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Motivation

The identity we focus on in this poster showed up when we studied the integral value of
monomials in the Chow ring of stable curves of genus zero. The algorithm we provide to
calculate that integral value is called “the forest algorithm” [1]. We need this identity to
prove the correctness of the forest algorithm, in its base case. In the base case, the corre-
sponding graphical representation for the monomials are called “sun-like trees”. We found
out that there is an equivalence between this identity and the integral value of sun-like trees.
For more details on the background, motivation, or context, see [2].

Identity

For any r-many positive-integer parameters m1,m2, . . . ,mr, define sr :=
∑r

i=1mi. Denote
a set of r-many indeterminates as Xr := {x1, x2, . . . , xr}. Define Tr := {B | B ⊂ Xr, x1 ∈
B} and Br := {(B1, B2) | B1 ∈ Tr, B2 = Xr\B1}. Define gr : Xr → {m1−1,m2, . . . ,mr}
by gr(xi) := m1 − 1 if i = 1 and gr(xi) := mi otherwise. Here note that the set
{m1 − 1,m2, . . . ,mr} may be a multi set in form but we just consider it as a normal
set. For the convenience in the later writing, we introduce the following notation. Define for
B ⊂ Xr, S(B) :=

∑

x∈B gr(x) and
(

S(B)
B

)

:= S(B)!
∏

x∈B (gr(x)!)
. Based on the above preparation,

the identity we want to prove can be formulated as follows.

Theorem 1

(

sr

m1,m2, . . . ,mr

)

=
∑

(B1,B2)∈Br

(

sr − r + 1

S(B2)− |B2|

)(

S(B1)

B1

)(

S(B2)

B2

)

,

where |B2| refers to the cardinality of B2.

Proof

Basic idea of the proof

The right-hand side is considered as the number of partitions of the set {1, . . . , sr}
into r parts of sizes m1, . . . ,mr respectively, while the left-hand side will be inter-
preted as the sum of the cardinalities of pre-images of some mapping ϕr.

Define Sr := {(P1, P2, . . . , Pr) | ∪
r
i=1Pi = {1, 2, . . . , sr}, |Pi| = mi} and Lr :=

{2, 3, . . . , r}. For A ⊂ {1, 2, . . . , r}, define PA := ∪i∈APi and XA := {xi | i ∈ A}.
Define ϕr : Sr → Tr, (P1, . . . , Pr) 7→ B by the following ϕr algorithm.

the function ϕr

• Input: (P1, . . . , Pr) ∈ Sr.

•Output: B ∈ Tr.

B ← {x1}.

A← Lr ∩ P1.

While A 6= ∅: B := B ∪XA , A := Lr ∩ PA.

Return B.

Function ϕr is a well-defined function; one can verify that it is a surjection. Then using a basic
property of any mapping, we obtain ∪B∈Tr

ϕ−1r (B) = Sr and |Sr| =
∑

(B,Xr\B)∈Br
|ϕ−1r (B)| =

∑

B∈Tr
|ϕ−1r (B)|. Now we only need to show one thing, namely the following lemma.

Lemma 2

For any B1 ∈ Tr, define B2 := Xr \B1, then

|{x ∈ Sr | ϕr(x) = B1}| =

(

sr − r + 1

S(B2)− |B2|

)(

S(B1)

B1

)(

S(B2)

B2

)

.

In order to prove the Lemma 2, we need the following proposition.

Proposition 3

If ϕr(P1, . . . , Pr) = B1 for some (P1, . . . , Pr) ∈ Sr and B1 ∈ Tr; denote
B2 := Xr \ B1. Then PFB1

∩ Lr = FB1
\ {1}, where FB := {i | xi ∈ B}.

Consequently, we have PFB2
∩ Lr = FB2

and |PFB2
∩ Lr| = |B2|.

