Five equivalent ways to represent a phylogenetic tree

Jiayue Qi

DK9 progress report, joint work with Professor Schicho 2020.09.24. DK Statusseminar

JYU
JOHANNES KEPLER UNIVERSITY LINZ

Der Wissenschaftsfonds.

Five equivalent representations

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

Example: phylogenetic tree

This is a phylogenetic tree with leaf set $N=\{1,2, \cdots, 9\}$. The set of inner vertices is $V \backslash N=\{a, b, c, d, e\}$.

Definition: phylogenetic tree

- A phylogenetic tree with leaf set N is a tree (V, E) with no vertex of degree 2 such that $N \subset V$ is the set of leaves. We call the elements in N labels of the tree.
- Two phylogenetic trees are isomorphic iff there is a graph isomorphism between them which is the identity when restricted to the leaf set.
- In the last example, we can permute the inner vertices and obtain a phylogenetic tree that is isomorphic to the given one.

set of partitions

- For every inner vertex, we can collect the labels on each branch, respectively, forming a partion of set N.
- Then we obtain a set of partitions from the given phylogenetic tree.
- For the given tree, what partitions for N can we obtain?

running example: set of partitions

- $P=\left\{p_{a}, p_{b}, p_{c}, p_{d}, p_{e}\right\}$
- $p_{a}=\{\{1\},\{2\},\{3\},\{4,5,6,7,8,9\}\}$
- $p_{b}=\{\{1,2,3\},\{4\},\{5\},\{6,7,8,9\}\}$
- $p_{c}=\{\{1,2,3,4,5\},\{6,7\},\{8,9\}\}$
- $p_{d}=\{\{1,2,3,4,5,8,9\},\{6\},\{7\}\}$
- $p_{e}=\{\{1,2,3,4,5,6,7\},\{8\},\{9\}\}$

phylogenetic set of partitions

A set of partitions of N is phylogenetic iff it fulfills the following axioms:

- Each partition has at least 3 parts.
- Any cardinality-one subset of N belongs to a unique partition.
- Any subset of N belongs to at most one partition.
- For any subset $A \subset N$ that belongs to some partition, its complement $N \backslash A$ also belongs to some partition.
- Is P phylogenetic?
- Given a phylogenetic set of partitions, how to convert it back to a tree?

From partitions to tree

- VERTICES: Each partition is a vertex, each single-element set $\{x\}$ in the partition contributes to a leaf x attached to the vertex.
- EDGES: Draw an edge between vertex v_{1} and v_{2} iff $I \in v_{1}$ and $N \backslash I \in v_{2}$.
- From P, we can also try this method, see if we obtain a pylogenetic tree?
- Let's try it on the whiteboard.

From partitions to tree

- $P=\left\{p_{a}, p_{b}, p_{c}, p_{d}, p_{e}\right\}$
- $p_{a}=\{\{1\},\{2\},\{3\},\{4,5,6,7,8,9\}\}$
- $p_{b}=\{\{1,2,3\},\{4\},\{5\},\{6,7,8,9\}\}$
- $p_{c}=\{\{1,2,3,4,5\},\{6,7\},\{8,9\}\}$
- $p_{d}=\{\{1,2,3,4,5,8,9\},\{6\},\{7\}\}$
- $p_{e}=\{\{1,2,3,4,5,6,7\},\{8\},\{9\}\}$

From partitions to tree

- The above mentioned two algorithms transfer between phylogenetic tree and phylogenetic set of partitions. Both compositions are the identity.
- These two representations are equivalent.

Five equivalent representations

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

running example: set of cuts

- A cut of N is a partition of N into two subsets I, J such that cardinality of both I and J are bigger than one.
- Starting from a phylogenetic tree with leaf set N, for each inner edge, we can collect the labels on two sides of the edge respectively, forming a cut of N.
- Then we obtain a set of cuts.

running example: set of cuts

Let's see what we will obtain from this given tree!

running example: set of cuts

- $C_{a b}:\{\{1,2,3\},\{4,5,6,7,8,9\}\}$
- $C_{b c}:\{\{1,2,3,4,5\},\{6,7,8,9\}\}$
- $C_{c d}:\{\{1,2,3,4,5,8,9\},\{6,7\}\}$
- $C_{c e}:\{\{1,2,3,4,5,6,7\},\{8,9\}\}$
- We obtain the set $C=\left\{C_{a b}, C_{b c}, C_{c d}, C_{c e}\right\}$.
- We say that a set of cut C is phylogenetic iff for any two cuts $\left\{I_{1}, J_{1}\right\},\left\{I_{2}, J_{2}\right\}$ in C, (at least) one of these four sets is empty: $I_{1} \cap I_{2}, I_{1} \cap J_{2}, J_{1} \cap I_{2}, J_{1} \cap J_{2}$.
- Is C in our running example phylogenetic?
- We have an algorithm converting from a phylogenetic set of cuts to a phylogenetic tree. Both compositions are the identity.
- These two representations are equivalent.

