$

Illustration

Solve 1D problem: am = b, find the slope m.

Given:

1. b_{δ} , a_{ϵ} (red)

Solution:

- 1. LS solution (blue)
- 2. TLS solution (green)

Example: $\arctan(1) = 45^{\circ}$ [Van Huffel and Vandewalle, 1991]

Bleyer, Ramlau	JKU Linz	8 / 27

R-TLS

The R-TLS method [Golub, Hansen, and O'leary, 1999]

minimize
$$||A - A_{\epsilon}||^{2} + ||y - y_{\delta}||^{2}$$

subject to $\begin{cases} Ax = y \\ ||Lx||^{2} \leq M. \end{cases}$

If the inequality constraint is active, then
$$(A_{\epsilon}^{T}A_{\epsilon} + \alpha L^{T}L + \beta I)\hat{x} = A_{\epsilon}^{T}y_{\delta} \text{ and } ||L\hat{x}|| = M$$
with $\alpha = \mu(1 + ||\hat{x}||^{2}), \ \beta = -\frac{||A_{\epsilon}\hat{x} - y_{\delta}||^{2}}{1 + ||\hat{x}||^{2}} \text{ and } \mu > 0 \text{ is the Lagrange}$
multiplier.

Difficulty: requires a reliable bound M for the norm $\left\|Lx^{\dagger}\right\|^{2}$.

Bleyer, Ramlau

Overview

Introduction

Proposed method: DBL-RTLS

Computational aspects

Numerical illustration

Outline and future work

Consider the operator equation

 $B(k,f) = g_0$

where B is a bilinear operator (nonlinear)

and B is characterized by a function k_0 .

• $K \cdot = B(\tilde{k}, \cdot)$ compact linear operator for a fixed $\tilde{k} \in \mathcal{U}$ • $F \cdot = B(\cdot, \tilde{f})$ linear operator for a fixed $\tilde{f} \in \mathcal{V}$

$$\|B(k_0, \cdot)\|_{\mathcal{V} \to \mathcal{H}} \leq C \|k_0\|_{\mathcal{U}}; \|B(k, f)\|_{\mathcal{H}} \leq C \|k\|_{\mathcal{U}} \|f\|_{\mathcal{V}};$$

Example:

$$B(k,f)(s) := \int_{\Omega} k(s,t)f(t)dt \,.$$

Bleyer,	Ramlau
---------	--------

Consider the operator equation

 $B(k,f) = g_0$

where B is a bilinear operator (nonlinear)

and B is characterized by a function k_0 .

• $K \cdot = B(\tilde{k}, \cdot)$ compact linear operator for a fixed $\tilde{k} \in \mathcal{U}$ • $F \cdot = B(\cdot, \tilde{f})$ linear operator for a fixed $\tilde{f} \in \mathcal{V}$

Example:

$$B(k,f)(s) := \int_{\Omega} k(s,t)f(t)dt \,.$$

Dicycr, rtannaa	Bleyer,	Ramlau
-----------------	---------	--------

We want to solve

 $B(k_0, f) = g_0$

out of the measurements k_ϵ and g_δ with

- (i) noisy data $\left\|g_0 g_\delta\right\|_{\mathcal{H}} \leq \delta$.
- (ii) inexact operator $\left\|k_0 k_{\epsilon}\right\|_{\mathfrak{U}} \leq \epsilon$.

We introduce the DBL-RTLS

$$\underset{k,f}{\text{minimize }} J\left(k,f\right) := T(k,f, \textbf{k}_{\boldsymbol{\epsilon}}, g_{\boldsymbol{\delta}}) + R(k,f)$$

where

- *T* measures of accuracy (closeness/discrepancy)
- \blacksquare *R* promotes stability.

Bleyer,	Ramlau
---------	--------

DBL-RTLS

$$\underset{k,f}{\text{minimize } J(k,f) := T(k,f,\boldsymbol{k_{\epsilon}},g_{\delta}) + R(k,f)$$
(1)

where

$$T(k, f, \mathbf{k}_{\epsilon}, g_{\delta}) = \frac{1}{2} \left\| B(k, f) - g_{\delta} \right\|_{\mathcal{H}}^{2} + \frac{\gamma}{2} \left\| k - \mathbf{k}_{\epsilon} \right\|_{\mathcal{U}}^{2}$$
$$R(k, f) = \frac{\alpha}{2} \left\| Lf \right\|_{\mathcal{V}}^{2} + \beta \mathcal{R}(k)$$

- T is based on TLS method, measures the discrepancy on both data and operator;
- $L: \mathcal{V} \to \mathcal{V}$ is a linear bounded operator;
- α , β are the regularization parameters and γ is a scaling parameter;
- double regularization [You and Kaveh, 1996],

 $\mathcal{R}: U \to [0, +\infty]$ is proper **convex** function and **w-lsc**.

