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Abstract

I for the first time, use the group-theoretic approach to derive
algorithms faster than the standard algorithm

I 2.41

I two conjectures (⇒ ω = 2)



what are we working for?

I goal: the exponent of matrix multiplication, the smallest real
number ω for which n ∗ n matrix multiplication can be
performed in O(nω+ε) operations for each ε > 0.



main work of Cohn and Umans[2003] in their previous
paper,denoted as [2] in the paper we are studying

steps of the framework:

I one selects a finite group G satisfying a certain property

I reduce n ∗ n matrix multiplication to multiplication of
elements of the group algebra C[G]

I via Fourier transform, the latter multiplication is reduced to
several smaller matrix multiplication

I the size of those small matrices are the character degrees of G

I Thus we get a recursive algorithm whose running time
depends on the character degrees.

I Thus the problem of devising matrix multiplication
algorithms is imported into the domain of group theory
and representation theory.



the main question raised in [2] is...

I whether the proposed approach could prove nontrivial bounds
on ω (that is , to prove ω < 3)

I this was shown to be equivalent to a question in
representation theory:

I is there a group G with subsets S1, S2,S3 that satisfy the triple
product property, and for which |S1||S2||S3| >

∑
i d3

i ,where di

is the set of character degrees of G?

I In our paper we resolve this question in the affirmative.



now comes to our paper,some notations:

I The set 1, 2, ..., k is denoted [k].

I The cyclic group of order k is denoted Cyck (with addition
notation for the group law).

I The symmetric group on a set S is denoted Sym(S) or Symn.

I If G is a group and R is a ring, then R[G] will denote the
group algebra of G with coefficients in R.



some related basic facts in representation theory that will
be used

I The group algebra C[G] of a finite group G decomposes as the
direct product C [G ] ∼= Cd1∗d1 ∗ ... ∗ Cdk∗dk of matrix algebras
of orders d1, ..., dk . These orders are the character degrees of
G.

I If we compute the dimensions of both sides, we have
|G | =

∑
i d2

i .

I If G has an abelian subgroup A, then all the character degrees
of G are less than or equal to the index [G : A].



some related basic facts in representation theory that will
be used

Theorem (Lemma 1.1)

Let s1, s2, ..., sn be nonnegative real numbers, and suppose that for
every vector µ = (µ1, ..., µn) of nonnegative integers for which∑n

i=1 = N we have (Nµ )
∏n

i=1 sµii ≤ CN . Then
∑n

i=1 ≤ C .



summarize the necessary definition and results from
[2],their previous paper

I If S is a subset of a group, let Q(S) denote the right quotient
set of S ,i.e., Q(S) = s1s−1

2 : s1, s2 ∈ S .

Definition (Definition 1.3([2]).)

A group realizes < n1, n2, n3 > if there are subsets S1, S2,S3 ⊆ G
such that |Si | = ni , and for qi ∈ Q(Si ),if q1q2q3 = 1 then
q1 = q2 = q3 = 1. We call this condition on S1, S2, S3 the triple
product property.



summarize the necessary definition and results from [2]

Theorem (Lemma 1.4([2]).)

If G realizes < n1, n2, n3 >, then it does so for every permutation
of n1, n2, n3.

Theorem (Lemma 1.5([2]).)

If S1, S2,S3 ⊆ G and S ′1, S
′
2,S
′
3 ⊆ G ′ satisfy the triple product

property, then so do the subsets S1 × S ′1, S2 × S ′2,S3 × S ′3.



summarize the necessary definition and results from [2]

Theorem (Theorem 1.6([2]).)

Let R be any algebra over C(not necessarily commutative). If G
realizes < n,m, p >, then the number of ring operations required
to multiply n ×m with m × p matrices over R is at most the
number of operations required to multiply two elements of R[G ].



summarize the necessary definition and results from [2]

I Let 4n = (a, b, c) ∈ Z 3 : a + b + c = n − 1 and a, b, c ≥ 0.

