Defence

Group-theoretical Method of Matrix Multiplication

Jiayue Qi

Supervisor: Xiao-Shan Gao

2017.05.24

Contents

(1) Introduction
(2) Group-theoretical Method of Matrix Multiplication: Notions
(3) Small Matrix Multiplication
(9) Constructing Triple Product Property Triples
(5) Conclusion

Matrix multiplication exponent ω

Definition (matrix multiplication exponent ω)

The matrix multiplication exponent ω is the smallest real number ω for which $n \times n$ matrix multiplication can be performed in $O\left(n^{\omega+\varepsilon}\right)$ operations for each $\varepsilon>0$.

It is clear: $2 \leq \omega \leq 3$
A Major Conjecture: $\omega=2$.

Strassen's algorithm

Let $A, B, C \in R^{2^{n} \times 2^{n}}$.

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \tag{1}\\
A_{21} & A_{22}
\end{array}\right], B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right], C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Let

$$
\begin{align*}
& M_{1}:=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& M_{2}:=\left(A_{21}+A_{22}\right) B_{11} \\
& M_{3}:=A_{11}\left(B_{12}-B_{22}\right) \\
& M_{4}:=A_{22}\left(B_{21}-B_{11}\right) \tag{2}\\
& M_{5}:=\left(A_{11}+A_{12}\right) B_{22} \\
& M_{6}:=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
& M_{7}:=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)
\end{align*}
$$

Strassen's algorithm

$C_{11}, C_{12}, C_{21}, C_{22}$ can be obtained from M_{i} by additions. Then we only need 7 multiplication operations in each step! We repeat this step n times till the sub-matrix becomes number.

Denote $f(n)$ as the total number of calculations for multiplying two $2^{n} \times 2^{n}$ matrices.

$$
f(n+1)=7 f(n)+1 \cdot 4^{n}
$$

where I is the number of additions in one step of the algorithm. Thus,

$$
f(n)=(7+o(1))^{n}
$$

then for two $N=2^{n}$ matrices, the asymptotic complexity of Strassen's algorithm is:

$$
O\left([7+o(1)]^{n}\right)=O\left(N^{\log _{2} 7+o(1)}\right) \approx O\left(N^{2.8074}\right)
$$

History of the complexity of matrix multiplication

- Volker Strassen, 1969, $\omega \leq 2.8074$.
- Don Coppersmith, Shmuel Winograd, 1990, tensor algorithm $\omega \leq 2.375477$. (CW1990)
- Andrew Stothers, 2010, improve CW90 algorithm, $\omega \leq 2.374$.
- Virginia Williams, 2011, $\omega \leq 2.3728642$.
- Francois Le Gall, 2014, simplify Williams' algorithm, $\omega \leq 2.3728639$.

History of the complexity of matrix multiplication

- Henry Cohn, Robert Kleinberg, Balazs Szegedy, Chris Umans, 2005, the Group-theoretical Method of Matrix Multiplication, two conjectures $\Longrightarrow \omega=2$, best bound: $\omega \leq 2.41$.
- Andris Ambainis, Yuval Filmus, Francois Le Gall, 2015, "the framework of analyzing higher and higher tensor powers of a certain identity of Coppersmith and Winograd cannot result in an algorithm within running time $O\left(n^{2.3725}\right)$ thus cannot prove $\omega=2$ ".
- Hence the main topic of this thesis is the group-theoretical method of matrix multiplication.

Contents

(1) Introduction
(2) Group-theoretical Method of Matrix Multiplication: Notions
(3) Small Matrix Multiplication
(9) Constructing Triple Product Property Triples
(5) Conclusion

Group Method of Matrix Multiplication: Notions

\mathbb{C} : the field of complex numbers.

- The group algebra $\mathbb{C}[G]$ of a finite group G decomposes as the direct product $\mathbb{C}[G] \cong \mathbb{C}^{d_{1} \times d_{1}} \times \ldots \times \mathbb{C}^{d_{k} \times d_{k}}$ of matrix algebras of orders d_{1}, \ldots, d_{k}. These orders are the character degrees of G.
- If we compute the dimensions of both sides, we have $|G|=\sum_{i} d_{i}^{2}$.
- If G has an abelian subgroup A, then all the character degrees of G are less than or equal to the index $[G: A]$.