Main theoretical results

Assumption:

(A1) B is strongly continuous, ie, if $(k^n,f^n)\rightharpoonup (\bar{k},\bar{f})$ then $B(k^n,f^n)\rightarrow B(\bar{k},\bar{f})$

Proposition

Let J be the functional defined on (1) and L be a **bounded** and **positive** operator. Then J is **positive**, weak lower semi-continuous and coercive functional.

Theorem (existence)

Let the assumptions of Proposition 1 hold. Then there exists a **global minimum** of

minimize J(k, f).

Bleyer, I	Ramlau
-----------	--------

Theorem (stability) \bullet $\delta_i \rightarrow \delta$ and $\epsilon_i \rightarrow \epsilon$ $\blacksquare g_{\delta_i} \to g_{\delta}$ and $k_{\epsilon_i} \to k_{\epsilon}$ $\ \ \, \alpha,\beta>0$ • (k^j, f^j) is a minimizer of J with g_{δ_i} and k_{ϵ_i} Then there exists a convergent subsequence of $(k^j, f^j)_i$ $(k^{j_m}, f^{j_m}) \longrightarrow (\bar{k}, \bar{f})$ where (\bar{k}, \bar{f}) is a minimizer of J with $g_{\delta}, k_{\epsilon}, \alpha$ and β .

Bleyer,	Ramlau
---------	--------

Consider the convex functional

$$\Phi(k,f) := \frac{1}{2} \left\| Lf \right\|^2 + \eta \Re(k)$$

where the parameter η represents the different scaling of f and k.

For convergence results we need to define

Definition

We call $(k^{\dagger}, f^{\dagger})$ a Φ -minimizing solution if

$$(k^{\dagger}, f^{\dagger}) = \operatorname*{arg\,min}_{(k,f)} \{ \Phi(k,f) \mid B(k,f) = g_0 \}.$$

Bleyer,	Ramlau
---------	--------

Theorem (convergence)

$$\begin{split} & \delta_j \to 0 \text{ and } \epsilon_j \to 0 \\ & = \left\| g_{\delta_j} - g_0 \right\| \leq \delta_j \text{ and } \left\| k_{\epsilon_j} - k_0 \right\| \leq \epsilon_j \\ & = \alpha_j = \alpha(\epsilon_j, \delta_j) \text{ and } \beta_j = \beta(\epsilon_j, \delta_j), \text{ s.t. } \alpha_j \to 0, \ \beta_j \to 0, \\ & \lim_{j \to \infty} \frac{\delta_j^2 + \gamma \epsilon_j^2}{\alpha_j} = 0 \quad \text{and} \quad \lim_{j \to \infty} \frac{\beta_j}{\alpha_j} = \eta \\ & = (k^j, f^j) \text{ is a minimizer of } J \text{ with } g_{\delta_j}, \ k_{\epsilon_j}, \ \alpha_j \text{ and } \beta_j \\ & \text{Then there exists } a \text{ convergent subsequence of } (k^j, f^j)_j \\ & (k^{j_m}, f^{j_m}) \longrightarrow (k^{\dagger}, f^{\dagger}) \end{split}$$

where $(k^{\dagger}, f^{\dagger})$ is a Φ -minimizing solution.

Bleyer, Ramlau	JKU Linz	16 / 27

Theorem (convergence)

$$\begin{split} & \delta_j \to 0 \text{ and } \epsilon_j \to 0 \\ & = \left\| g_{\delta_j} - g_0 \right\| \leq \delta_j \text{ and } \left\| k_{\epsilon_j} - k_0 \right\| \leq \epsilon_j \\ & = \alpha_j = \alpha(\epsilon_j, \delta_j) \text{ and } \beta_j = \beta(\epsilon_j, \delta_j), \text{ s.t. } \alpha_j \to 0, \beta_j \to 0, \\ & \lim_{j \to \infty} \frac{\delta_j^2 + \gamma \epsilon_j^2}{\alpha_j} = 0 \quad \text{and} \quad \lim_{j \to \infty} \frac{\beta_j}{\alpha_j} = \eta \\ & = (k^j, f^j) \text{ is a minimizer of } J \text{ with } g_{\delta_j}, k_{\epsilon_j}, \alpha_j \text{ and } \beta_j \\ & \text{Then there exists a convergent subsequence of } (k^j, f^j)_j \\ & (k^{jm}, f^{jm}) \longrightarrow (k^{\dagger}, f^{\dagger}) \end{split}$$

where $(k^{\dagger}, f^{\dagger})$ is a Φ -minimizing solution.

