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Matrix multiplication exponent ω

Definition (matrix multiplication exponent ω)

The matrix multiplication exponent ω is the smallest real number
ω for which n × n matrix multiplication can be performed in
O(nω+ε) operations for each ε > 0.

It is clear: 2 ≤ ω ≤ 3

A Major Conjecture: ω = 2.



Strassen’s algorithm

Let A,B,C ∈ R2n×2n .

A =

[
A11 A12

A21 A22

]
,B =

[
B11 B12

B21 B22

]
,C =

[
C11 C12

C21 C22

]
(1)

Let

M1 := (A11 + A22)(B11 + B22)

M2 := (A21 + A22)B11

M3 := A11(B12 − B22)

M4 := A22(B21 − B11)

M5 := (A11 + A12)B22

M6 := (A21 − A11)(B11 + B12)

M7 := (A12 − A22)(B21 + B22)

(2)



Strassen’s algorithm

C11,C12,C21,C22 can be obtained from Mi by additions.
Then we only need 7 multiplication operations in each step!
We repeat this step n times till the sub-matrix becomes number.

Denote f (n) as the total number of calculations for multiplying
two 2n × 2n matrices.

f (n + 1) = 7f (n) + l · 4n,

where l is the number of additions in one step of the algorithm.
Thus,

f (n) = (7 + o(1))n,

then for two N = 2n matrices, the asymptotic complexity of
Strassen’s algorithm is:

O([7 + o(1)]n) = O(N log2 7+o(1)) ≈ O(N2.8074).



History of the complexity of matrix multiplication

Volker Strassen, 1969, ω ≤ 2.8074.

Don Coppersmith, Shmuel Winograd, 1990, tensor algorithm
ω ≤ 2.375477. (CW1990)

Andrew Stothers, 2010, improve CW90 algorithm, ω ≤ 2.374.

Virginia Williams, 2011, ω ≤ 2.3728642.

Francois Le Gall, 2014, simplify Williams’ algorithm,
ω ≤ 2.3728639.



History of the complexity of matrix multiplication

Henry Cohn, Robert Kleinberg, Balazs Szegedy, Chris Umans,
2005, the Group-theoretical Method of Matrix Multiplication,
two conjectures =⇒ ω = 2, best bound: ω ≤ 2.41.

Andris Ambainis, Yuval Filmus, Francois Le Gall, 2015,
”the framework of analyzing higher and higher tensor powers
of a certain identity of Coppersmith and Winograd cannot
result in an algorithm within running time O(n2.3725) thus
cannot prove ω = 2”.

Hence the main topic of this thesis is the group-theoretical
method of matrix multiplication.
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Group Method of Matrix Multiplication: Notions

C: the field of complex numbers.

The group algebra C[G ] of a finite group G decomposes as
the direct product C[G ] ∼= Cd1×d1 × ...× Cdk×dk of matrix
algebras of orders d1, ..., dk . These orders are the character
degrees of G .

If we compute the dimensions of both sides, we have
|G | =

∑
i d2

i .

If G has an abelian subgroup A, then all the character degrees
of G are less than or equal to the index [G : A].



Group Method of Matrix Multiplication: Notions

If S is a subset of a group, let Q(S) denote the right quotient
set of S ,i.e., Q(S) = s1s−1

2 : s1, s2 ∈ S .

Definition (double product property)

We say that subsets S1,S2 of a group H satisfy the double product
property if
q1q2 = 1 implies q1 = q2 = 1, where qi ∈ Q(Si ).

Definition

A group realizes 〈n1, n2, n3〉 if there are subsets S1,S2,S3 ⊆ G
such that |Si | = ni , and for qi ∈ Q(Si ), if q1q2q3 = 1 then
q1 = q2 = q3 = 1. We call this condition on S1,S2, S3 the triple
product property.



Group-theoretical Method of Matrix Multiplication

Suppose G realizes 〈n,m, p〉 and has character degrees {di}.

Theorem (CU03)

Suppose G realizes 〈n,m, p〉 and the character degrees of G are
{di}. Then (nmp)ω/3 ≤

∑
i di

ω.

Theorem (CU03)

Suppose G realizes 〈n,m, p〉 and has largest character degree d.
Then (nmp)ω/3 ≤ dω−2|G |.

Beating the sum of the cubes
Since ω ≤ 3,by ruling out the possibility of ω = 3, Thm1.8[CU03]
yields a nontrivial bound on ω if and only if nmp >

∑
i d3

i .



Triple product property of Sylow subgroups

Theorem (TPP)

Suppose group G has Sylow p-subgroup P, Sylow q-subgroup Q
and Sylow r-subgroup R, p, q, r are pairwisely coprime. Then G
realizes 〈|P|, |Q|, |R|〉 via P,Q,R.

Corollary (DPP)

Group G has Sylow p-subgroup P and Sylow q-subgroup Q,
|P|, |Q| coprime. Then P,Q ⊂ G satisfy double product property.



The simultaneous double product property

Definition (CKSU05)

We say that n pairs of subsets Ai ,Bi (for 1 ≤ i ≤ n) of a group H
satisfy the simultaneous double product property if

for all i, the pair Ai ,Bi satisfies the double product property,
and

for all i,j,k, ai (a′j)
−1bj(b′k)−1 = 1 implies i = k, where

ai ∈ Ai , a
′
j ∈ Aj , bj ∈ Bj , andb′k ∈ Bk .



