

Group-theoretical Method of Matrix Multiplication

Jiayue Qi

Supervisor: Xiao-Shan Gao

2017.05.24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Contents

Introduction

Group-theoretical Method of Matrix Multiplication: Notions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Small Matrix Multiplication
- Constructing Triple Product Property Triples
- Sonclusion

Definition (matrix multiplication exponent ω)

The matrix multiplication exponent ω is the smallest real number ω for which $n \times n$ matrix multiplication can be performed in $O(n^{\omega+\varepsilon})$ operations for each $\varepsilon > 0$.

It is clear: $2 \le \omega \le 3$

A Major Conjecture: $\omega = 2$.

Let

Let
$$A, B, C \in \mathbb{R}^{2^n \times 2^n}$$
.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$
(1)

$$M_{1} := (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_{2} := (A_{21} + A_{22})B_{11}$$

$$M_{3} := A_{11}(B_{12} - B_{22})$$

$$M_{4} := A_{22}(B_{21} - B_{11})$$

$$M_{5} := (A_{11} + A_{12})B_{22}$$

$$M_{6} := (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_{7} := (A_{12} - A_{22})(B_{21} + B_{22})$$

$$(2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 C_{11} , C_{12} , C_{21} , C_{22} can be obtained from M_i by additions. Then we only need 7 multiplication operations in each step! We repeat this step *n* times till the sub-matrix becomes number.

Denote f(n) as the total number of calculations for multiplying two $2^n \times 2^n$ matrices.

$$f(n+1) = 7f(n) + l \cdot 4^n,$$

where *l* is the number of additions in one step of the algorithm. Thus,

$$f(n) = (7 + o(1))^n$$

then for two $N = 2^n$ matrices, the asymptotic complexity of Strassen's algorithm is:

$$O([7 + o(1)]^n) = O(N^{\log_2 7 + o(1)}) \approx O(N^{2.8074}).$$

History of the complexity of matrix multiplication

- Volker Strassen, 1969, $\omega \leq 2.8074$.
- Don Coppersmith, Shmuel Winograd, 1990, tensor algorithm $\omega \leq 2.375477$. (CW1990)
- Andrew Stothers, 2010, improve CW90 algorithm, $\omega \leq$ 2.374.

- Virginia Williams, 2011, $\omega \leq 2.3728642$.
- Francois Le Gall, 2014, simplify Williams' algorithm, $\omega \leq 2.3728639$.

History of the complexity of matrix multiplication

- Henry Cohn, Robert Kleinberg, Balazs Szegedy, Chris Umans, 2005, the Group-theoretical Method of Matrix Multiplication, two conjectures ⇒ ω = 2, best bound: ω ≤ 2.41.
- Andris Ambainis, Yuval Filmus, Francois Le Gall, 2015, "the framework of analyzing higher and higher tensor powers of a certain identity of Coppersmith and Winograd cannot result in an algorithm within running time $O(n^{2.3725})$ thus cannot prove $\omega = 2$ ".
- Hence the main topic of this thesis is the group-theoretical method of matrix multiplication.

Contents

Introduction

Group-theoretical Method of Matrix Multiplication: Notions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Small Matrix Multiplication
- Constructing Triple Product Property Triples
- Sonclusion

Group Method of Matrix Multiplication: Notions

- $\mathbb{C}\colon$ the field of complex numbers.
 - The group algebra C[G] of a finite group G decomposes as the direct product C[G] ≅ C^{d₁×d₁} × ... × C^{d_k×d_k} of matrix algebras of orders d₁, ..., d_k. These orders are the character degrees of G.
 - If we compute the dimensions of both sides, we have $|G| = \sum_{i} d_{i}^{2}$.
 - If G has an abelian subgroup A, then all the character degrees of G are less than or equal to the index [G : A].

Group Method of Matrix Multiplication: Notions

• If S is a subset of a group, let Q(S) denote the right quotient set of S,i.e., $Q(S) = s_1 s_2^{-1} : s_1, s_2 \in S$.

Definition (double product property)

We say that subsets S_1 , S_2 of a group H satisfy the double product property if $q_1q_2 = 1$ implies $q_1 = q_2 = 1$, where $q_i \in Q(S_i)$.