Bleyer,	Ramlau	
---------	--------	--

Overview

Introduction

Proposed method: DBL-RTLS

Computational aspects

- Numerical illustration
- Outline and future work

Optimality condition

If the pair (\bar{k}, \bar{f}) is a minimizer of J(k, f), then $(0, 0) \in \partial J(\bar{k}, \bar{f})$.

Theorem

Let $J: \mathfrak{U} \times \mathcal{V} \to \mathbb{R}$ be the functional

$$J(u,v) = \varphi(u) + Q(u,v) + \psi(v)$$

where Q is a nonlinear differentiable term and φ, ψ are lsc convex functions. Then

$$\begin{array}{lll} \partial J(u,v) &=& \{\partial \varphi \left(u \right) + D_u Q(u,v)\} \times \{\partial \psi \left(v \right) + D_v Q(u,v)\} \\ &=& \{\partial_u J(u,v)\} \times \{\partial_v J(u,v)\} \end{array}$$

Remark:

- is difficult to solve wrt both (k, f)
- \blacksquare J is bilinear and biconvex (linear and convex to each one)
- applied alternating minimization method.

```
Alternating minimization algorithm

Require: g_{\delta}, k_{\epsilon}, L, \gamma, \alpha, \beta

1: n = 0

2: repeat

3: f^{n+1} \in \arg\min_{f} J(k, f|k^{n})

4: k^{n+1} \in \arg\min_{k} J(k, f|f^{n+1})

5: until convergence
```

Blever.	Ramlau
Dicyci,	rtannau

Remark:

- is difficult to solve wrt both (k, f)
- \blacksquare J is bilinear and biconvex (linear and convex to each one)
- applied alternating minimization method.

Alternating minimization algorithm

```
Require: g_{\delta}, k_{\epsilon}, L, \gamma, \alpha, \beta
```

```
1: n = 0
```

- 2: repeat
- 3: $f^{n+1} \in \operatorname{arg\,min}_f J(k, f|k^n)$
- 4: $k^{n+1} \in \operatorname{arg\,min}_k J(k, f|f^{n+1})$
- 5: until convergence

Proposition

The sequence generated by the function $J(k^n, f^n)$ is non-increasing,

$$J(k^{n+1}, f^{n+1}) \le J(k^n, f^{n+1}) \le J(k^n, f^n).$$

Assumptions:

(A1) B is strongly continuous, ie., if $(k^n, f^n) \rightarrow (\bar{k}, \bar{f})$ then $B(k^n, f^n) \rightarrow B(\bar{k}, \bar{f})$

(A2) *B* is weakly sequentially closed, i.e., if $(k^n, f^n) \rightarrow (\bar{k}, \bar{f})$ and $B(k^n, f^n) \rightarrow g$ then $B(\bar{k}, \bar{f}) = g$

(A3) the adjoint of B' is strongly continuous, ie., if $(k^n, f^n) \rightarrow (\bar{k}, \bar{f})$ then $B'(k^n, f^n)^* z \rightarrow B'(\bar{k}, \bar{f})^* z$, $\forall z \in \mathscr{D}(B')$

Bleyer,	Ramlau

Proposition

The sequence generated by the function $J(k^n, f^n)$ is non-increasing,

$$J(k^{n+1}, f^{n+1}) \le J(k^n, f^{n+1}) \le J(k^n, f^n).$$

Assumptions:

- (A1) B is strongly continuous, ie., if $(k^n, f^n) \rightarrow (\bar{k}, \bar{f})$ then $B(k^n, f^n) \rightarrow B(\bar{k}, \bar{f})$
- (A2) B is weakly sequentially closed, i.e., if $(k^n, f^n) \rightharpoonup (\bar{k}, \bar{f})$ and $B(k^n, f^n) \rightharpoonup g$ then $B(\bar{k}, \bar{f}) = g$
- (A3) the adjoint of B' is strongly continuous, i.e., if $\begin{array}{c} (k^n,f^n) \rightharpoonup (\bar{k},\bar{f}) \text{ then } B'(k^n,f^n)^*z \rightarrow B'(\bar{k},\bar{f})^*z, \\ \forall z \in \mathscr{D}(B') \end{array}$

