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1 Problem statement

Problem Restatement: The problem is equal to ”Is there a group with order less than 90
that can realize < 6, 6, 6 > TPP property and have multiplication rank less than 161?[1]”.

2 Method to solve it

Since the search space is too large, my main thinking is to reduce the search space by lots of
necessary conditions.

2.1 necessary conditions and how they reduce the search space

For a finite group G, let T(G) be the number of irreducible complex characters of G and b(G)
the largest degree of an irreducible character of G.

Theorem 2.1 ([2). ,Theorem 6 and Remark 2] Let G be a group.
(1)If b(G) = 1,then R(G) = |G|.
(2)If b(G) = 2, then R(G) = 2|G| − T (G).
(3)If b(G) ≥ 3,then R(G) ≥ 2|G|+ b(G)− T (G)− 1.

Definition 1 (Triple Product Property). We say that the nonempty subsets S,T and U of a
group G satisfy the Triple Product Property(TPP) if for s ∈ Q(S), t ∈ Q(T ) and u ∈ Q(U),
stu=1 holds if and only if s=t=u=1. If this holds,we say the the group G realizes < |S|, |T |, |U | >
via S,T,U.

Definition 2. Let β(G) be the maximum of n*m*p, where G realizes < n,m, p >.

Theorem 2.2. For an abelian group, ω = 3.

Proof. If G is abelian and non-trivial(|G| 6= 1), then b(G)=1 and from Theorem 1 we have:
R(G) = |G|. And from page 3 of [3],we know that R(n,m, p) ≤ R(G). So β(G) ≤ R(G) = |G|.
From Theorem 1.7. in [3], we have ω ≤ 3.

Remark 2.1. Then Since we are looking for non-trivial solutions for ω, now we only need to
consider non-abelian groups.
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Lemma 2.1. (abelian judgements)
(1)If |G| is a prime then G is abelian.
(2)If |G| = pq, where p and q are primes,p¡q, if q 6≡ 1modp, then G is abelian.
(3)If |G| = pq2, p and q are two distinct primes and p doesn’t divide —Aut(G)—, then G is
abelian.
(4)If |G| = pqr, p, q and r are three distinct primes and q¡r, r 6≡ 1(modq), qr ¡p, p 6≡ 1(modr),
p 6≡ 1(modq), then G is abelian.

Theorem 2.3. ([3]) If G is non-abelian, then T (G) ≤ (5/8)|G|.Equality implies that |G :
Z(G)| = 4.

Remark 2.2. Then if we combine Theorem 2 and Theorem 3, we have:
R(G) ≥ 2|G| − T (G) ≥ (11/8)|G|.
Since we want R(G) ≤ 161, then we have:
(11/8)|G| < 161
|G| ≤ 117.

Definition 3. (C1 candidates,similar but not quite the same to [3],Definition 3.2) A group G
that realizes < 6, 6, 6 > and satisfies R[G] < 161 will be called C1 candidate.

Theorem 2.4. ([4],Observation 3.1) Let (s,t,u) be the parameters of a TPP triple in G. Then
s(t+ u− 1) ≤ |G|, t(s+ u− 1) ≤ |G| and u(s+ t− 1) ≤ |G|.

Proposition 1. If G is a C1 candidate, then 66 ≤ |G| ≤ 117.

Proof. From the theorem above, we have |G| ≥ 6 ∗ (6 ∗ 6 − 1) = 66. Consider Theorem 1 and
Theorem 4 above, we have R(G) ≥ 2|G| − T (G) ≥ (11/8)|G|. And R[G] < 161, then we have
|G| ≤ 117.

Remark 2.3 (GAP experiment). After the ”abelian judgement (1),(2) and (4)” stated above,
if G is a C1 candidate, then |G| ∈ {66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 93,
94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 116, 117}.

Definition 4. ([5],Definition 3.4) Let G be a group with a TPP triple (S,T,U), and suppose H
is a subgroup of index 2 in G. We define S0 = S ∩ H,T0 = T ∩ H,U0 = U ∩ H, S1 = S \ H,
T1 = T \H and U1 = U \H.

Lemma 2.2. Suppose G realizes < 6, 6, 6 >. If G has a subgroup H of index 2, then H realizes
< 3, 3, 3 >.

Proof. Suppose G realizes < 6, 6, 6 > with the TPP triple (S,T,U). If |S0| < |S1|,then for any
a ∈ S1, replace S by Sa−1. This will have the effect of interchanging S0 and S1. Hence we may
assume that |S0| ≥ |S1|,|T0| ≥ |T1| and |U0| ≥ |U1|. Now (S0, T0, U0) is a TPP triple of H, and
since each of S0,T0 and U0 has at least 3 elements, then H realizes < 3, 3, 3 >.

