An identity on multinomial coefficients Jiayue Qi

Der Wissenschaftsfonds.

The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK9.

Motivation

The identity we focus on in this poster showed up when we studied the integral value of monomials in the Chow ring of stable curves of genus zero. The algorithm we provide to calculate that integral value is called "the forest algorithm" [1]. We need this identity to prove the correctness of the forest algorithm, in its base case. In the base case, the corresponding graphical representation for the monomials are called "sun-like trees". We found out that there is an equivalence between this identity and the integral value of sun-like trees. For more details on the background, motivation, or context, see [2].

Identity

For any r-many positive-integer parameters $m_{1}, m_{2}, \ldots, m_{r}$, define $s_{r}:=\sum_{i=1}^{r} m_{i}$. Denote a set of r-many indeterminates as $X_{r}:=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$. Define $T_{r}:=\left\{B \mid B \subset X_{r}, x_{1} \in\right.$ $B\}$ and $\mathcal{B}_{r}:=\left\{\left(B_{1}, B_{2}\right) \mid B_{1} \in T_{r}, B_{2}=X_{r} \backslash B_{1}\right\}$. Define $g_{r}: X_{r} \rightarrow\left\{m_{1}-1, m_{2}, \ldots, m_{r}\right\}$ by $g_{r}\left(x_{i}\right):=m_{1}-1$ if $i=1$ and $g_{r}\left(x_{i}\right):=m_{i}$ otherwise. Here note that the set $\left\{m_{1}-1, m_{2}, \ldots, m_{r}\right\}$ may be a multi set in form but we just consider it as a normal set. For the convenience in the later writing, we introduce the following notation. Define for $B \subset X_{r}, S(B):=\sum_{x \in B} g_{r}(x)$ and $\binom{S(B)}{B}:=\frac{S(B)!}{\prod_{r \in B}\left(g_{r}(x)!!\right.}$. Based on the above preparation, the identity we want to prove can be formulated as follows.

Theorem 1

$$
\binom{s_{r}}{m_{1}, m_{2}, \ldots, m_{r}}=\sum_{\left(B_{1}, B_{2}\right) \in \mathcal{B}_{r}}\binom{s_{r}-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}},
$$

where $\left|B_{2}\right|$ refers to the cardinality of B_{2}.

Proof

Basic idea of the proof

The right-hand side is considered as the number of partitions of the set $\left\{1, \ldots, s_{r}\right\}$ into r parts of sizes m_{1}, \ldots, m_{r} respectively, while the left-hand side will be interpreted as the sum of the cardinalities of pre-images of some mapping φ_{r}.

Define $S_{r}:=\left\{\left(P_{1}, P_{2}, \ldots, P_{r}\right)\left|\cup_{i=1}^{r} P_{i}=\left\{1,2, \ldots, s_{r}\right\},\left|P_{i}\right|=m_{i}\right\}\right.$ and $L_{r}:=$ $\{2,3, \ldots, r\}$. For $A \subset\{1,2, \ldots, r\}$, define $P_{A}:=\cup_{i \in A} P_{i}$ and $X_{A}:=\left\{x_{i} \mid i \in A\right\}$ Define $\varphi_{r}: S_{r} \rightarrow T_{r},\left(P_{1}, \ldots, P_{r}\right) \mapsto B$ by the following φ_{r} algorithm.

```
the function }\mp@subsup{\varphi}{r}{
- Input: }(\mp@subsup{P}{1}{},\ldots,\mp@subsup{P}{r}{})\in\mp@subsup{S}{r}{}\mathrm{ .
- Output: B \inT T
    B\leftarrow{\mp@subsup{x}{1}{}}.
    A\leftarrowLL}\cap\mp@subsup{L}{r}{}\cap
    While }A\not=\emptyset:B:=B\cup\mp@subsup{X}{A}{},A:=\mp@subsup{L}{r}{}\cap\mp@subsup{P}{A}{
    Return B.
```

Function φ_{r} is a well-defined function; one can verify that it is a surjection. Then using a basic property of any mapping, we obtain $\cup_{B \in T_{r}} \varphi_{r}^{-1}(B)=S_{r}$ and $\left|S_{r}\right|=\sum_{\left(B, X_{r} \backslash B\right) \in \mathcal{B}_{r}}\left|\varphi_{r}^{-1}(B)\right|=$ $\sum_{B \in T_{r}}\left|\varphi_{r}^{-1}(B)\right|$. Now we only need to show one thing, namely the following lemma

Lemma 2

For any $B_{1} \in T_{r}$, define $B_{2}:=X_{r} \backslash B_{1}$, then

$$
\left|\left\{x \in S_{r} \mid \varphi_{r}(x)=B_{1}\right\}\right|=\binom{s_{r}-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}} .
$$

In order to prove the Lemma 2, we need the following proposition.