Group Method of Matrix Multiplication: Notions

- If S is a subset of a group, let $Q(S)$ denote the right quotient set of S,i.e., $Q(S)=s_{1} s_{2}^{-1}: s_{1}, s_{2} \in S$.

Definition (double product property)

We say that subsets S_{1}, S_{2} of a group H satisfy the double product property if
$q_{1} q_{2}=1$ implies $q_{1}=q_{2}=1$, where $q_{i} \in Q\left(S_{i}\right)$.

Definition

A group realizes $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ if there are subsets $S_{1}, S_{2}, S_{3} \subseteq G$ such that $\left|S_{i}\right|=n_{i}$, and for $q_{i} \in Q\left(S_{i}\right)$, if $q_{1} q_{2} q_{3}=1$ then $q_{1}=q_{2}=q_{3}=1$. We call this condition on S_{1}, S_{2}, S_{3} the triple product property.

Group-theoretical Method of Matrix Multiplication

Suppose G realizes $\langle n, m, p\rangle$ and has character degrees $\left\{d_{i}\right\}$.

Theorem (CU03)

Suppose G realizes $\langle n, m, p\rangle$ and the character degrees of G are $\left\{d_{i}\right\}$. Then $(n m p)^{\omega / 3} \leq \sum_{i} d_{i}{ }^{\omega}$.

Theorem (CU03)

Suppose G realizes $\langle n, m, p\rangle$ and has largest character degree d. Then $(n m p)^{\omega / 3} \leq d^{\omega-2}|G|$.

Beating the sum of the cubes
Since $\omega \leq 3$, by ruling out the possibility of $\omega=3$, Thm1.8[CU03] yields a nontrivial bound on ω if and only if $n m p>\sum_{i} d_{i}^{3}$.

Triple product property of Sylow subgroups

Theorem (TPP)

Suppose group G has Sylow p-subgroup P, Sylow q-subgroup Q and Sylow r-subgroup R, p, q, r are pairwisely coprime. Then G realizes $\langle | P|,|Q|,|R|\rangle$ via P, Q, R.

Corollary (DPP)

Group G has Sylow p-subgroup P and Sylow q-subgroup Q, $|P|,|Q|$ coprime. Then $P, Q \subset G$ satisfy double product property.

The simultaneous double product property

Definition (CKSU05)

We say that n pairs of subsets $A_{i}, B_{i}($ for $1 \leq i \leq n$) of a group H satisfy the simultaneous double product property if

- for all i, the pair A_{i}, B_{i} satisfies the double product property, and
- for all $i, j, k, a_{i}\left(a_{j}^{\prime}\right)^{-1} b_{j}\left(b_{k}^{\prime}\right)^{-1}=1$ implies $i=k$, where

$$
a_{i} \in A_{i}, a_{j}^{\prime} \in A_{j}, b_{j} \in B_{j}, a n d b_{k}^{\prime} \in B_{k}
$$

The simultaneous double product property

Theorem (CKSU05)

If n pairs of subsets $A_{i}, B_{i} \subseteq H$ (with $\left.0 \leq i \leq n-1\right)$ satisfy the simultaneous double product property, then the following subsets S_{1}, S_{2}, S_{3} of $G=\left(H^{3}\right)^{\Delta_{n}} \rtimes \operatorname{Sym}\left(\Delta_{n}\right)$ satisfy the triple product property:
$S_{1}=\widehat{a} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{a_{v}} \in \widehat{A_{v}}$ for all v
$S_{2}=\widehat{b} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{b_{v}} \in \widehat{B_{v}}$ for all v
$S_{3}=\widehat{c} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{c_{v}} \in \widehat{C_{v}}$ for all v