Definition

A group realizes $\langle n_1, n_2, n_3 \rangle$ if there are subsets $S_1, S_2, S_3 \subseteq G$ such that $|S_i| = n_i$, and for $q_i \in Q(S_i)$, if $q_1q_2q_3 = 1$ then $q_1 = q_2 = q_3 = 1$. We call this condition on S_1, S_2, S_3 the **triple product property**. Suppose G realizes $\langle n, m, p \rangle$ and has character degrees $\{d_i\}$.

Theorem (CU03)

Suppose G realizes $\langle n, m, p \rangle$ and the character degrees of G are $\{d_i\}$. Then $(nmp)^{\omega/3} \leq \sum_i d_i^{\omega}$.

Theorem (CU03)

Suppose G realizes $\langle n, m, p \rangle$ and has largest character degree d. Then $(nmp)^{\omega/3} \leq d^{\omega-2}|G|$.

Beating the sum of the cubes

Since $\omega \leq 3$, by ruling out the possibility of $\omega = 3$, Thm1.8[CU03] yields a nontrivial bound on ω if and only if $nmp > \sum_i d_i^3$.

Theorem (TPP)

Suppose group G has Sylow p-subgroup P, Sylow q-subgroup Q and Sylow r-subgroup R, p, q, r are pairwisely coprime. Then G realizes $\langle |P|, |Q|, |R| \rangle$ via P, Q, R.

Corollary (DPP)

Group G has Sylow p-subgroup P and Sylow q-subgroup Q, |P|, |Q| coprime. Then $P, Q \subset G$ satisfy double product property.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (CKSU05)

We say that n pairs of subsets A_i , B_i (for $1 \le i \le n$) of a group H satisfy the simultaneous double product property if

• for all *i*, the pair A_i, B_i satisfies the double product property, and

• for all $i, j, k, a_i(a'_j)^{-1}b_j(b'_k)^{-1} = 1$ implies i = k, where $a_i \in A_i, a'_j \in A_j, b_j \in B_j$, $andb'_k \in B_k$.

Theorem (CKSU05)

If n pairs of subsets $A_i, B_i \subseteq H(with \ 0 \le i \le n-1)$ satisfy the simultaneous double product property, then the following subsets S_1, S_2, S_3 of $G = (H^3)^{\Delta_n} \rtimes Sym(\Delta_n)$ satisfy the triple product property: $S_1 = \widehat{a}\pi : \pi \in Sym(\Delta_n), \widehat{a_v} \in \widehat{A_v}$ for all v $S_2 = \widehat{b}\pi : \pi \in Sym(\Delta_n), \widehat{b_v} \in \widehat{B_v}$ for all v $S_3 = \widehat{c}\pi : \pi \in Sym(\Delta_n), \widehat{c_v} \in \widehat{C_v}$ for all v

Example

 $H = Cyc_n^k \times Cyc_n, A_i = \{(x, i) : x \in Cyc_n^k\}, B_i = \{(0, i)\}, \text{ then for } i \in Cyc_n^k\}$ $i \in Cyc_n, A_i, B_i$ satisfy the The simultaneous double product property. Let $G = (H^3)^{\Delta_n} \rtimes Sym(\Delta_n)$ $S_1 = \{\widehat{a}\pi : \pi \in Sym(\Delta_n), \widehat{a_v} \in \widehat{A_v} \text{ for all } v\}$ $S_2 = \{\widehat{b}\pi : \pi \in Sym(\Delta_n), \widehat{b_v} \in \widehat{B_v} \text{ for all } v\}$ $S_3 = \{\widehat{c}\pi : \pi \in Sym(\Delta_n), \widehat{c_v} \in \widehat{C_v} \text{ for all } v\}$ where $\Delta_n = \{(a, b, c) \in \mathbb{Z}^3 : a + b + c = n - 1 \text{ and } a, b, c \ge 0\}$ for *n* pairs subsets A_i , B_i of H, $0 \le i \le n-1$, we define subset triples in H^3 , $v = (v_1, v_2, v_3) \in \Delta_n$ is the index set: $A_{v} = A_{v_1} \times \{1\} \times B_{v_2}$ $B_{v} = B_{v_1} \times A_{v_2} \times \{1\}$ $\widehat{C}_{\nu} = \{1\} \times B_{\nu_2} \times A_{\nu_2}$