Theorem

Given regularization parameters $0 < \underline{\alpha} \leq \alpha$ and β , compute AM algorithm. The sequence $\{(k^{n+1}, f^{n+1})\}_{n+1}$ has a weakly convergent subsequence, namely $(k^{n_j+1}, f^{n_j+1}) \rightharpoonup (\bar{k}, \bar{f})$ and the limit has the property

 $J(\bar{k},\bar{f}) \leq J(\bar{k},f) \quad \text{ and } \quad J(\bar{k},\bar{f}) \leq J(k,\bar{f})$

for all $f \in \mathcal{V}$ and for all $k \in \mathcal{U}$.

Proposition

Let $\{(k^n, f^n)\}_n$ be a weakly convergent sequence generated by AM algorithm, where $k^n \rightarrow \bar{k}$ and $f^n \rightarrow \bar{f}$. Then there exists a subsequence $\{k^{n_j}\}_{n_j}$ such that $k^{n_j} \rightarrow \bar{k}$ and there exists $\{\xi_k^{n_j}\}_{n_j}$ with $\xi_k^{n_j} \in \partial_k J(k^{n_j}, f^{n_j})$ such that $\xi_k^{n_j} \rightarrow 0$.

Theorem

Given regularization parameters $0 < \underline{\alpha} \leq \alpha$ and β , compute AM algorithm. The sequence $\{(k^{n+1}, f^{n+1})\}_{n+1}$ has a weakly convergent subsequence, namely $(k^{n_j+1}, f^{n_j+1}) \rightharpoonup (\bar{k}, \bar{f})$ and the limit has the property

 $J(\bar{k},\bar{f}) \leq J(\bar{k},f) \quad \text{ and } \quad J(\bar{k},\bar{f}) \leq J(k,\bar{f})$

for all $f \in \mathcal{V}$ and for all $k \in \mathcal{U}$.

Proposition

Let $\{(k^n, f^n)\}_n$ be a weakly convergent sequence generated by AM algorithm, where $k^n \rightarrow \bar{k}$ and $f^n \rightarrow \bar{f}$. Then there exists a subsequence $\{k^{n_j}\}_{n_j}$ such that $k^{n_j} \rightarrow \bar{k}$ and there exists $\{\xi_k^{n_j}\}_{n_j}$ with $\xi_k^{n_j} \in \partial_k J(k^{n_j}, f^{n_j})$ such that $\xi_k^{n_j} \rightarrow 0$.

Proposition

Let $\{n\}$ be a subsequence of \mathbb{N} such that the sequence $\{(k^n, f^n)\}_n$ generated by AM algorithm satisfies $k^n \to \bar{k}$ and $f^n \to \bar{f}$. Then $f^{n_j} \to \bar{f}$ and there exists $\{\xi_f^{n_j}\}_{n_j}$ with $\xi_f^{n_j} \in \partial_f J(k^{n_j}, f^{n_j})$ such that $\xi_f^{n_j} \to 0$.

Remark: Graph of subdifferential mapping is sw-closed, i.e., if $v_n \to \bar{v}$ and $\xi_n \rightharpoonup \bar{\xi}$ with $\xi_n \in \partial \varphi(v_n)$, then $\bar{\xi} \in \partial \varphi(\bar{v})$.

Theorem

Let $\{(k^n, f^n)\}_n$ be the sequence generated by the AM algorithm, then there exists a subsequence converging towards to a critical point of J, ie.,

 $(0,0)\in\partial J\left(ar{k},ar{f}
ight).$

Proposition

Let $\{n\}$ be a subsequence of \mathbb{N} such that the sequence $\{(k^n, f^n)\}_n$ generated by AM algorithm satisfies $k^n \to \bar{k}$ and $f^n \to \bar{f}$. Then $f^{n_j} \to \bar{f}$ and there exists $\{\xi_f^{n_j}\}_{n_j}$ with $\xi_f^{n_j} \in \partial_f J(k^{n_j}, f^{n_j})$ such that $\xi_f^{n_j} \to 0$.