I For x ∈ 4n, we write x = (x1, x2, x3).

I Let H1,H2,H3 be the subgroups of Sym(4n) that preserve
the first, second and third coordinates, respectively.

I Specifically, Hi = π ∈ Sym(4n) : (π(x))i = xi forallx ∈ 4n.

Theorem (Theorem 1.7([2]).)

The subgroups H1,H2,H3 defined above satisfy the triple product
property.



summarize the necessary definition and results from [2]

Theorem (Theorem 1.8([2]).)

Suppose G realizes < n,m, p > and the character degrees of G are
{di}. Then (nmp)ω/3 ≤

∑
i di

ω.

Theorem (Corollary 1.9(2).)

Suppose G realizes < n,m, p > and has largest character degree d.
Then (nmp)ω/3 ≤ dω−2|G |.

Proof.
Combine Thm 1.8[2] with the basic fact mentioned before that
|G | =

∑
i d2

i , then we have the corollary.



Beating the sum of the cubes

I Suppose G realizes < n,m, p > and has character degrees
{di}.

I Since ω ≤ 3,by ruling out the possibility of ω = 3, Thm1.8[2]
yields a nontrivial bound on ω if and only if nmp >

∑
i d3

i .

I Then the question is : whether such a group exists?

I In this section we construct one (which shows that our
methods do indeed prove nontrivial bounds on ω).



Beating the sum of the cubes

Theorem (Lemma 2.1.)

S1,S2, and S3 satisfy the triple product property.

Proof.
Construct the example and show the proof on the whiteboard.



Uniquely solvable puzzles

Definition (USP)

A uniquely solvable puzzle(USP) of width k is a subset
U ⊆ 1, 2, 3k satisfying the following property: For all permutations
π1, π2, π3 ∈ Sym(U),either π1 = π2 = π3 or else there exist u ∈ U
and i ∈ [k] such that at least two of
(π1(u))i = 1,(π2(u))i = 2,(π3(u))i = 3 hold.

Definition (strong USP)

A strong USP of width k is a subset U ⊆ 1, 2, 3k satisfying the
following property: For all permutations π1, π2, π3 ∈ Sym(U),either
π1 = π2 = π3 or else there exist u ∈ U and i ∈ [k] such that
exactly two of (π1(u))i = 1,(π2(u))i = 2,(π3(u))i = 3 hold.



Uniquely solvable puzzles

I show the example of a strong USP of size 8 and width 6 on
the whiteboard

Theorem (Proposition 3.1)

For each k ≥ 1, there exists a strong USP of size 2k and width 2k.

Proof.
By hand.



Uniquely solvable puzzles

Definition (the strong USP capacity)

We define the strong USP capacity to ba the largest constant C
such that there exist strong USPs of size (C − o(1))k and width k
for infinitely many values of k .
The USP capacity is defined analogously.



Uniquely solvable puzzles

I There is a simple upper bound for the USP capacity, which is
of course an upper bound for the strong USP capacity as well.

Theorem (Lemma 3.2.)

The USP capacity is at most (27/4)1/3.

Proof.
On the board.



Uniquely solvable puzzles

I In section 6 of [3] they show implicitly that Lemma 3.2 is
sharp.

Theorem (Theorem 3.3(Coppersmith and Winograd[3]).)

The USP capacity equals (27/4)1/3.

Theorem (Conjecture 3.4.)

The strong USP capacity equals (27/4)1/3.

I This conjecture would imply that ω = 2.



Using strong USPs

Definition
Given a strong USP U of width k, let H be the abelian group of all
functions from U × [k] to the cyclic group Cycm(H is a group
under pointwise addition).
The symmetric group Sym(U) acts on (H) via
π(h)(u, i) = h(π−1(u), i) for π ∈ Sym(U),h ∈ H, u ∈ U and
i ∈ [k]. Let G be the semidirect product H o Sym(U), and define
subsets S1,S2, S3 of G
by letting Si consist of all products π with π ∈ Sym(U) and h ∈ H
satisfying h(u, j) 6= 0 iff uj = i for all u ∈ U and j ∈ [k].