Proposition 3

If $\varphi_{r}\left(P_{1}, \ldots, P_{r}\right)=B_{1}$ for some $\left(P_{1}, \ldots, P_{r}\right) \in S_{r}$ and $B_{1} \in T_{r}$; denote $B_{2}:=X_{r} \backslash B_{1}$. Then $P_{F_{B_{1}}} \cap L_{r}=F_{B_{1}} \backslash\{1\}$, where $F_{B}:=\left\{i \mid x_{i} \in B\right\}$. Consequently, we have $P_{F_{B_{2}}} \cap L_{r}=F_{B_{2}}$ and $\left|P_{F_{B_{2}}} \cap L_{r}\right|=\left|B_{2}\right|$.
mapped to a given $B \in T_{r}$ by the function φ_{r}, we can instead think of this problem in the following way.
First divide $K_{r}:=\left\{1, \ldots, s_{r}\right\}$ into two subsets: one is $P_{F_{B}}$, the other is $K_{r} \backslash P_{F_{B}}$. Then by Proposition 3, the division of elements in L_{r} is fixed, hence for this step we have some freedom to devide elements in $K_{r} \backslash L_{r}$ into two groups. This is a fundamental problem in combinatorics. We need to choose $\left|P_{F_{B_{2}}}\right|-\left|B_{2}\right|=S\left(B_{2}\right)-\left|B_{2}\right|$ many elements from $\left|K_{r} \backslash L_{r}\right|=s_{r}-\left|L_{r}\right|=s_{r}-r+1$ many elements. There are $\binom{s_{r}-r+1}{\left.S\left(B_{2}\right)-\mid B_{2}\right)}$ many ways to do so. Then we need to find what should be the configurations within each of the two groups. Consider the definition of φ_{r}, we see that no matter how we arrange the elements in $P_{F_{B_{2}}}$, the value of φ_{r} is not influenced. Therefore, there are $\binom{S\left(B_{2}\right)}{B_{2}}$ many configurations for the elements in $P_{F_{B_{2}}}$. As for the arrangements in $P_{F_{B_{1}}}$, they need to obey certain rules in order to guarantee that the image under φ_{r} is B_{1}.
From the analysis above, the first and the third coefficients on the right hand side of the equation in Lemma 2 are both explained in a combinatorial way. In order to prove the lemma we only need to prove that given $B_{1} \in T_{r}$, the number of configurations for the elements in $P_{F_{B_{1}}}$ is exactly $\binom{S\left(B_{1}\right)}{B_{1}}$. Recall the definition of $\binom{S\left(B_{1}\right)}{B_{1}}$, one can see that the remaining work for the proof of Lemma 2 is equivalent to proving the following result.

Proposition 4

Recall that $s_{k}:=\sum_{i=1}^{k} m_{i}$ and that $X_{k}:=\left\{x_{1}, \ldots, x_{k}\right\}$. Then we have

$$
f_{k}\left(m_{1}, m_{2}, \ldots, m_{k}\right)=\binom{s_{k}-1}{m_{1}-1, m_{2}, \ldots, m_{k}}, k \in \mathbb{N}^{+}, m_{i} \in \mathbb{N}^{+}
$$

where $f_{k}:\left(\mathbb{N}^{+}\right)^{k} \rightarrow \mathbb{N}$,
$\left(m_{1}, m_{2}, \ldots, m_{k}\right) \mapsto\left|\left\{\left(P_{1}, P_{2}, \ldots, P_{k}\right) \in S_{k}| | P_{i} \mid=m_{i}, \varphi_{k}\left(P_{1}, P_{2}, \ldots, P_{k}\right)=X_{k}\right\}\right|$

To explain the above defined function f_{k} in another way, we have $f_{k}\left(m_{1}, \ldots, m_{k}\right)=$ $\#\left\{\varphi_{k}^{-1}\left(X_{k}\right)| | P_{i} \mid=m_{i}\right\} ;$ it is the cardinality of the fiber of φ_{k} given that $\left|P_{i}\right|=m_{i}$ To sum up the story line so far, in order to prove Theorem 1, we only need to prove Proposition 4. The proof of Proposition 4 is done by a double-layered induction, also with the help of the following known identity on multinomial coefficients.

Lemma 5

For all $s, k, m_{1}, \ldots, m_{k} \in \mathbb{N}$ with $m_{1}+\cdots+m_{k}=s, s \geq 1$ and $k \geq 2$, we have $\binom{s}{m_{1}, \ldots, m_{k}}=\sum_{i=1}^{k}\binom{s-1}{m_{1}, \ldots, m_{i}-1, \ldots, m_{k}}$.

Example

Example

In order to check through the identity with an example, we only need to fix $r \in \mathbb{N}^{+}$and m_{1}, \ldots, m_{r}. Take $r=3, m_{1}=2, m_{2}=3, m_{3}=$ 3, for instance. Then $s=\sum_{i=1}^{3} m_{i}=2+3+3=8$. Hence LHS $=\binom{s}{m_{1}, m_{2}, m_{3}}=\binom{8}{2,3,3}=560$. Recall the identity, we have $\mathcal{B}=$ $\left\{\left(\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\}\right),\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}\right\}\right),\left(\left\{x_{1}, x_{3}\right\},\left\{x_{2}\right\}\right),\left(\left\{x_{1}, x_{2}, x_{3}\right\}, \emptyset\right)\right\}$. Now we need to go through these four elements of \mathcal{B}, starting from $B_{1}=\left\{x_{1}\right\}, B_{2}=\left\{x_{2}, x_{3}\right\}$. Then we have $S\left(B_{1}\right)=m_{1}-1=2-1=1, S\left(B_{2}\right)=m_{2}+m_{3}=3+3=6$ $\binom{S\left(B_{1}\right)}{B_{1}}=\frac{S\left(B_{1}\right)!}{g\left(x_{1}\right)!}=\frac{1}{1}=1$, and $\binom{S\left(B_{2}\right)}{B_{2}}=\binom{6}{3,3}=20$,

$$
\binom{s-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}=\binom{8-3+1}{6-2}=\binom{6}{4}=15 .
$$

So the corresponding summand for $\left(\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\}\right)$ is

$$
\binom{s-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}=15 \cdot 1 \cdot 20=300 .
$$

Going through the similar process, we obtian the other three summands on RHS as: $\binom{6}{2} \cdot\binom{4}{1,3}=60,\binom{6}{2} \cdot\binom{4}{1,3}=60$, and $\binom{7}{1,3,3}=140$. Summing up the four summands: $300+60+60+140=560$. The identity is verified for this example.

Acknowledgements

I thank Dongsheng Wu (Tsinghua University) for the proof of Proposition 4

References

