Group-theoretic Algorithms for Matrix Multiplication

- CKSU05

Abstract

- for the first time, use the group-theoretic approach to derive algorithms faster than the standard algorithm
- 2.41
- two conjectures $(\Rightarrow \omega=2)$

what are we working for?

- goal: the exponent of matrix multiplication, the smallest real number ω for which $n * n$ matrix multiplication can be performed in $O\left(n^{\omega+\varepsilon}\right)$ operations for each $\varepsilon>0$.

main work of Cohn and Umans[2003] in their previous paper, denoted as [2] in the paper we are studying

steps of the framework:

- one selects a finite group G satisfying a certain property
- reduce $n * n$ matrix multiplication to multiplication of elements of the group algebra C[G]
- via Fourier transform, the latter multiplication is reduced to several smaller matrix multiplication
- the size of those small matrices are the character degrees of G
- Thus we get a recursive algorithm whose running time depends on the character degrees.
- Thus the problem of devising matrix multiplication algorithms is imported into the domain of group theory and representation theory.

the main question raised in [2] is...

- whether the proposed approach could prove nontrivial bounds on ω (that is, to prove $\omega<3$)
- this was shown to be equivalent to a question in representation theory:
- is there a group G with subsets S_{1}, S_{2}, S_{3} that satisfy the triple product property, and for which $\left|S_{1}\right|\left|S_{2}\right|\left|S_{3}\right|>\sum_{i} d_{i}^{3}$, where d_{i} is the set of character degrees of G ?
- In our paper we resolve this question in the affirmative.

now comes to our paper,some notations:

- The set $1,2, \ldots, k$ is denoted $[k]$.
- The cyclic group of order k is denoted $C y c_{k}$ (with addition notation for the group law).
- The symmetric group on a set S is denoted $\operatorname{Sym}(S)$ or Sym_{n}.
- If G is a group and R is a ring, then $R[G]$ will denote the group algebra of G with coefficients in R.

some related basic facts in representation theory that will

 be used- The group algebra C[G] of a finite group G decomposes as the direct product $C[G] \cong C^{d_{1} * d_{1}} * \ldots * C^{d_{k} * d_{k}}$ of matrix algebras of orders d_{1}, \ldots, d_{k}. These orders are the character degrees of G.
- If we compute the dimensions of both sides, we have $|G|=\sum_{i} d_{i}^{2}$.
- If G has an abelian subgroup A, then all the character degrees of G are less than or equal to the index $[G: A]$.

some related basic facts in representation theory that will

 be usedTheorem (Lemma 1.1)
Let $s_{1}, s_{2}, \ldots, s_{n}$ be nonnegative real numbers, and suppose that for every vector $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ of nonnegative integers for which $\sum_{i=1}^{n}=N$ we have $\binom{N}{\mu} \prod_{i=1}^{n} s_{i}^{\mu_{i}} \leq C^{N}$. Then $\sum_{i=1}^{n} \leq C$.
summarize the necessary definition and results from [2],their previous paper

- If S is a subset of a group, let $Q(S)$ denote the right quotient set of S,i.e., $Q(S)=s_{1} s_{2}^{-1}: s_{1}, s_{2} \in S$.

Definition (Definition 1.3([2]).)
A group realizes $<n_{1}, n_{2}, n_{3}>$ if there are subsets $S_{1}, S_{2}, S_{3} \subseteq G$ such that $\left|S_{i}\right|=n_{i}$, and for $q_{i} \in Q\left(S_{i}\right)$, if $q_{1} q_{2} q_{3}=1$ then $q_{1}=q_{2}=q_{3}=1$. We call this condition on S_{1}, S_{2}, S_{3} the triple product property.

summarize the necessary definition and results from [2]

Theorem (Lemma 1.4([2]).)
If G realizes $<n_{1}, n_{2}, n_{3}>$, then it does so for every permutation of n_{1}, n_{2}, n_{3}.