Theorem (Proposition 3.5.)

If U is a strong USP, then S1,S2, and S3 satisfy the triple product
property.

Proof.
On the board.



Using strong USPs

Theorem (Corollary 3.6.)

On the board,with the proof.

I several bounds (on the board):2.67, 2.48, 2



The triangle construction

I Suppose U ⊆ (1, 2, 3)k is a subset with only two symbols
occurring in each coordinate.
Let H1 be the subgroup of Sym(U) that preserves the
coordinates in which only 1 and 2 occur,
H2 the subgroup preserving the coordinates in which only 2
and 3 occur,
and H3 the subgroup preserving the coordinates in which only
1 and 3 occur.

Theorem (Lemma 3.7.)

The set U is a USP iff H1,H2, and H3 satisfy the triple product
property within Sym(U).

Proof.
On the board.



The triangle construction

Theorem (Proposition 3.8.)

For each k ≥ 1, there exists a strong USP of size 2k−1(2k + 1) and
width 3k.

Proof.
On the board.

I It follows that the strong USP capacity is at least 2(2/3)
I and ω < 2.48.
I Show the reason on the whiteboard now:

Theorem (Corollary 3.9.)

If U is a USP of width k such that only two symbols occur in each
coordinate, then |U| ≤ (22/3 + o(1))k .

Proof.
em...?how to prove?

I The only upper bound on the size of a strong USP is in
Lemma 3.2.



The simultaneous double product property

I simultaneous double product property will be used to modify
the underlying group of the combinatorial structure in the
algebraic direction.

Definition (double product property)

We say that subsets S1,S2 of a group H satisfy the double product
property if
q1q2 = 1 implies q1 = q2 = 1, where qi ∈ Q(Si ).



The simultaneous double product property

Definition (Definition 4.1.)

We say that n pairs of subsets Ai ,Bi (for 1 ≤ i ≤ n) of a group H
satisfy the simultaneous double product property if

I for all i, the pair Ai ,Bi satisfies the double product property,
and

I for all i,j,k, ai (a′j)
−1 implies i = k, where

ai ∈ Ai , a
′
j ∈ Aj , bj ∈ Bj , andb′k ∈ Bk .



The simultaneous double product property

Theorem (Lemma 4.2.)

If n pairs of subsets Ai ,Bi satisfy the simultaneous double product
property, and n′ pairs of subsets A′i ,B

′
i ⊆ H ′ satisfy the

simultaneous double product property, then so do the nn′ pairs of
subsets Ai × A′i ,Bj × B ′j ⊆ H × H ′.



The simultaneous double product property

I ∆n = {(a, b, c) ∈ Z 3 : a + b + c = n − 1 and a, b, c ≥ 0}.
I Given n pairs of subsets Ai ,Bi in H for 0 ≤ i ≤ n − 1.

Definition
we define triples of subsets in H3 indexed by v = (v1, v2, v3) ∈ ∆n

as follows:
Âv = Av1 × {1} × Bv3

B̂v = Bv1 × Av2 × {1}
Ĉv = {1} × Bv2 × Av3



The simultaneous double product property

Theorem (Theorem 4.3.)

If n pairs of subsets Ai ,Bi ⊆ H(with 0 ≤ i ≤ n − 1) satisfy the
simultaneous double product property, then the following subsets
S1, S2,S3 of G = (H3)∆n o Sym(∆n) satisfy the triple product
property:
S1 = âπ : π ∈ Sym(∆n), âv ∈ Âv for all v

S2 = b̂π : π ∈ Sym(∆n), b̂v ∈ B̂v for all v

S3 = ĉπ : π ∈ Sym(∆n), ĉv ∈ Ĉv for all v



The simultaneous double product property

Theorem (Theorem 4.4.)

