A calculus for monomials in Chow group of zero cycles in the moduli space of stable curves of genus zero

Jiayue Qi ${ }^{1}$
Research Institute for Symbolic Computation
CASC 2022, Gebze, Turkey

Doctoral Program
Computational Mathematics
Numerical Analysis and Symbolic Computation

JOHANNES KEPLER UNIVERSITY LINZ

Der Wissenschaftsfonds.
${ }^{1}$ This research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK9.

basic setting

- Let $n \in \mathbb{N}, n \geq 3$, we call $N:=\{1, \ldots, n\}$ the labeling set and elements of N labels.
- A bipartition $\{I, J\}$ of N where the cardinalities of I and J are both at least 2 is called a cut (of M_{n}). And I, J are called two parts of the cut $\{I, J\}$.
- This talk focus on the Chow ring of M_{n}, where M_{n} is the moduli space of n-marked stable curves of genus zero.
- For each bipartition $\{I, J\}$, there exists a codimension one hypersurface $D_{I, J} \subset M_{n}$. Denote by $\delta_{I, J}$ the class of $D_{I, J}$.
- However, we will not focus on the details of M_{n} in this talk, what is important here is the properties of this Chow ring.
- We denote the Chow ring of M_{n} as $A^{*}(n)$.

ambient ring

- It is a graded ring with $n-2$ homogeneous pieces $A^{*}(n)=\bigoplus_{k=0}^{n-3} A^{k}(n)$; the homogeneous component $A^{r}(n)$ is the Chow group of rank r.
- Fact 1: $A^{r}(n)=\{0\}$ for $r>n-3$.
- Fact 2: $A^{n-3}(n) \cong \mathbb{Z}$, we denote this isomorphism as $\int: A^{n-3}(n) \longrightarrow \mathbb{Z}$; we call the image under this map the integral value of the given monomial.
- $\left\{\delta_{I, J} \mid\{I, J\}\right.$ is a cut $\}$ is a set of generators for $A^{1}(n)$; they are also generators for $A^{*}(n)$, when viewed as ring generators. The product $\prod_{i=1}^{n-3} \delta_{l_{i}, J_{i}}$ is an element in $A^{n-3}(n)$.
- Goal: calculate the integral value of this monomial, i.e., $\int\left(\prod_{i=1}^{n-3} \delta_{l_{i}, J_{i}}\right)$.

motivation

- This calculus shows up as a subproblem when we want to improve an algorithm for realization-counting of Laman graphs on the sphere.
- With the help of this integral value calculus, we invent another algorithm for the same goal.
- However, by efficiency it does not seem faster or better than the existing one.
- But we see that this problem is fundamental, standing on its own, and may be helpful for other problems in the future.
- Then we focus on it, and formalize it as a self-contained result.

Keel's quadratic relation

Among the generators of $A^{*}(n)$, we say the two generators $\delta_{l_{1}, J_{1}}, \delta_{l_{2}, J_{2}}$ fulfill Keel's quadratic relation if the following conditions hold:

- $I_{1} \cap I_{2} \neq \emptyset$;
- $I_{1} \cap J_{2} \neq \emptyset$;
- $J_{1} \cap I_{2} \neq \emptyset$;
- $J_{1} \cap J_{2} \neq \emptyset$.

And when they are fulfilled, we have $\delta_{l_{1}, J_{1}} \cdot \delta_{l_{2}, J_{2}}=0$. In this case, the ambient varieties have empty intersection.

- An easy example: when $n=5, \delta_{12,345} \cdot \delta_{13,245}=0$ but $\delta_{12,345}$ and $\delta_{123,45}$ does not fulfill this relation.

Keel's quadratic relation

- Inspired by this property, we know that if any two factors of the monomial fulfills this relation, the whole integral will be zero.
- Now we only need to focus on those monomials where no two factors fulfill this quadratic relation, we call those monomials tree monomials.
- Since there is a one-to-one correspondence between these monomials and a type of tree, which we define as loaded tree.

loaded tree

A loaded tree with n labels and k edges is a tree (V, E, h, m), where h denotes the labeling function from V to the power set of N and m denotes the multiplicity function for edges. The following conditions must hold:

- Non-empty labels $\{h(v)\}_{v \in V}$ form a partition of N;
- Number of edges is k, edges are counted with multiplicity, i.e., $\sum_{e \in E} m(e)=k ;$
- $\operatorname{deg}(v)+|h(v)| \geq 3$ holds for every $v \in V$.

This loaded tree would correspond to a monomial in $A^{k}(n)$. In the classic notation, this concept coincides with the dual tree of an element in the moduli space M_{n}, but allowing multiple edges.

loaded tree: examples

Figure: This is a loaded tree with 5 labels and 2 edges.