Theorem (Lemma 1.5([2]).)
If $S_{1}, S_{2}, S_{3} \subseteq G$ and $S_{1}^{\prime}, S_{2}^{\prime}, S_{3}^{\prime} \subseteq G^{\prime}$ satisfy the triple product property, then so do the subsets $S_{1} \times S_{1}^{\prime}, S_{2} \times S_{2}^{\prime}, S_{3} \times S_{3}^{\prime}$.

summarize the necessary definition and results from [2]

Theorem (Theorem 1.6([2]).)

Let R be any algebra over C (not necessarily commutative). If G realizes $\langle n, m, p\rangle$, then the number of ring operations required to multiply $n \times m$ with $m \times p$ matrices over R is at most the number of operations required to multiply two elements of $R[G]$.

- Let $\triangle_{n}=(a, b, c) \in Z^{3}: a+b+c=n-1$ and $a, b, c \geq 0$.
- For $x \in \triangle_{n}$, we write $x=\left(x_{1}, x_{2}, x_{3}\right)$.
- Let H_{1}, H_{2}, H_{3} be the subgroups of $\operatorname{Sym}\left(\triangle_{n}\right)$ that preserve the first, second and third coordinates, respectively.
- Specifically, $H_{i}=\pi \in \operatorname{Sym}\left(\triangle_{n}\right):(\pi(x))_{i}=x_{i} f$ forall $x \in \triangle_{n}$.

Theorem (Theorem 1.7([2]).)
The subgroups H_{1}, H_{2}, H_{3} defined above satisfy the triple product property.

Theorem (Theorem 1.8([2]).)

Suppose G realizes $<n, m, p>$ and the character degrees of G are $\left\{d_{i}\right\}$. Then $(n m p)^{\omega / 3} \leq \sum_{i} d_{i}{ }^{\omega}$.

Theorem (Corollary 1.9(2).)
Suppose G realizes $<n, m, p>$ and has largest character degree d. Then $(n m p)^{\omega / 3} \leq d^{\omega-2}|G|$.

Proof.
Combine Thm 1.8[2] with the basic fact mentioned before that $|G|=\sum_{i} d_{i}^{2}$, then we have the corollary.

Beating the sum of the cubes

- Suppose G realizes $\langle n, m, p\rangle$ and has character degrees $\left\{d_{i}\right\}$.
- Since $\omega \leq 3$, by ruling out the possibility of $\omega=3$, Thm1.8[2] yields a nontrivial bound on ω if and only if $n m p>\sum_{i} d_{i}^{3}$.
- Then the question is : whether such a group exists?
- In this section we construct one (which shows that our methods do indeed prove nontrivial bounds on ω).

Beating the sum of the cubes

Theorem (Lemma 2.1.)
S_{1}, S_{2}, and S_{3} satisfy the triple product property.
Proof.
Construct the example and show the proof on the whiteboard.

Uniquely solvable puzzles

Definition (USP)

A uniquely solvable puzzle(USP) of width k is a subset
$U \subseteq 1,2,3^{k}$ satisfying the following property: For all permutations $\pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}(U)$, either $\pi_{1}=\pi_{2}=\pi_{3}$ or else there exist $u \in U$ and $i \in[k]$ such that at least two of
$\left(\pi_{1}(u)\right)_{i}=1,\left(\pi_{2}(u)\right)_{i}=2,\left(\pi_{3}(u)\right)_{i}=3$ hold.
Definition (strong USP)
A strong USP of width k is a subset $U \subseteq 1,2,3^{k}$ satisfying the following property: For all permutations $\pi_{1}, \pi_{2}, \pi_{3} \in \operatorname{Sym}(U)$, either $\pi_{1}=\pi_{2}=\pi_{3}$ or else there exist $u \in U$ and $i \in[k]$ such that exactly two of $\left(\pi_{1}(u)\right)_{i}=1,\left(\pi_{2}(u)\right)_{i}=2,\left(\pi_{3}(u)\right)_{i}=3$ hold.

Uniquely solvable puzzles

- show the example of a strong USP of size 8 and width 6 on the whiteboard

Theorem (Proposition 3.1)
For each $k \geq 1$, there exists a strong USP of size 2^{k} and width $2 k$.
Proof.
By hand.