If H is a finite group with character degrees {dk}, and n pairs of
subsets Ai ,Bi ⊆ H satisfy the simultaneous double product
property, then∑n

i=1(|Ai ||Bi |)ω/2 ≤ (
∑

k dωk )3/2.

Proof.
On the board.

I Using this theorem, the example after Definition 4.1 recovers
the trivial bound ω ≤ 3 as k →∞. Show the proof.



The simultaneous double product property

I Now we use two parameters α and β to describe pairs
satisfying the simultaneous double product property:

I if there are n pairs,choose α and β so that |Ai ||Bi | ≥ nα for
all i and |H| = nβ.

I If H is abelian Theorem 4.4 implies ω ≤ (3β − 2)/α. show the
calculations.



The simultaneous double product property

Theorem (Proposition 4.5.)

For each m ≥ 2, there is a construction in Cyc2l
m satisfying the

simultaneous double product property with
α = log2(m − 1) + o(1) and β = log2m + o(1) as l→∞.

Proof.
By hand. (kind of disagree with the last part of the proof on the
paper)

I Taking m = 6 yields exactly the same bound as in Subsection
3.3 (ω ≤ 2.48).



The simultaneous double product property

I The only limitations we know of on the possible values of α
and β are the following:

Theorem (Proposition 4.6.)

If n pairs of subsets Ai ,Bi ⊆ H satisfy the simultaneous double
product property, with |Ai ||Bi | ≥ nα for all i and |H| = nβ,then
α ≤ β and α + 2 ≤ 2β.

Proof.
by hand



The simultaneous double product property

I The most important case is when H is an abelian group. There
the bound on ω is ω ≤ (3β − 2)/α. We’ve mentioned this.

I Proposition 4.6 shows that the only way to achieve ω = 2 is
α = β = 2. show it by hand.

I and we conjecture that this is possible:

Theorem (Conjecture 4.7.)

For arbitrarily large n, there exists an abelian group H with n pairs
of subsets Ai ,Bi satisfying the simultaneous double product
property such that |H| = n2+o(1) and |Ai ||Bi | ≥ n2−o(1).



The simultaneous triple product property

I say something on the board

I This apportionment can be viewed as reducing several
independent matrix multiplication problems to a single group
algebra multiplication, using triples of subsets satisfying the
simultaneous triple product property:



The simultaneous triple product property

Definition (Definition 5.1.)

We say that n triples of subsets Ai ,Bi ,Ci (for 1 ≤ i ≤ n) of a
group H satisfy the simultaneous triple product property if
for each i, the three subsets Ai ,Bi ,Ci satisfy the triple product
property, and
for all i,j,k, ai (a′j)

−1bj(b′k)−1ck(c ′i )
−1 = 1 implies i = j = k

for ai ∈ Ai , a
′
j ∈ Aj , bj ∈ Bj , b

′
k ∈ Bk , ck ∈ Ck and c ′i ∈ Ci .

We say that such a group simultaneous realizes
< |Ai |, |Bi |, |Ci | >,...,< |An|, |Bn|, |Cn| >.



The simultaneous triple product property

I Let H = Cyc3
n , and call the three factors H1,H2 and H3.

Define the following sets:

I A1 = H1 \ {0}, B1 = H2 \ {0}, C1 = H3 \ {0}
I A2 = H2 \ {0}, B2 = H3 \ {0}, C2 = H1 \ {0}

Theorem (Proposition 5.2.)

The two triples A1,B1,C1 and A2,B2,C2 satisfy the simultaneous
triple product property.

Proof.
by hand

I The reason for the strange condition in the definition of the
simultaneous triple product property is that it is exactly what
is needed to reduce several independent matrix multiplications
to one group algebra multiplication.