Example

from CKSU05 theorem 4.3(as showed above)we know that $S_1, S_2, S_3 \subset G$ satisfy the triple product property. From CKSU05 thm1.8 and cor1.9, we have $(|S_1||S_2||S_3|)^{\omega/3} \leq \sum_i d_i^{\omega}$, denote as equation (1) $|S_1| = (|\Delta_n|!)(n^k)^{|\Delta_n|} = |S_2| = |S_3|,$ $|\Delta_n| = \binom{n+1}{2} = \frac{1}{2}n(n+1).$ $|G| = |\Delta_n|! \cdot (n^{k+1})^{3|\Delta_n|}$, substitute into (1), $d_G \leq |\Delta_n|!$ \implies $\omega \leq 3 + \frac{6}{k \cdot n \cdot (n+1)} - \frac{2 \cdot \log_n(\frac{n \cdot (n+1)}{2})!}{k \cdot n(n+1)},$

By calculation we know when $n=4,\ k=3\ \omega$ has a best bound $\omega\leq 2.63682.$

Contents

- Introduction
- Group-theoretical Method of Matrix Multiplication: Notions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Small Matrix Multiplication
- Constructing Triple Product Property Triples
- Sonclusion

The famous result $O(n^{2.81})$ is based on an algorithm that can compute the product of two 2 × 2 matrices with only 7 multiplications.

- Winograd: cannot produce better results with 2×2 matrices.
- Hedtke and Murthy: the group-theoretic framework is not able to produce better bounds for 3 × 3 and 4 × 4 matrices.
- Sarah Hart, Ivo Hedtke, Matthias Müller-Hannemann and Sandeep Murthy in 2013: the group-theoretic framework is not able to produce better bounds for 5 × 5 matrices.

We consider the case for 6×6 matrices multiplication and to see whether this particular TPP approach can give us a better bound.

Definition (BCS1997 chap 14, def14.7)

Let k be a field and U, V, W finite dimensional k-vector space. Let $\eta: U \times V \to W$ be a k-bilinear map. For $i \in \{1, ..., r\}$ let $f_i \in U^*$, $g_i \in V^*$ (dual spaces of U and V resp. over k) and $w_i \in W$ such that $\eta(u, v) = \sum_{i=1}^r f_i(u)g_i(v)w_i$ for all $u \in U$, $v \in V$. Then $\{f_1, g_1, w_1; ...; f_r, g_r, w_r\}$ is called a k-bilinear algorithm of length r for η , or simply a bilinear algorithm when k is fixed. The minimal length of all bilinear algorithms for η is called the rank $R(\eta)$ of η . Let A be a k-algebra. The rank R(A) of A is defined as the rank of its bilinear multiplication map.

(日) (同) (三) (三) (三) (○) (○)

Problem Statement: Is there a group with order less than 90 that can realize (6, 6, 6) TPP property and have multiplication rank less than 161[DIStable]?

Since the search space is too large, my main thinking is to reduce the search space by lots of necessary conditions.

Theorem

If G is an abelian group realizing (6,6,6), then $R(G) \ge 216$.

So we only need to consider non-abelian groups from now on.

For a finite group G, let T(G) be the number of irreducible complex characters of G and b(G) the largest degree of an irreducible character of G.

Theorem (APlowerbounds, Theorem 6)

Let G be a group.
(1)If
$$b(G) = 1$$
, then $R(G) = |G|$.
(2)If $b(G) = 2$, then $R(G) = 2|G| - T(G)$.
(3)If $b(G) \ge 3$, then $R(G) \ge 2|G| + b(G) - T(G) - 1$.

Remark

We write $\overline{R}(G) := \sum_{i} R(d_i)$ for the best known upper bound and $\underline{R}(G)$ for the best known upper bound(can be the theorem above sometimes) for R(G).

Theorem (HHMM5555, lemma3.3)

If G is non-abelian, then $T(G) \leq \frac{5}{8}|G|$. Equality implies that |G: Z(G)| = 4.

we have: $R(G) \ge 2|G| - T(G) \ge (11/8)|G|$ Since we want R(G) < 161, then we have: (11/8)|G| < 161 $|G| \le 117$.

Necessary conditions for 6×6 small matrix multiplication

Definition ((6, 6, 6)C1 candidate)

If a group G realizes $\langle 6,6,6\rangle$ and has $\underline{R}[G]<161,$ we call this group a $\langle 6,6,6\rangle$ C1 candidate.