Uniquely solvable puzzles

Definition (the strong USP capacity)

We define the strong USP capacity to ba the largest constant C such that there exist strong USPs of size $(C-o(1))^{k}$ and width k for infinitely many values of k.
The USP capacity is defined analogously.

Uniquely solvable puzzles

- There is a simple upper bound for the USP capacity, which is of course an upper bound for the strong USP capacity as well.

Theorem (Lemma 3.2.)
The USP capacity is at most $(27 / 4)^{1 / 3}$.
Proof.
On the board.

Uniquely solvable puzzles

- In section 6 of [3] they show implicitly that Lemma 3.2 is sharp.

Theorem (Theorem 3.3(Coppersmith and Winograd[3]).)
The USP capacity equals $(27 / 4)^{1 / 3}$.
Theorem (Conjecture 3.4.)
The strong USP capacity equals $(27 / 4)^{1 / 3}$.

- This conjecture would imply that $\omega=2$.

Using strong USPs

Definition

Given a strong USP U of width k , let H be the abelian group of all functions from $U \times[k]$ to the cyclic group $C y c_{m}(H$ is a group under pointwise addition).
The symmetric group $\operatorname{Sym}(\mathrm{U})$ acts on (H) via $\pi(h)(u, i)=h\left(\pi^{-1}(u), i\right)$ for $\pi \in \operatorname{Sym}(U), h \in H, u \in U$ and $i \in[k]$. Let G be the semidirect product $H \rtimes \operatorname{Sym}(U)$, and define subsets S_{1}, S_{2}, S_{3} of G by letting S_{i} consist of all products π with $\pi \in \operatorname{Sym}(U)$ and $h \in H$ satisfying $h(u, j) \neq 0$ iff $u_{j}=i$ for all $u \in U$ and $j \in[k]$.

Theorem (Proposition 3.5.)

If U is a strong $U S P$, then S_{1}, S_{2}, and S_{3} satisfy the triple product property.

Proof.

On the board.

Using strong USPs

Theorem (Corollary 3.6.)
On the board, with the proof.

- several bounds (on the board):2.67, 2.48, 2

The triangle construction

- Suppose $U \subseteq(1,2,3)^{k}$ is a subset with only two symbols occurring in each coordinate.
Let H_{1} be the subgroup of $\operatorname{Sym}(\mathrm{U})$ that preserves the coordinates in which only 1 and 2 occur, H_{2} the subgroup preserving the coordinates in which only 2 and 3 occur, and H_{3} the subgroup preserving the coordinates in which only 1 and 3 occur.

Theorem (Lemma 3.7.)
The set U is a USP iff H_{1}, H_{2}, and H_{3} satisfy the triple product property within Sym(U).

Proof.
On the board.

The triangle construction

Theorem (Proposition 3.8.)
For each $k \geq 1$, there exists a strong USP of size $2^{k-1}\left(2^{k}+1\right)$ and width $3 k$.
Proof.
On the board.

- It follows that the strong USP capacity is at least $2(2 / 3)$
- and $\omega<2.48$.
- Show the reason on the whiteboard now:

Theorem (Corollary 3.9.)

If U is a USP of width k such that only two symbols occur in each coordinate, then $|U| \leq\left(2^{2 / 3}+o(1)\right)^{k}$.
Proof. em...?how to prove?

- The only upper bound on the size of a strong USP is in Lemma 3.2.

The simultaneous double product property

- simultaneous double product property will be used to modify the underlying group of the combinatorial structure in the algebraic direction.

Definition (double product property)
We say that subsets S_{1}, S_{2} of a group H satisfy the double product property if
$q_{1} q_{2}=1$ implies $q_{1}=q_{2}=1$, where $q_{i} \in Q\left(S_{i}\right)$.

The simultaneous double product property

Definition (Definition 4.1.)
We say that n pairs of subsets $A_{i}, B_{i}($ for $1 \leq i \leq n)$ of a group H satisfy the simultaneous double product property if

- for all i, the pair A_{i}, B_{i} satisfies the double product property, and
- for all $i, j, k, a_{i}\left(a_{j}^{\prime}\right)^{-1}$ implies $i=k$, where $a_{i} \in A_{i}, a_{j}^{\prime} \in A_{j}, b_{j} \in B_{j}, a n d b_{k}^{\prime} \in B_{k}$.