Five equivalent representations

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

Crossing relations

- A crossing relation is a set X of a pair of cardinality-two subsets of N. We denote as $(i, j \mid k, l)$ the element $\{\{i, j\},\{k, l\}\}$ and we call it a cross of X.
- Starting from a set of cuts C, we can construct a crossing relation X_{C} as follows: $(i, j \mid k, I) \in X_{C}$ iff $i, j \in I$ and $k, I \in J$ for some cut $\{I, J\} \in C$.
- We say X is phylogenetic iff it fulfills the following axioms:

X1 If $(i, j \mid k, l) \in X,(i, k \mid j, I) \notin X$.
X2 If $(i, j \mid k, I),(i, j \mid k, m) \in X$ and $I \neq m$, then $(i, j \mid I, m) \in X$.
X3 If $(i, j \mid k, l) \in X$ and m is distinct from i, j, k, l, then $(i, j \mid k, m) \in X$ or $(i, m \mid k, l) \in X$. (Note that here "or" means at least one incident should happen.)

recall: phylogenetic set of cuts

- $C=\left\{C_{a b}, C_{b c}, C_{c d}, C_{c e}\right\}$.
- $C_{a b}:\{\{1,2,3\},\{4,5,6,7,8,9\}\}$
- $C_{b c}:\{\{1,2,3,4,5\},\{6,7,8,9\}\}$
- $C_{c d}:\{\{1,2,3,4,5,8,9\},\{6,7\}\}$
- $C_{c e}:\{\{1,2,3,4,5,6,7\},\{8,9\}\}$

running example: crossing relations

- Starting from the set of cuts C in our running example, we obtain a crossing relation X_{C} containing the following elements.
- $i, j \in\{1,2,3\}$ and $k, I \in\{4,5,6,7,8,9\}$ (45 crosses);
- $i, j \in\{1,2,3,4,5\}$ and $k, I \in\{6,7,8,9\}$ (60 crosses);
- $i, j \in\{1,2,3,4,5,8,9\}$ and $\{k, I\}=\{6,7\}$ (21 crosses);
- $i, j \in\{1,2,3,4,5,6,7\}$ and $\{k, I\}=\{8,9\}$ (21 crosses).
- We can check that X_{C} is a phylogenetic crossing relation.
- We also have an algorithm converting from phylogenetic crossing relation to a phylogenetic set of cuts. The two compositions are both the identity.
- These two representations are equivalent.

Five equivalent representations

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

phylogenetic equivalent classes of triples

- A triple in N is a cardinality-three subset of N. We denote the set of all triples in N by $\binom{N}{3}$.
- We say an equivalence relation \sim on $\binom{N}{3}$ is phylogenetic if the following two axioms are fulfilled.
E1 For any subset $Q \subseteq N$ of cardinality 4 , either all 4 triples in $\binom{Q}{3}$ are equivalent, or there are two equivalence classes, each containing two triples of $\binom{Q}{3}$.
E2 If i, j, k, l, m are pairwise distinct, and $\{i, j, k\} \sim\{i, j, I\}$, then $\{i, j, k\} \sim\{i, j, m\}$ or $\{i, k, l\} \sim\{m, k, l\}$.

example: equivalences of triples

- Let $N=\{1,2,3,4,5\}$. We define an equivalence relation E with three distinct classes as follows:
- $\{1,2,3\} \sim\{1,2,4\} \sim\{1,2,5\}$
- $\{1,4,5\} \sim\{2,4,5\} \sim\{3,4,5\}$
- $\{1,3,4\} \sim\{1,3,5\} \sim\{2,3,4\} \sim\{2,3,5\}$
- We can check that it is phylogenetic.
- Starting from a phylogenetic equivalence relation E of triples in $\binom{N}{3}$, we can construct a crossing relation on $N X_{E}$ as follows.
- Cross $(i, j \mid k, l) \in X_{E}$ iff $\{i, j, k\} \sim\{i, j, I\} \nsim\{i, k, I\} \sim\{j, k, I\}$.
- Continue with the above example, we obtain a crossing relation containing the following elements:

from crossing relation to equivalences of triples

- $(1,2 \mid 3,4),(1,2 \mid 3,5),(1,2 \mid 4,5),(1,3 \mid 4,5),(2,3 \mid 4,5)$.
- We can check that it is phylogenetic.
- Starting from a phylogenetic crossing relation X in N, we can define equivalences of triples E_{X} on $\binom{N}{3}$ as follows.
- First, define a relation R_{X} on $\binom{N}{3}$ as follows: $\left(t_{1}, t_{2}\right) \in R_{X}$ iff $t_{1}=t_{2}$ or $\left|t_{1} \cap t_{2}\right|=2$ and - say $t_{1}=\{i, j, k\}, t_{2}=\{i, j, l\}-$ neither $i k \mid j l$ nor $i l \mid j k$ is in X.
- E_{X} is defined to be the transitive closure of R_{X}.
- Starting from a phylogenetic crossing relation, via the above construction, we actually will obtain a phylogenetic equivalences of triples.
- Composition of the two transformations are both the identity.
- These two representations are equivalent.

more comments?

From set of partitions to equivalences of triples.

Five equivalent representations ?

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

meta-level overview

- Edges? Vertices?
- Macro level? Micro level?
- macro level + focusing on edges \Longrightarrow set of cuts. (Each cut corresponds to an edge.)
- micro level + focusing on edges \Longrightarrow crossing relation.
- macro level + focusing on vertices \Longrightarrow set of partitions. Each partition corresponds to a vertex.
- micro level + focusing on vertices \Longrightarrow equivalent classes of triples. Each class corresponds to a vertex.

Thank You