An example: a nontrivial bound for ω

Example

$H=C y c_{n}^{k} \times C y c_{n}, A_{i}=\left\{(x, i): x \in C y c_{n}^{k}\right\}, B_{i}=\{(0, i)\}$, then for $i \in C y c_{n}, A_{i}, B_{i}$ satisfy the The simultaneous double product property.
Let $G=\left(H^{3}\right)^{\Delta_{n}} \rtimes \operatorname{Sym}\left(\Delta_{n}\right)$
$S_{1}=\left\{\hat{a} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{a_{v}} \in \widehat{A_{\nu}}\right.$ for all $\left.v\right\}$
$S_{2}=\left\{\widehat{b} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{b_{v}} \in \widehat{B_{v}}\right.$ for all $\left.v\right\}$
$S_{3}=\left\{\widehat{c} \pi: \pi \in \operatorname{Sym}\left(\Delta_{n}\right), \widehat{c_{v}} \in \widehat{C_{v}}\right.$ for all $\left.v\right\}$
where $\Delta_{n}=\left\{(a, b, c) \in \mathbb{Z}^{3}: a+b+c=n-1\right.$ and $\left.a, b, c \geq 0\right\}$ for n pairs subsets A_{i}, B_{i} of $H, 0 \leq i \leq n-1$, we define subset triples in $H^{3}, v=\left(v_{1}, v_{2}, v_{3}\right) \in \Delta_{n}$ is the index set:
$\widehat{A_{v}}=A_{v_{1}} \times\{1\} \times B_{v_{3}}$
$\widehat{B_{v}}=B_{v_{1}} \times A_{v_{2}} \times\{1\}$
$\widehat{C_{v}}=\{1\} \times B_{v_{2}} \times A_{v_{3}}$

An example

Example

from CKSU05 theorem 4.3(as showed above)we know that $S_{1}, S_{2}, S_{3} \subset G$ satisfy the triple product property. From CKSU05 thm1.8 and cor1.9, we have $\left(\left|S_{1}\right|\left|S_{2} \| S_{3}\right|\right)^{\omega / 3} \leq \sum_{i} d_{i}^{\omega}$, denote as equation (1)
$\left|S_{1}\right|=\left(\left|\Delta_{n}\right|!\right)\left(n^{k}\right)^{\left|\Delta_{n}\right|}=\left|S_{2}\right|=\left|S_{3}\right|$,
$\left|\Delta_{n}\right|=\binom{n+1}{2}=\frac{1}{2} n(n+1)$.
$|G|=\left|\Delta_{n}\right|!\cdot\left(n^{k+1}\right)^{3\left|\Delta_{n}\right|}$, substitute into (1), $d_{G} \leq\left|\Delta_{n}\right|$!
\Longrightarrow

$$
\omega \leq 3+\frac{6}{k \cdot n \cdot(n+1)}-\frac{2 \cdot \log _{n}\left(\left(\frac{n \cdot(n+1)}{2}\right)!\right)}{k \cdot n(n+1)}
$$

By calculation we know when $n=4, k=3 \omega$ has a best bound $\omega \leq 2.63682$.

Contents

(1) Introduction
(2) Group-theoretical Method of Matrix Multiplication: Notions
(3) Small Matrix Multiplication
(9) Constructing Triple Product Property Triples
(5) Conclusion

Small matrix multiplication-background

The famous result $O\left(n^{2.81}\right)$ is based on an algorithm that can compute the product of two 2×2 matrices with only 7 multiplications.

- Winograd: cannot produce better results with 2×2 matrices.
- Hedtke and Murthy: the group-theoretic framework is not able to produce better bounds for 3×3 and 4×4 matrices.
- Sarah Hart, Ivo Hedtke, Matthias Müller-Hannemann and Sandeep Murthy in 2013: the group-theoretic framework is not able to produce better bounds for 5×5 matrices.

We consider the case for 6×6 matrices multiplication and to see whether this particular TPP approach can give us a better bound.