The simultaneous double product property

Theorem (Lemma 4.2.)
If n pairs of subsets A_{i}, B_{i} satisfy the simultaneous double product property, and n^{\prime} pairs of subsets $A_{i}^{\prime}, B_{i}^{\prime} \subseteq H^{\prime}$ satisfy the simultaneous double product property, then so do the $n n^{\prime}$ pairs of subsets $A_{i} \times A_{i}^{\prime}, B_{j} \times B_{j}^{\prime} \subseteq H \times H^{\prime}$.

The simultaneous double product property

- $\Delta_{n}=\left\{(a, b, c) \in Z^{3}: a+b+c=n-1\right.$ and $\left.a, b, c \geq 0\right\}$.
- Given n pairs of subsets A_{i}, B_{i} in H for $0 \leq i \leq n-1$.

Definition

we define triples of subsets in H^{3} indexed by $v=\left(v_{1}, v_{2}, v_{3}\right) \in \Delta_{n}$ as follows:

$$
\begin{aligned}
& \widehat{A_{v}}=A_{V_{1}} \times\{1\} \times B_{v_{3}} \\
& \widehat{B_{v}}=B_{v_{1}} \times A_{V_{2}} \times\{1\} \\
& \widehat{C_{v}}=\{1\} \times B_{v_{2}} \times A_{v_{3}}
\end{aligned}
$$

The simultaneous double product property

Theorem (Theorem 4.3.)
If n pairs of subsets $A_{i}, B_{i} \subseteq H$ (with $0 \leq i \leq n-1$) satisfy the simultaneous double product property, then the following subsets S_{1}, S_{2}, S_{3} of $G=\left(H^{3}\right)^{\Delta_{n}} \rtimes \operatorname{Sym}\left(\Delta_{n}\right)$ satisfy the triple product property:

$$
\begin{aligned}
& S_{1}=\widehat{a} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{a_{v}} \in \widehat{A_{v}} \text { for all } v \\
& S_{2}=\widehat{b} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{b_{v}} \in \widehat{B_{v}} \text { for all } v \\
& S_{3}=\widehat{c} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{c_{v}} \in \widehat{C_{v}} \text { for all } v
\end{aligned}
$$

The simultaneous double product property

Theorem (Theorem 4.4.)
If H is a finite group with character degrees $\left\{d_{k}\right\}$, and n pairs of subsets $A_{i}, B_{i} \subseteq H$ satisfy the simultaneous double product property, then
$\sum_{i=1}^{n}\left(\left|A_{i}\right|\left|B_{i}\right|\right)^{\omega / 2} \leq\left(\sum_{k} d_{k}^{\omega}\right)^{3 / 2}$.
Proof.
On the board.

- Using this theorem, the example after Definition 4.1 recovers the trivial bound $\omega \leq 3$ as $k \rightarrow \infty$. Show the proof.

The simultaneous double product property

- Now we use two parameters α and β to describe pairs satisfying the simultaneous double product property:
- if there are n pairs, choose α and β so that $\left|A_{i}\right|\left|B_{i}\right| \geq n^{\alpha}$ for all i and $|H|=n^{\beta}$.
- If H is abelian Theorem 4.4 implies $\omega \leq(3 \beta-2) / \alpha$. show the calculations.

The simultaneous double product property

Theorem (Proposition 4.5.)
For each $m \geq 2$, there is a construction in $\mathrm{Cyc}_{m}^{2 l}$ satisfying the simultaneous double product property with $\alpha=\log _{2}(m-1)+o(1)$ and $\beta=\log _{2} m+o(1)$ as $l \rightarrow \infty$.

Proof.
By hand. (kind of disagree with the last part of the proof on the paper)

- Taking $m=6$ yields exactly the same bound as in Subsection $3.3(\omega \leq 2.48)$.