Inspired by the above proposition, in order to find the configuration in Sr such that it is

mapped to a given B ∈ Tr by the function ϕr, we can instead think of this problem in the
following way.
First divide Kr := {1, . . . , sr} into two subsets: one is PFB

, the other is Kr \ PFB
. Then

by Proposition 3, the division of elements in Lr is fixed, hence for this step we have some
freedom to devide elements in Kr \ Lr into two groups. This is a fundamental problem
in combinatorics. We need to choose |PFB2

| − |B2| = S(B2) − |B2| many elements from

|Kr \ Lr| = sr − |Lr| = sr − r + 1 many elements. There are
(

sr−r+1
S(B2)−|B2|

)

many ways to do
so. Then we need to find what should be the configurations within each of the two groups.
Consider the definition of ϕr, we see that no matter how we arrange the elements in PFB2

,

the value of ϕr is not influenced. Therefore, there are
(

S(B2)
B2

)

many configurations for the
elements in PFB2

. As for the arrangements in PFB1
, they need to obey certain rules in order

to guarantee that the image under ϕr is B1.
From the analysis above, the first and the third coefficients on the right hand side of the
equation in Lemma 2 are both explained in a combinatorial way. In order to prove the lemma,
we only need to prove that given B1 ∈ Tr, the number of configurations for the elements in
PFB1

is exactly
(

S(B1)
B1

)

. Recall the definition of
(

S(B1)
B1

)

, one can see that the remaining work
for the proof of Lemma 2 is equivalent to proving the following result.

Proposition 4

Recall that sk :=
∑k

i=1mi and that Xk := {x1, . . . , xk}. Then we have

fk(m1,m2, . . . ,mk) =

(

sk − 1

m1 − 1,m2, . . . ,mk

)

, k ∈ N
+, mi ∈ N

+,

where fk : (N
+)k → N,

(m1,m2, . . . ,mk) 7→ |{(P1, P2, . . . , Pk) ∈ Sk | |Pi| = mi, ϕk(P1, P2, . . . , Pk) = Xk}|.

To explain the above defined function fk in another way, we have fk(m1, . . . ,mk) =
#{ϕ−1k (Xk) | |Pi| = mi}; it is the cardinality of the fiber of ϕk given that |Pi| = mi.
To sum up the story line so far, in order to prove Theorem 1, we only need to prove Proposi-
tion 4. The proof of Proposition 4 is done by a double-layered induction, also with the help
of the following known identity on multinomial coefficients.

Lemma 5

For all s, k,m1, . . . ,mk ∈ N with m1 + · · · +mk = s, s ≥ 1 and k ≥ 2, we have
(

s
m1,...,mk

)

=
∑k

i=1

(

s−1
m1,...,mi−1,...,mk

)

.

Example

Example

In order to check through the identity with an example, we only need to fix
r ∈ N

+ and m1, . . . ,mr. Take r = 3, m1 = 2, m2 = 3, m3 =
3, for instance. Then s =

∑3
i=1mi = 2 + 3 + 3 = 8. Hence

LHS =
(

s
m1,m2,m3

)

=
(

8
2,3,3

)

= 560. Recall the identity, we have B =
{({x1}, {x2, x3}), ({x1, x2}, {x3}), ({x1, x3}, {x2}), ({x1, x2, x3}, ∅)}. Now we need
to go through these four elements of B, starting from B1 = {x1}, B2 = {x2, x3}.
Then we have S(B1) = m1 − 1 = 2 − 1 = 1, S(B2) = m2 + m3 = 3 + 3 = 6,
(

S(B1)
B1

)

= S(B1)!
g(x1)!

= 1
1 = 1, and

(

S(B2)
B2

)

=
(

6
3,3

)

= 20,

(

s− r + 1

S(B2)− |B2|

)

=

(

8− 3 + 1

6− 2

)

=

(

6

4

)

= 15.

So the corresponding summand for ({x1}, {x2, x3}) is
(

s− r + 1

S(B2)− |B2|

)(

S(B1)

B1

)(

S(B2)

B2

)

= 15 · 1 · 20 = 300.

Going through the similar process, we obtian the other three summands on RHS as:
(

6
2

)

·
(

4
1,3

)

= 60,
(

6
2

)

·
(

4
1,3

)

= 60, and
(

7
1,3,3

)

= 140. Summing up the four summands:
300 + 60 + 60 + 140 = 560. The identity is verified for this example.
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