Rank

Definition (BCS1997 chap 14, def14.7)

Let k be a field and U, V, W finite dimensional k-vector space. Let $\eta: U \times V \rightarrow W$ be a k-bilinear map. For $i \in\{1, \ldots, r\}$ let $f_{i} \in U^{*}$, $g_{i} \in V^{*}$ (dual spaces of U and V resp. over k) and $w_{i} \in W$ such that $\eta(u, v)=\sum_{i=1}^{r} f_{i}(u) g_{i}(v) w_{i}$ for all $u \in U, v \in V$. Then $\left\{f_{1}, g_{1}, w_{1} ; \ldots ; f_{r}, g_{r}, w_{r}\right\}$ is called a k-bilinear algorithm of length r for η, or simply a bilinear algorithm when k is fixed. The minimal length of all bilinear algorithms for η is called the rank $R(\eta)$ of η. Let A be a k-algebra. The rank $R(A)$ of A is defined as the rank of its bilinear multiplication map.

6×6 small matrix multiplication

Problem Statement: Is there a group with order less than 90 that can realize $\langle 6,6,6\rangle$ TPP property and have multiplication rank less than 161[DIStable]?

Since the search space is too large, my main thinking is to reduce the search space by lots of necessary conditions.

Theorem

If G is an abelian group realizing $\langle 6,6,6\rangle$, then $R(G) \geq 216$.
So we only need to consider non-abelian groups from now on.

Necessary conditions for 6×6 small matrix multiplication

For a finite group G, let $T(G)$ be the number of irreducible complex characters of G and $b(G)$ the largest degree of an irreducible character of G.

Theorem (APlowerbounds, Theorem 6)

Let G be a group.
(1)If $b(G)=1$, then $R(G)=|G|$.
(2)If $b(G)=2$, then $R(G)=2|G|-T(G)$.
(3)If $b(G) \geq 3$, then $R(G) \geq 2|G|+b(G)-T(G)-1$.

Remark

We write $\bar{R}(G):=\sum_{i} R\left(d_{i}\right)$ for the best known upper bound and $\underline{R}(G)$ for the best known upper bound(can be the theorem above sometimes) for $R(G)$.

Necessary conditions for 6×6 small matrix multiplication

Theorem (HHMM555, lemma3.3)

If G is non-abelian, then $T(G) \leq \frac{5}{8}|G|$. Equality implies that $|G: Z(G)|=4$.
we have:
$R(G) \geq 2|G|-T(G) \geq(11 / 8)|G|$
Since we want $R(G)<161$, then we have:
$(11 / 8)|G|<161$
$|G| \leq 117$.

Necessary conditions for 6×6 small matrix multiplication

Definition ($\langle 6,6,6\rangle \mathrm{C} 1$ candidate)

If a group G realizes $\langle 6,6,6\rangle$ and has $\underline{R}[G]<161$, we call this group a $\langle 6,6,6\rangle$ C1 candidate.

Proposition

If group G is a $\langle 6,6,6\rangle$ C1 candidate, then $66 \leq|G| \leq 117$.

Necessary conditions for 6×6 small matrix multiplication

Definition (HHMM555, definition3.4)

Let G be a group with a TPP triple (S, T, U), and suppose H is a subgroup of index 2 in G. We define
$S_{0}=S \cap H, T_{0}=T \cap H, U_{0}=U \cap H, S_{1}=S \backslash H, T_{1}=T \backslash H$ and $U_{1}=U \backslash H$.

Theorem (generalized)

If group G realizes $\langle n, n, n\rangle$. When n is odd, if G has a subgroup H of index 2 , then H realizes $\left\langle\frac{n+1}{2}, \frac{n+1}{2}, \frac{n+1}{2}\right\rangle$; When n is even, if G has a subgroup H of index 2 , then H realizes $\left\langle\frac{n}{2}, \frac{n}{2}, \frac{n}{2}\right\rangle$.

Lemma

Suppose G realizes $\langle 6,6,6\rangle$. If G has a subgroup H of index 2, then H realizes $\langle 3,3,3\rangle$.

Necessary conditions for 6×6 small matrix multiplication

Lemma

If G realizes $\langle 6,6,6\rangle$ and $|G|<90$, then G has no abelian subgroups of index 2.

6×6 small matrix multiplication—result

Remark

After all these necessary conditions and GAP calculations on the bound of $R(G)$ (rule out those groups G with $R(G) \geq 161$).