The simultaneous double product property

- The only limitations we know of on the possible values of α and β are the following:

Theorem (Proposition 4.6.)
If n pairs of subsets $A_{i}, B_{i} \subseteq H$ satisfy the simultaneous double product property, with $\left|A_{i}\right|\left|B_{i}\right| \geq n^{\alpha}$ for all i and $|H|=n^{\beta}$, then $\alpha \leq \beta$ and $\alpha+2 \leq 2 \beta$.

Proof.
by hand

The simultaneous double product property

- The most important case is when H is an abelian group. There the bound on ω is $\omega \leq(3 \beta-2) / \alpha$. We've mentioned this.
- Proposition 4.6 shows that the only way to achieve $\omega=2$ is $\alpha=\beta=2$. show it by hand.
- and we conjecture that this is possible:

Theorem (Conjecture 4.7.)
For arbitrarily large n, there exists an abelian group H with n pairs of subsets A_{i}, B_{i} satisfying the simultaneous double product property such that $|H|=n^{2+o(1)}$ and $\left|A_{i}\right|\left|B_{i}\right| \geq n^{2-o(1)}$.

The simultaneous triple product property

- say something on the board
- This apportionment can be viewed as reducing several independent matrix multiplication problems to a single group algebra multiplication, using triples of subsets satisfying the simultaneous triple product property:

The simultaneous triple product property

Definition (Definition 5.1.)
We say that n triples of subsets A_{i}, B_{i}, C_{i} (for $1 \leq i \leq n$) of a group H satisfy the simultaneous triple product property if for each i, the three subsets A_{i}, B_{i}, C_{i} satisfy the triple product property, and
for all $\mathrm{i}, \mathrm{j}, \mathrm{k}, a_{i}\left(a_{j}^{\prime}\right)^{-1} b_{j}\left(b_{k}^{\prime}\right)^{-1} c_{k}\left(c_{i}^{\prime}\right)^{-1}=1$ implies $i=j=k$ for $a_{i} \in A_{i}, a_{j}^{\prime} \in A_{j}, b_{j} \in B_{j}, b_{k}^{\prime} \in B_{k}, c_{k} \in C_{k}$ and $c_{i}^{\prime} \in C_{i}$.
We say that such a group simultaneous realizes
$<\left|A_{i}\right|,\left|B_{i}\right|,\left|C_{i}\right|>, \ldots,<\left|A_{n}\right|,\left|B_{n}\right|,\left|C_{n}\right|>$.

The simultaneous triple product property

- Let $H=\mathrm{Cyc}_{n}^{3}$, and call the three factors H_{1}, H_{2} and H_{3}. Define the following sets:
- $A_{1}=H_{1} \backslash\{0\}, B_{1}=H_{2} \backslash\{0\}, C_{1}=H_{3} \backslash\{0\}$
- $A_{2}=H_{2} \backslash\{0\}, B_{2}=H_{3} \backslash\{0\}, C_{2}=H_{1} \backslash\{0\}$

Theorem (Proposition 5.2.)

The two triples A_{1}, B_{1}, C_{1} and A_{2}, B_{2}, C_{2} satisfy the simultaneous triple product property.

Proof.
by hand

- The reason for the strange condition in the definition of the simultaneous triple product property is that it is exactly what is needed to reduce several independent matrix multiplications to one group algebra multiplication.

The simultaneous triple product property

Theorem (Theorem 5.3.)
Let R be any algebra over \mathbb{C}.If H simultaneous realizes
$<n_{1}, m_{1}, p_{1}>, \ldots,<n_{k}, m_{k}, p_{k}>$, then the number of ring operations required to perform k independent matrix multiplications of sizes $n_{1} \times m_{1}$ by $m_{1} \times p_{1}, \ldots, n_{k} \times m_{k}$ by $m_{k} \times p_{k}$ is at most the number of operations required to multiply two elements of $R[H]$.

Proof.
by hand

The simultaneous triple product property

Theorem (Lemma 5.4.)
If n triples of subsets $A_{i}, B_{i}, C_{i} \subseteq H$ satisfy the simultaneous triple product property, and n^{\prime} triples of subsets $A_{i}^{\prime}, B_{i}^{\prime}, C_{i}^{\prime} \subseteq H^{\prime}$ satisfy the simultaneous triple product property, then so do $n n^{\prime}$ triples of subsets $A_{i} \times A_{j}^{\prime}, B_{i} \times B_{j}^{\prime}, C_{i} \times C_{j}^{\prime} \subseteq H \times H^{\prime}$.
We will talk about Thm 5.5 and its proof in the last part and show further more that any bound on ω that can be achieved using the simultaneous triple product property can also be achieved using the ordinary triple product property, but it is an important organizing principle.