Figure: This is a loaded tree with 6 labels and 3 edges.

monomial of a given tree

- We define the monomial of a given loaded tree as follows:
- Remove an edge e, we collect the labels in the two connected components respectively to form I and J. And we say $\{I, J\}$ is the corresponding cut for the edge e.
- The monomial of this given loaded tree (V, E, h, m) is $\prod_{e \in E}^{m(e)} \delta_{I, J}$, where $\{I, J\}$ is the corresponding cut of edge e, and $m(e)$ is the multiplicity of e.
- We can see that it is well-defined and each loaded tree has a unique monomial representation.

monomial of a given tree

Figure: This is a loaded tree with 5 labels and 2 edges. Its corresponding monomial: $\delta_{12,345} \cdot \delta_{123,45}$.

Figure: This is a loaded tree with 6 labels and 3 edges. Its corresponding monomial: $\delta_{34,1256} \cdot \delta_{12,3456} \cdot \delta_{56,1234}$.

one-to-one correspondence

Theorem

There is a one to one correspondence between tree monomials $T=\prod_{i=1}^{m} \delta_{l_{i}, J_{i}}(1 \leq m \leq n-3)$ and loaded trees with n labels and m edges.

We also have an algorithm converting the monomial to tree, we call it tree algorithm.

tree algorithm

- Input: a tree monomial M in $A^{k}(n)$
- Output: a loaded tree with n labels and k edges
- Step 1: collect all cuts in each factor of the monomial in set C.
- Step 2: collect all parts of those cuts in set P.
- Step 3: pick any cut from set C, say $c=(I, J) \in C$.
- Step 4: go through all elements in P, find those that is either a subset of I or a subset of J, collect them together in set P_{1}.
- Step 5: create a Hasse diagram H of elements in P_{1} w.r.t. set containment order.
- Step 6: consider H as a graph (V, E). Each element in P_{1} has a corresponding vertex in H. We denote the vertex v_{l} for $l \in P_{1}$.

tree algorithm

- Step 7: For each vertex v of H, define the labeling set $h(v)$ as its corresponding element in P_{1}.
- Step 8: Go through the vertices again, update the labeling function: $h(v):=h(v) \backslash h\left(v_{1}\right)$ if v_{1} is less than v in H (in the Hasse diagram relation).
- Step 9: $E=E \cup\left\{v_{l}, v_{J}\right\}$. This edge corresponds to the cut we pick in Step 3.
- Step 10: set the multiplicity value $m(e)$ for each edge e as the power of its corresponding factor in M.
- Step 11: return $H=(V, E, h, m)$.

tree algorithm: an example

Example

- Given a tree monomial (in $A^{6}(9)$) $\delta_{123,456789}^{3} \cdot \delta_{12345,6789} \cdot \delta_{1234589,67} \cdot \delta_{1234567,89}$.
- Then we obtain the labeling set $N:=\{1,2,3,4,5,6,7,8,9\}$.
- We collect the parts to set
$P:=\{123,456789,12345,6789,1234589,67,1234567,89\}$ and we pick any cut $c=\{12345,6789\}$.
- Then we collect together all parts which are either contained in 12345 or 6789 , we obtain the set $P_{1}=\{12345,6789,123,67,89\}$.
- Note that for convenience, we simplify the set notation sometimes. For instance, by 123 we mean the set $\{1,2,3\}$.
- Then we construct the corresponding Hasse diagram H for the set P_{1}, see the figure below.

tree algorithm: an example

Figure: This is the Hasse diagram of set $\{12345,6789,123,67,89\}$ with respect to set containment order.

- Now, we still need to update the labeling function for each vertex. $h(v):=h(v) \backslash h\left(v_{1}\right)$ if v_{1} is less than v in H (in the Hasse diagram relation).
- Another mission is to attach edge multiplicity to each edge, simply by copying the power of the corresponding factor in M.

tree algorithm: an example

Example

- The corresponding loaded tree see the figure below.
- It is easy to see that if we go back from the tree constructing monomial, we get the same one as the given one.

Figure: This is the corresponding loaded tree of monomial $\delta_{123,456789}^{3} \cdot \delta_{12345,6789} \cdot \delta_{1234589,67} \cdot \delta_{1234567,89}$. Multiplicity function values are written in blue.

the calculus (first half)

- Input: $M:=\prod_{i=1}^{n-3} \delta_{l_{i}, J_{i}}$. (any monomial in $A^{n-3}(n)$)
- Output: the integral value of the given monomial, $\int\left(\prod_{i=1}^{n-3} \delta_{l_{i}, J_{i}}\right)$, which is an integer.
- Step 1: Check if any two factors of M fulfill Keel's quadratic relation. If yes, return 0, terminate the process. Otherwise, continue. This step is in the worst case quadratic in n.
- Step 2: Apply tree algorithm to the monomial, transfer it to a loaded tree (with n labels and $n-3$ edges). As far as I know, constructing a Hasse diagram is at most quadratic.