Among all the groups of order less than 90, possible C1 candidates are listed as below by their GAP ID (56 groups in total): $(68,3),(72,3),(72,15),(72,16),(72,19),(72,20),(72,21),(72,22)$, $(72,23),(72,24),(72,25),(72,39),(72,40),(72,41),(72,42),(72,43)$, (72,44),(72,45),(72,46),(72,47),(75,2),(78,1), (78,2),(80,3), $(80,15),(80,18),(80,28),(80,29),(80,30),(80,31),(80,32),(80,33)$, $(80,34),(80,39),(80,40),(80,41),(80,42),(80,49),(80,50),(81,3)$, (81,4),(81,6),(81,7),(81,8), (81,9),(81,10),(81,12),(81,13), $(81,14),(84,1),(84,2),(84,7),(84,8),(84,9),(84,10),(84,11)$.

Contents

(1) Introduction
(2) Group-theoretical Method of Matrix Multiplication: Notions
(3) Small Matrix Multiplication
(9) Constructing Triple Product Property Triples
(5) Conclusion

Constructing TPP triples

Definition (IHupgrade2015, TPP capacity)

Denote the TPP capacity of group G as $\beta(G)$, $\beta(G):=\max \{n p m$, where G realize $\langle n, p, m\rangle\}$.

Theorem

A_{4} realizes $\langle 3,3,2\rangle, \beta\left(A_{4}\right)=18$.
TPP triples $S:\{(1),(13)(24)\} ; T:\{(1),(243),(234)\} ;$ $U:\{(1),(124),(142)\}$.

constructing TPP triples

Denote $G:=C_{6} \times A_{4}$.
Proposition
G realizes $\langle 6,6,3\rangle$ via S_{1}, T_{1}, U_{1} :
$S_{1}:=$
$\left\{(1,1),(1,(13)(24)),\left(\overline{3}^{(1)}, 1\right),\left(\overline{3}^{(1)},(13)(24)\right),\left(\overline{3}^{(2)}, 1\right),\left(\overline{3}^{(2)},(13)(24)\right)\right\} ;$
$T_{1}:=$
$\left\{(1,1),(1,(243)),(1,(234)),\left(\overline{2}^{(1)}, 1\right),\left(\overline{2}^{(1)},(243)\right),\left(\overline{2}^{(1)},(234)\right)\right\}$; $U_{1}:=\{(1,1),(1,(124)),(1,(142))\}$.

Constructing TPP triples

Denote $H:=C_{3} \times A_{4}$.

Proposition

H realizes $\langle 6,4,3\rangle$ via S, T, U :
$S:=$
$\left\{(1,1),(1,(13)(24)),\left(\overline{3}^{(1)},(13)(24)\right),\left(\overline{3}^{(2)},(13)(24)\right),\left(\overline{3}^{(1)}, 1\right),\left(\overline{3}^{(2)}, 1\right)\right\} ;$
$T:=\{(1,1),(1,(14)(23)),(1,(143)),(1,(134))\} ;$
$U:=\{(1,1),(1,(123)),(1,(132))\}$.

constructing TPP triples-some principles

First explain $S_{2}, T_{2}, U_{2}, X, Y, Z, S, T, U, D, S_{3}, T_{3}, U_{3}, Q$!

Theorem

If $S_{2}, T_{2}, U_{2} \subset D$ satisfy TPP and $S \cap X \neq \phi$, then $Y \cap T=\phi$ and $Z \cap U=\phi$ must hold.

Theorem (generalized)

If $S_{3}, T_{3}, U_{3} \subset Q$ satisfy TPP and $S \cap X \neq \phi$, then we have $Y \cap T=\phi$ and $Z \cap U=\phi$.

Constructing TPP triples-some principles

Proposition

If $S_{2}, T_{2}, U_{2} \subset D$ satisfy TPP, then the subset triples (S, Y, U), $(S, Y, Z),(S, T, Z),(X, T, U),(X, T, Z),(X, Y, U),(X, Y, Z)$ of B all satisfy TPP.