Local strong USPs

In this section we explain how to interpret each of our constructions in this setting.
Definition (local strong USPs)
A local strong USP of width k is a subset $U \subseteq\{1,2,3\}^{k}$ such that for each ordered triple $(u, v, k) \in U^{3}$, with u, v, and w not all equal, there exists $i \in[k]$ such that $\left(u_{i}, v_{i}, w_{i}\right)$ is an element of $\{(1,2,1),(1,2,2),(1,1,3),(1,3,3),(2,2,3),(3,2,3)\}$.

Theorem (Lemma 6.1.)
Every local strong USP is a strong USP.
Proof.
by hand

Local strong USPs

Theorem (Theorem 6.2.)
Let U be a local strong USP of width k, and for each $u \in U$ define subsets $A_{u}, B_{u}, C_{u} \subseteq C y c_{l}^{k}$ by
$A_{u}=x \in C y c_{l}^{k}: x_{j} \neq 0$ iff $u_{j}=1$,
$B_{u}=x \in C y c_{l}^{k}: x_{j} \neq 0$ iff $u_{j}=2$, and
$C_{u}=x \in C y c_{l}^{k}: x_{j} \neq 0$ iff $u_{j}=3$.
Then the triples A_{u}, B_{u}, C_{u} satisfy the simultaneous triple product property.

Proof.
by hand. I think there's something wrong in the proof on the paper.

Local strong USPs

Theorem (Proposition 6.3.)
The strong USP capacity is achieved by local strong USPs. In particular, given any strong USP U of width k, there exists a local strong USP of size $|U|$! and width $|U| k$.

Proof.
by hand
Section 6.2 and 6.3 are omitted here in the presentation.

The wreath product construction

- Let H be a group, and define $G=S y m_{n} \ltimes H^{n}$, where the symmetric group $S^{5} m_{n}$ acts on H^{n} from the right by permuting the coordinates according to $\left(h^{\pi}\right)_{i}=h_{\pi_{i}}$. We write elements of G as $h \pi$ with $h \in H^{n}$ and $\pi \in$ Sym $_{n}$.

The wreath product construction

Theorem (Theorem 7.1.)
If n triples of subsets $A_{i}, B_{i}, C_{i} \subseteq H$ satisfy the simultaneous triple product property, then the following subsets H_{1}, H_{2}, H_{3} of
$G=S y m_{n} \ltimes H^{n}$ satisfy the triple product property:
$H_{1}=\left\{h \pi: \pi \in\right.$ Sym $_{n}, h_{i} \in A_{i}$ for each $\left.i\right\}$
$H_{2}=\left\{h \pi: \pi \in \operatorname{Sym}_{n}, h_{i} \in B_{i}\right.$ for each $\left.i\right\}$
$H_{3}=\left\{h \pi: \pi \in \operatorname{Sym}_{n}, h_{i} \in C_{i}\right.$ for each $\left.i\right\}$
Proof.
by hand

The wreath product construction

Theorem (Theorem 5.5.)
If a group H simultaneously realizes $<a_{1}, b_{1}, c_{1}>, \ldots,<a_{n}, b_{n}, c_{n}>$ and has character degrees $\left\{d_{k}\right\}$, then $\sum_{i=1}^{n}\left(a_{i} b_{i} c_{i}\right)^{\omega / 3} \leq \sum_{k} d_{k}^{\omega}$.

Proof.
by hand
Frequently H will be abelian, in which case $\sum_{k} d_{k}^{\omega}=|H|$. That occurs in the example from Prop.5.2, which proves that $\omega<2.93$ using Theorem 5.5. show the calculations by hand.
any bound that can be derived from Theorem 5.5 can be proved using Theorem 1.8 as well.