Proposition

If group G is a (6,6,6) C1 candidate, then $66 \le |G| \le 117$.

Definition (HHMM555, definition3.4)

Let G be a group with a TPP triple (S, T, U), and suppose H is a subgroup of index 2 in G. We define $S_0 = S \cap H, T_0 = T \cap H, U_0 = U \cap H, S_1 = S \setminus H, T_1 = T \setminus H$ and $U_1 = U \setminus H$.

Theorem (generalized)

If group G realizes $\langle n, n, n \rangle$. When n is odd, if G has a subgroup H of index 2, then H realizes $\langle \frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2} \rangle$; When n is even, if G has a subgroup H of index 2, then H realizes $\langle \frac{n}{2}, \frac{n}{2}, \frac{n}{2} \rangle$.

Lemma

Suppose G realizes (6, 6, 6). If G has a subgroup H of index 2, then H realizes (3, 3, 3).

Necessary conditions for $6 \times \overline{6}$ small matrix multiplication

Lemma

If G realizes $\langle 6,6,6\rangle$ and |G|<90, then G has no abelian subgroups of index 2.

Remark

After all these necessary conditions and GAP calculations on the bound of R(G) (rule out those groups G with $R(G) \ge 161$).

Among all the groups of order less than 90, possible C1 candidates are listed as below by their GAP ID (56 groups in total): (68,3),(72,3),(72,15),(72,16),(72,19),(72,20),(72,21),(72,22), (72,23),(72,24),(72,25), (72,39),(72,40),(72,41),(72,42),(72,43), (72,44),(72,45),(72,46),(72,47),(75,2),(78,1), (78,2),(80,3), (80,15),(80,18),(80,28),(80,29),(80,30),(80,31),(80,32),(80,33), (80,34), (80,39),(80,40),(80,41),(80,42),(80,49),(80,50),(81,3), (81,4),(81,6),(81,7),(81,8), (81,9),(81,10),(81,12),(81,13), (81,14),(84,1),(84,2),(84,7),(84,8),(84,9),(84,10),(84,11).

Contents

- Introduction
- Ø Group-theoretical Method of Matrix Multiplication: Notions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **3** Small Matrix Multiplication
- Constructing Triple Product Property Triples
- Onclusion

Definition (IHupgrade2015, TPP capacity)

Denote the *TPP capacity* of group *G* as $\beta(G)$, $\beta(G) := max\{npm, where G realize \langle n, p, m \rangle\}.$

Theore<u>m</u>

 $A_4 \text{ realizes } (3, 3, 2), \ \beta(A_4) = 18.$

TPP triples $S : \{(1), (13)(24)\}; T : \{(1), (243), (234)\}; U : \{(1), (124), (142)\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Denote $G := C_6 \times A_4$.

Proposition

 $\begin{array}{l} G \ realizes \ \langle 6,6,3\rangle \ via \ S_1, \ T_1, \ U_1: \\ S_1 := \\ \{(1,1), (1,(13)(24)), (\bar{3}^{(1)},1), (\bar{3}^{(1)},(13)(24)), (\bar{3}^{(2)},1), (\bar{3}^{(2)},(13)(24))\}; \\ T_1 := \\ \{(1,1), (1,(243)), (1,(234)), (\bar{2}^{(1)},1), (\bar{2}^{(1)},(243)), (\bar{2}^{(1)},(234))\}; \\ U_1 := \{(1,1), (1,(124)), (1,(142))\}. \end{array}$

Denote $H := C_3 \times A_4$.

Proposition

```
 \begin{array}{l} \textit{H realizes } \langle 6,4,3 \rangle \textit{ via } S, T, U: \\ \textit{S} := \\ \{(1,1),(1,(13)(24)),(\bar{3}^{(1)},(13)(24)),(\bar{3}^{(2)},(13)(24)),(\bar{3}^{(1)},1),(\bar{3}^{(2)},1)\}; \\ \textit{T} := \{(1,1),(1,(14)(23)),(1,(143)),(1,(134))\}; \\ \textit{U} := \{(1,1),(1,(123)),(1,(132))\}. \end{array}
```

First explain $S_2, T_2, U_2, X, Y, Z, S, T, U, D, S_3, T_3, U_3, Q!$

Theorem

If S_2 , T_2 , $U_2 \subset D$ satisfy TPP and $S \cap X \neq \phi$, then $Y \cap T = \phi$ and $Z \cap U = \phi$ must hold.