Theorem

If $S_{2}, T_{2}, U_{2} \subset D$ satisfy TPP, and $\left.S_{2}\right|_{B}$ contains some repeated elements, then B realizes $\langle a, b, c\rangle$, where $a=r+1$ (r is the number of elements that has more than one occurrence), $b=\left|T_{2}\right|$, $c=\left|U_{2}\right|$.

Constructing TPP triples-some principles

Theorem (generalized)

If $S^{\prime}, T^{\prime}, U^{\prime} \subset F$ satisfy TPP and $\left.S_{i}\right|_{B}$ contains some repeated elements, then B realizes $\langle a, b, c\rangle$, where $a=\max \left\{r+1,\left|S_{i}\right|\right\}$ (r is the number of elements that has more than one occurrence), $b=\max \left\{\left|T_{i}\right|\right\}, c=\max \left\{\left|U_{i}\right|\right\}$. (explain S_{i}, T_{i}, U_{i}, division of $\left.S^{\prime}\right|_{B}$, $\left.\left.T^{\prime}\right|_{B},\left.U^{\prime}\right|_{B}\right)$

Contents

(1) Introduction
(2) Group-theoretical Method of Matrix Multiplication: Notions
(3) Small Matrix Multiplication
(9) Constructing Triple Product Property Triples
(5) Conclusion

Main results

- An example leading to a non-trivial bound: $\omega \leq 2.63682$
- TPP and DPP property of Sylow subgroups of a given group.
- 6×6 small matrix multiplication: Reduces to 56 candidates for groups of order <90.
- Relations between the TPP of an abstract group B and the group $C_{n} \times B$.

Reference

- (CKSU05) Cohn H, Kleinberg R, Szegedy B, e al. Group-theoretic algorithms for matrix multiplication[C]. Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on. IEEE, 2005: 379-388.
- (CU03) Cohn H, Umans C. A group-theoretic approach to fast matrix multiplication[C]. Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on. IEEE, 2003: 438-449.
- (HHMM555) Hart S, Hedtke I, Mller-Hannemann M, et al. A fast search algorithm for $\langle m, m, m\rangle$ Triple Product Property triples and an application for 55 matrix multiplication[J]. Groups Complexity Cryptology, 2015, 7(1): 31-46.

Reference

- (APlowerbounds) Pospelov A. Group-theoretic lower bounds for the complexity of matrix multiplication[C]. International Conference on Theory and Applications of Models of Computation. Springer Berlin Heidelberg, 2011: 2-13.
- (strassen1969) Strassen V. Gaussian elimination is not optimal[J]. Numerische mathematik, 1969, 13(4): 354-356.
- (CW90) Coppersmith D, Winograd S. Matrix multiplication via arithmetic progressions[J]. Journal of symbolic computation, 1990, 9(3): 251-280.

Reference

- (AS2010) Davie A M, Stothers A J. Improved bound for complexity of matrix multiplication[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2013, 143(02): 351-369.
- (VW2012) Williams V V. Multiplying matrices faster than Coppersmith-Winograd[C]. Proceedings of the forty-fourth annual ACM symposium on Theory of computing. ACM, 2012: 887-898.
- (LeGall2014) Le Gall F. Powers of tensors and fast matrix multiplication[C]. Proceedings of the 39th international symposium on symbolic and algebraic computation. ACM, 2014: 296-303.

Reference

- (AFL2015) Ambainis A, Filmus Y, Le Gall F. Fast matrix multiplication: limitations of the coppersmith-winograd method[C]. Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing. ACM, 2015: 585-593.
- (DIStable) DrevetC, Islam M N, Schost. Optimization techniques for small matrix multiplication[J]. Theoretical Computer Science, 2011, 412(22): 2219-2236.
- (IHupgrade2015) Hedtke I. Upgrading Subgroup Triple-Product-Property Triples[J]. Journal of Experimental Algorithmics (JEA), 2015, 20: 1.1.

Reference

- (BCS1997) Brgisser P, Clausen M, Shokrollahi A. Algebraic Complexity Theory[M]. Springer Science\&Business Media, 1996.

Thank You