Hence, the first part of our calculus is at most quadratic in n.

the calculus - second half

- Input: a loaded tree $L T$ with n labels and $n-3$ edges.
- Output: the integral value of its corresponding monomial, which is an integer.
- This half mainly contains two parts, one for the absolute value and one for the sign.
- We will show it with a running example.

weighted tree

- Given a loaded tree $L T=(V, E, h, m)$.
- We define its corresponding weighted tree $W T=(V, E, w)$ by attaching a weight function to each vertex and edge.
- $w(e):=m(e)-1$ and $w(v):=\operatorname{deg}(v)+|h(v)|-3$.
- Assume $W T=(V, E, w)$ is a weighted tree of some loaded tree with n labels and $n-3$ edges, then we can verify the following identity about the weight function w.
- $\sum_{v \in V} w(v)=\sum_{e \in E} w(e)$.

weight identity

$$
\begin{aligned}
\sum_{v \in V} w(v) & =\sum_{v \in V}(\operatorname{deg}(v)+|h(v)|-3) \\
& =\sum_{v \in V} \operatorname{deg}(v)+\sum_{v \in V}|h(v)|-3 \cdot|V| \\
& =2 \cdot|E|+n-3 \cdot|V| \\
& =2 \cdot|E|+n-3 \cdot|E|-3 \\
& =n-3-|E| \\
\sum_{e \in E} w(e) & =\sum_{e \in E}(m(e)-1) \\
& =\sum_{e \in E} m(e)-|E| \\
& =n-3-|E|
\end{aligned}
$$

the calculus - second half: running example

Figure: This is a loaded tree $L T$ with 14 labels and 11 edges.

- Step 1: Transfer it to a weighted tree.
- Recall: $w(e):=m(e)-1$ and $w(v):=\operatorname{deg}(v)+|h(v)|-3$.

running example: weighted tree

Figure: This is the weighted tree $W T$ of the loaded tree $L T$, where the weights of vertices and edges are tagged in red.

Step 2: Compute the sign, which is $(-1)^{S}$. Here S denotes the weight sum of vertices (or equivalently, of edges) of $W T$.

running example: sign

Figure: This is the weighted tree of the loaded tree $L T$, where the weights of vertices and edges are tagged in red.

Sum of vertex weight $S=1+4+1+0+1=7$, so the sign of the monomial value is $(-1)^{7}=-1$.

redundancy tree

- Step 3: Replace each edge by a length-two edge with a new vertex connecting them which has the same weight as the replaced edge.
- Then we obtain the redundancy tree $R T$ (of loaded tree $L T$).

running example: redundancy tree

Figure: This is the redundancy tree $R T$ of loaded tree $L T$, the weights of vertices are tagged in red.

Step 4: Omit those vertices with weight zero and their adjacent edges, we obtain the redundancy forest of $L T$.

running example: redundancy forest

Figure: This is the redundancy forest $R F$ of loaded tree $L T$, which contains two trees and the weight of vertices of are tagged in red.

Step 5: Apply a recursive algorithm to the redundancy forest, obtaining the absolute value (of the integral value).

recursive algorithm?

- Let $R F=(V, E, w)$ be the redundancy forest of a loaded tree $L T$.
- We define the value of $R F$ as the following:
- Pick any leaf of this forest, say $I \in V$, denote the unique parent of I as I_{1}.
- If $w(I)>w\left(I_{1}\right)$, return 0 and terminate the process; otherwise, remove I from RF and assign a new weight $\left(w\left(I_{1}\right)-w(I)\right)$ to I_{1}, replacing its previous weight. Denote the new forest by $R F_{1}$.
- The value of $R F$ is defined to be the product of binomial coefficient $\binom{w\left(l_{1}\right)}{w(I)}$ and the value of $R F_{1}$.
- Base cases: whenever we reach a degree-zero vertex, if it has non-zero weight, return 0 and terminate the process; otherwise, return 1.
- Value of RF is then the absolute value of $L T$.

running example: absolute value

running example: integral value

- Finally we get the absolute value as $1 \times\binom{ 1}{1} \times\binom{ 2}{1} \times\binom{ 4}{3} \times\binom{ 4}{1} \times\binom{ 1}{1}=32$.
- Combining with the sign -1 , we obtain the value of $L T$ as -32.

Step 6: Product of the sign and absolute value gives us tree value.

the calculus - second half

- Input: a loaded tree with n labels and $n-3$ edges.
- Output: the integral value of the given loaded tree.
- Transfer the loaded tree to a weighted tree.
- Calculate the sign of the integral value.
- Transfer the weighted tree to a redundancy forest.
- Apply the recursive algorithm to this redundancy forest, obtaining the absolute integral value.
- Product of the sign and absolute value gives us the integral value.

We call this part of the calculus the forest algorithm. This part is linear in n. The calculus is then in the worst case quadratic in n.

the calculus - flow chart

correctness

Theorem
The forest algorithm is correct.

Reference

I thank Prof. Josef Schicho for helping me with the correctness proof of the forest algorithm.

嗇 Jiayue Qi.
A graphical algorithm for the integration of monomials in the Chow ring of the moduli space of stable marked curves of genus zero. preprint arXiv:2102.03575

Thank You