Theorem (generalized)

If S_3 , T_3 , $U_3 \subset Q$ satisfy TPP and $S \cap X \neq \phi$, then we have $Y \cap T = \phi$ and $Z \cap U = \phi$.

Proposition

If S_2 , T_2 , $U_2 \subset D$ satisfy TPP, then the subset triples (S, Y, U), (S, Y, Z), (S, T, Z), (X, T, U), (X, T, Z), (X, Y, U), (X, Y, Z) of *B* all satisfy TPP.

Theorem

If S_2 , T_2 , $U_2 \subset D$ satisfy TPP, and $S_2|_B$ contains some repeated elements, then B realizes $\langle a, b, c \rangle$, where a = r + 1 (r is the number of elements that has more than one occurrence), $b = |T_2|$, $c = |U_2|$.

Theorem (generalized)

If $S', T', U' \subset F$ satisfy TPP and $S_i|_B$ contains some repeated elements, then B realizes $\langle a, b, c \rangle$, where $a = \max\{r+1, |S_i|\}$ (r is the number of elements that has more than one occurrence), $b = \max\{|T_i|\}, c = \max\{|U_i|\}.$ (explain S_i, T_i, U_i , division of $S'|_B$, $T'|_B, U'|_B$)

Contents

- Introduction
- Group-theoretical Method of Matrix Multiplication: Notions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Small Matrix Multiplication
- Constructing Triple Product Property Triples
- Sonclusion

- An example leading to a non-trivial bound: $\omega \leq 2.63682$
- TPP and DPP property of Sylow subgroups of a given group.
- 6 × 6 small matrix multiplication: Reduces to 56 candidates for groups of order < 90.
- Relations between the TPP of an abstract group B and the group $C_n \times B$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reference

- (CKSU05) Cohn H, Kleinberg R, Szegedy B, e al. Group-theoretic algorithms for matrix multiplication[C]. Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on. IEEE, 2005: 379-388.
- (CU03) Cohn H, Umans C. A group-theoretic approach to fast matrix multiplication[C]. Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on. IEEE, 2003: 438-449.
- (HHMM555) Hart S, Hedtke I, Mller-Hannemann M, et al. A fast search algorithm for (m, m, m) Triple Product Property triples and an application for 5 5 matrix multiplication[J]. Groups Complexity Cryptology, 2015, 7(1): 31-46.

- (APlowerbounds) Pospelov A. Group-theoretic lower bounds for the complexity of matrix multiplication[C]. International Conference on Theory and Applications of Models of Computation. Springer Berlin Heidelberg, 2011: 2-13.
- (strassen1969) Strassen V. Gaussian elimination is not optimal[J]. Numerische mathematik, 1969, 13(4): 354-356.
- (CW90) Coppersmith D, Winograd S. Matrix multiplication via arithmetic progressions[J]. Journal of symbolic computation, 1990, 9(3): 251-280.

Reference

- (AS2010) Davie A M, Stothers A J. Improved bound for complexity of matrix multiplication[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2013, 143(02): 351-369.
- (VW2012) Williams V V. Multiplying matrices faster than Coppersmith-Winograd[C]. Proceedings of the forty-fourth annual ACM symposium on Theory of computing. ACM, 2012: 887-898.
- (LeGall2014) Le Gall F. Powers of tensors and fast matrix multiplication[C]. Proceedings of the 39th international symposium on symbolic and algebraic computation. ACM, 2014: 296-303.

- (AFL2015) Ambainis A, Filmus Y, Le Gall F. Fast matrix multiplication: limitations of the coppersmith-winograd method[C]. Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing. ACM, 2015: 585-593.
- (DIStable) DrevetC, Islam M N, Schost. Optimization techniques for small matrix multiplication[J]. Theoretical Computer Science, 2011, 412(22): 2219-2236.
- (IHupgrade2015) Hedtke I. Upgrading Subgroup Triple-Product-Property Triples[J]. Journal of Experimental Algorithmics (JEA), 2015, 20: 1.1.

 (BCS1997) Brgisser P, Clausen M, Shokrollahi A. Algebraic Complexity Theory[M]. Springer Science&Business Media, 1996.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank You

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>