Lemma 2.3. ([3],Lemma 3.6) Suppose G has a TPP triple (S,T,U). Let H be an abelian subgroup
of index 2 in G. Then the following hold.
a)|S−1

0 T0U0| = |S0||T0||U0|;
b)|S−1

1 T1U0| ≥ |S1||T1|;
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c)|S−1
1 U1| = |S1||U1|;

d)S−1
0 T0U0 ∩ S−1

1 T1U0 = ∅;
e)S−1

0 T0U0 ∩ S−1
1 U1T0 = ∅;

f)S−1
1 T1U0 ∩ S−1

1 U1T0 = ∅.

Lemma 2.4. If G realizes < 6, 6, 6 > and |G| < 90,then G has no abelian subgroups of index 2.

Proof. Suppose G has an abelian subgroup H of index 2 and realizes < 6, 6, 6 > via the TPP
triple (S,T,U). Define S0, T0, U0, S1, T1, U1 as before. Then, as proved above, we may assume
|S0| ≥ 3, |T0| ≥ 3 and |U0| ≥ 3. Without loss of generality we may assume that |S0| ≥ |T0| and
|S0| ≥ |U0|.Now since |G| ≤ 95, then |H| ≤ 47. From the last lemma, we have
47 ≥ |H| ≥ |S−1

0 T0U0 ∪ S−1
1 U1T0 ∪ S−1

1 T1U0|

= |S0||T0||U0|+ |S−1
1 U1T0|+ |S−1

1 T1U0| (3)
≥ |S0||T0||U0|+ |S1||U1|+ |S1||T1|. (4)
If |U0| ≥ 4, then |H| ≥ 64,contradiction.So |U0| = 3:
(a)|U0| = 3 = |T0| = |S0|,then from (4)we have: |H| ≥ 45,contradiction.

(b)|U0| = 3 = |T0|,|S0| = 4,then from (4) we have:|H| ≥ 48,contradiction.

(c)|U0| = 3,|T0| = |S0| = 4,then from (4) we have |H| ≥ 58,contradiction.

(d)|U0| = 3 = |T0|,|S0| = 5,then from (4) we have |H| ≥ 51,contradiction.

(e)|U0| = 3,|T0| = 4,|S0| = 5,then from (4) we have |H| ≥ 65,contradiction.

(f)|U0| = 3,|T0| = |S0| = 5, then from (4) we have |H| ≥ 79,contradiction.

(g)|U0| = 3 = |T0|,|S0| = 6,then from (4) we have |H| ≥ 54,contradiction.

(h)|U0| = 3, |T0| = 4, |S0| = 6,then from (4) we have |H| ≥ 72, contradiction.

(i)|U0| = 3, |T0| = 5, |S0| = 6,then from (4) we have |H| ≥ 90,contradiction.

(j)|U0| = 3, |T0| = |S0| = 6,then from (4) we have |H| ≥ 108,contradiction.

Remark 2.4. Up to now,among groups of order ≤ 89, we have these 56 left for C1 candidates:
(68,3),(72,3),(72,15),(72,16),(72,19),(72,20),(72,21),(72,22),(72,23),(72,24),(72,25),
(72,39),(72,40),(72,41),(72,42),(72,43),(72,44),(72,45),(72,46),(72,47),(75,2),(78,1),
(78,2),(80,3),(80,15),(80,18),(80,28),(80,29),(80,30),(80,31),(80,32),(80,33),(80,34),
(80,39),(80,40),(80,41),(80,42),(80,49),(80,50),(81,3),(81,4),(81,6),(81,7),(81,8),
(81,9),(81,10),(81,12),(81,13),(81,14),(84,1),(84,2),(84,7),(84,8),(84,9),(84,10),(84,11).

Theorem 2.5. ([5],Theorem 1.8) Suppose G realizes < n,m, p > and the character degrees of
G are {di}. Then
(nmp)ω/3 ≤

∑
dωi .
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Proposition 2. The above theorem yields a nontrivial bound on ω if and only if
(nmp)ω/3 ≥

∑
dωi .

Remark 2.5. Since we are using the inequality stated in the proposition, in order to make ω
nontrivial, we need to search for groups has

∑
dωi < 216.

Remark 2.6. (GAP experiment) So up to now,with the help of GAP experiment,we have these
18 groups(listed in their GAP ID)
left as C1 candidates when its order < 90:(72,3),(72,16),(72,20),(72,21),(72,22),(72,23),(72,24),
(72,25),(72,42),(72,46),(72,47),(81,3),(81,4),(81,6),(81,12),(81,13),(81,14),(84,10).
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