The simultaneous triple product property

Theorem (Theorem 5.3.)

Let R be any algebra over C.If H simultaneous realizes
< n1,m1, p1 >, ..., < nk ,mk , pk >, then the number of ring
operations required to perform k independent matrix
multiplications of sizes n1 ×m1 by m1 × p1,...,nk ×mk by mk × pk

is at most the number of operations required to multiply two
elements of R[H].

Proof.
by hand



The simultaneous triple product property

Theorem (Lemma 5.4.)

If n triples of subsets Ai ,Bi ,Ci ⊆ H satisfy the simultaneous triple
product property, and n′ triples of subsets A′i ,B

′
i ,C
′
i ⊆ H ′ satisfy

the simultaneous triple product property,then so do nn′ triples of
subsets Ai × A′j ,Bi × B ′j ,Ci × C ′j ⊆ H × H ′.

We will talk about Thm 5.5 and its proof in the last part and show
further more that any bound on ω that can be achieved using the
simultaneous triple product property can also be achieved using the
ordinary triple product property, but it is an important organizing
principle.



Local strong USPs

In this section we explain how to interpret each of our
constructions in this setting.

Definition (local strong USPs)

A local strong USP of width k is a subset U ⊆ {1, 2, 3}k such that
for each ordered triple (u, v , k) ∈ U3, with u,v,and w not all equal,
there exists i ∈ [k] such that (ui , vi ,wi ) is an element of
{(1,2,1),(1,2,2),(1,1,3),(1,3,3),(2,2,3),(3,2,3)}.

Theorem (Lemma 6.1.)

Every local strong USP is a strong USP.

Proof.
by hand



Local strong USPs

Theorem (Theorem 6.2.)

Let U be a local strong USP of width k, and for each u ∈ U define
subsets Au,Bu,Cu ⊆ Cyck

l by
Au = x ∈ Cyck

l : xj 6= 0 iff uj = 1,
Bu = x ∈ Cyck

l : xj 6= 0 iff uj = 2, and
Cu = x ∈ Cyck

l : xj 6= 0 iff uj = 3.
Then the triples Au,Bu,Cu satisfy the simultaneous triple product
property.

Proof.
by hand. I think there’s something wrong in the proof on the
paper.



Local strong USPs

Theorem (Proposition 6.3.)

The strong USP capacity is achieved by local strong USPs. In
particular, given any strong USP U of width k, there exists a local
strong USP of size |U|! and width |U|k.

Proof.
by hand

Section 6.2 and 6.3 are omitted here in the presentation.



The wreath product construction

I Let H be a group, and define G = Symn n Hn, where the
symmetric group Symn acts on Hn from the right by
permuting the coordinates according to (hπ)i = hπi . We write
elements of G as hπ with h ∈ Hn and π ∈ Symn.



The wreath product construction

Theorem (Theorem 7.1.)

If n triples of subsets Ai ,Bi ,Ci ⊆ H satisfy the simultaneous triple
product property, then the following subsets H1,H2,H3 of
G = Symn n Hn satisfy the triple product property:
H1 = {hπ : π ∈ Symn, hi ∈ Ai for each i}
H2 = {hπ : π ∈ Symn, hi ∈ Bi for each i}
H3 = {hπ : π ∈ Symn, hi ∈ Ci for each i}

Proof.
by hand



The wreath product construction

Theorem (Theorem 5.5.)

If a group H simultaneously realizes < a1, b1, c1 >,...,< an, bn, cn >
and has character degrees {dk}, then

∑n
i=1(aibici )

ω/3 ≤
∑

k dωk .

Proof.
by hand

Frequently H will be abelian, in which case
∑

k dωk = |H|. That
occurs in the example from Prop.5.2, which proves that ω < 2.93
using Theorem 5.5. show the calculations by hand.
any bound that can be derived from Theorem 5.5 can be proved
using Theorem 1.8 as well.