Remark: Graph of subdifferential mapping is sw-closed, i.e., if $v_n \to \bar{v}$ and $\xi_n \rightharpoonup \bar{\xi}$ with $\xi_n \in \partial \varphi(v_n)$, then $\bar{\xi} \in \partial \varphi(\bar{v})$.

Theorem

Let $\{(k^n, f^n)\}_n$ be the sequence generated by the AM algorithm, then there exists a subsequence converging towards to a critical point of J, ie.,

 $(0,0) \in \partial J\left(\bar{k},\bar{f}\right).$

Overview

Introduction

Proposed method: DBL-RTLS

Computational aspects

□ Numerical illustration

Outline and future work

Numerical illustration

First numerical result

Convolution in 1D

$$\int_{\Omega} k(s-t)f(t)dt = g(s)$$

- characteristic kernel and hat function;
- space: $\Omega = [0, 1]$, discretization: N = 2048 points;
- $\Re(k) = \left\|k\right\|_{w,p}$ with p = 1
- Haar wavelet for $\{\phi\}_{\lambda}$ and J = 10;
- initial guess: $k^0 = k_{\epsilon}$, $\tau = 1.0$;
 - 1st. relative error: 10% and 10%.
 - 2nd. relative error: 0.1% and 0.1%.

Bleyer, Ramlau	JKU Linz	23 / 27

Bleyer,	Ramlau	
---------	--------	--

Overview

Introduction

Proposed method: DBL-RTLS

Computational aspects

- Numerical illustration
- Outline and future work

Outline and future work

So far:

- introduced a method for nonlinear equation (bilinear operator) with noisy data and inexact operator;
- proved existence, stability and convergence;
- suggested an iterative implementation;
- proved convergence of AM algorithm to a critical point;

For further work:

- study of source conditions and convergence rates (k and f);
 study variational inequalities;
- how to choose the best regularization parameter?
- a priori and a posteriori choice;
- implementations and numerical experiments (2D);

Bleyer,	Ramlau
Dicyci,	rtannaa

Outline and future work

So far:

- introduced a method for nonlinear equation (bilinear operator) with noisy data and inexact operator;
- proved existence, stability and convergence;
- suggested an iterative implementation;
- proved convergence of AM algorithm to a critical point;

For further work:

- study of source conditions and convergence rates (k and f);
- study variational inequalities;
- how to choose the best regularization parameter?
- a priori and a posteriori choice;
- implementations and numerical experiments (2D);

- M. Burger and S. Osher. Convergence rates of convex variational regularization. Inverse Problems, 20(5): 1411–1421, 2004. ISSN 0266-5611. doi: 10.1088/0266-5611/20/5/005. URL http://dx.doi.org/10.1088/0266-5611/20/5/005.
- H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht, 2000.
- G. H. Golub and C. F. Van Loan. An analysis of the total least squares problem. SIAM J. Numer. Anal., 17(6): 883–893, 1980. ISSN 0036-1429.
- G. H. Golub, P. C. Hansen, and D. P. O'leary. Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl, 21:185–194, 1999.
- S. Lu, S. V. Pereverzev, and U. Tautenhahn. Regularized total least squares: computational aspects and error bounds. Technical Report 30, Ricam, Linz, Austria, 2007. URL http://www.ricam.oeaw.ac.at/publications/reports/07/rep07-30.pdf.
- D. L. Phillips. A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach., 9:84–97, 1962. ISSN 0004-5411.
- E. Resmerita. Regularization of ill-posed problems in Banach spaces: convergence rates. Inverse Problems, 21(4): 1303–1314, 2005. ISSN 0266-5611. doi: 10.1088/0266-5611/21/4/007. URL http://dx.doi.org/10.1088/0266-5611/21/4/007.
- A. N. Tikhonov. On the solution of incorrectly put problems and the regularisation method. In Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963), pages 261–265. Acad. Sci. USSR Siberian Branch, Moscow, 1963.
- S. Van Huffel and J. Vandewalle. The total least squares problem, volume 9 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. ISBN 0-89871-275-0. Computational aspects and analysis, With a foreword by Gene H. Golub.
- Y.-L. You and M. Kaveh. A regularization approach to joint blur identification and image restoration. Image Processing, IEEE Transactions on, 5(3):416 –428, mar 1996. ISSN 1057-7149.

Thank you for your kind attention!

Bleyer, Ramlau	JKU Linz

27 / 27