The simultaneous double product property

Theorem (CKSU05)

If n pairs of subsets Ai ,Bi ⊆ H(with 0 ≤ i ≤ n − 1) satisfy the
simultaneous double product property, then the following subsets
S1, S2,S3 of G = (H3)∆n o Sym(∆n) satisfy the triple product
property:
S1 = âπ : π ∈ Sym(∆n), âv ∈ Âv for all v

S2 = b̂π : π ∈ Sym(∆n), b̂v ∈ B̂v for all v

S3 = ĉπ : π ∈ Sym(∆n), ĉv ∈ Ĉv for all v



An example: a nontrivial bound for ω

Example

H = Cyck
n × Cycn, Ai = {(x , i) : x ∈ Cyck

n },Bi = {(0, i)}, then for
i ∈ Cycn, Ai ,Bi satisfy the The simultaneous double product
property.
Let G = (H3)∆n o Sym(∆n)

S1 = {âπ : π ∈ Sym(∆n), âv ∈ Âv for all v}
S2 = {b̂π : π ∈ Sym(∆n), b̂v ∈ B̂v for all v}
S3 = {ĉπ : π ∈ Sym(∆n), ĉv ∈ Ĉv for all v}
where ∆n = {(a, b, c) ∈ Z3 : a + b + c = n − 1 anda, b, c ≥ 0} for
n pairs subsets Ai ,Biof H, 0 ≤ i ≤ n − 1, we define subset triples
in H3, v = (v1, v2, v3) ∈ ∆n is the index set:

Âv = Av1 × {1} × Bv3

B̂v = Bv1 × Av2 × {1}
Ĉv = {1} × Bv2 × Av3



An example

Example

from CKSU05 theorem 4.3(as showed above)we know that
S1, S2,S3 ⊂ G satisfy the triple product property. From CKSU05
thm1.8 and cor1.9, we have (|S1||S2||S3|)ω/3 ≤

∑
i dω

i , denote as
equation (1)
|S1| = (|∆n|!)(nk)|∆n| = |S2| = |S3|,
|∆n| =

(n+1
2

)
= 1

2 n(n + 1).

|G | = |∆n|! · (nk+1)3|∆n|, substitute into (1), dG ≤ |∆n|!
=⇒

ω ≤ 3 +
6

k · n · (n + 1)
−

2 · logn((n·(n+1)
2 )!)

k · n(n + 1)
,

By calculation we know when n = 4, k = 3 ω has a best bound
ω ≤ 2.63682.
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Small matrix multiplication—background

The famous result O(n2.81) is based on an algorithm that can
compute the product of two 2× 2 matrices with only 7
multiplications.

Winograd: cannot produce better results with 2× 2 matrices.

Hedtke and Murthy: the group-theoretic framework is not
able to produce better bounds for 3× 3 and 4× 4 matrices.

Sarah Hart, Ivo Hedtke, Matthias Müller-Hannemann and
Sandeep Murthy in 2013: the group-theoretic framework is
not able to produce better bounds for 5× 5 matrices.

We consider the case for 6× 6 matrices multiplication and to see
whether this particular TPP approach can give us a better bound.



Rank

Definition (BCS1997 chap 14, def14.7)

Let k be a field and U,V ,W finite dimensional k-vector space. Let
η : U × V →W be a k-bilinear map. For i ∈ {1, ..., r} let fi ∈ U∗,
gi ∈ V ∗(dual spaces of U and V resp. over k) and wi ∈W such
that η(u, v) =

∑r
i=1 fi (u)gi (v)wi for all u ∈ U, v ∈ V . Then

{f1, g1,w1; ...; fr , gr ,wr} is called a k-bilinear algorithm of length r
for η, or simply a bilinear algorithm when k is fixed. The minimal
length of all bilinear algorithms for η is called the rank R(η) of η.
Let A be a k-algebra. The rank R(A) of A is defined as the rank of
its bilinear multiplication map.



6× 6 small matrix multiplication

Problem Statement: Is there a group with order less than 90
that can realize 〈6, 6, 6〉 TPP property and have multiplication
rank less than 161[DIStable]?

Since the search space is too large, my main thinking is to reduce
the search space by lots of necessary conditions.

Theorem

If G is an abelian group realizing 〈6, 6, 6〉, then R(G ) ≥ 216.

So we only need to consider non-abelian groups from now on.



Necessary conditions for 6× 6 small matrix multiplication

For a finite group G , let T (G ) be the number of irreducible
complex characters of G and b(G ) the largest degree of an
irreducible character of G .

Theorem (APlowerbounds, Theorem 6)

Let G be a group.
(1)If b(G ) = 1, then R(G ) = |G |.
(2)If b(G ) = 2, then R(G ) = 2|G | − T (G ).
(3)If b(G ) ≥ 3, then R(G ) ≥ 2|G |+ b(G )− T (G )− 1.

Remark

We write R̄(G ) :=
∑

i R(di ) for the best known upper bound and
R(G ) for the best known upper bound(can be the theorem above
sometimes) for R(G ).



Necessary conditions for 6× 6 small matrix multiplication

Theorem (HHMM555, lemma3.3)

If G is non-abelian, thenT (G ) ≤ 5
8 |G |. Equality implies that

|G : Z (G )| = 4.

we have:
R(G ) ≥ 2|G | − T (G ) ≥ (11/8)|G |
Since we want R(G ) < 161, then we have:
(11/8)|G | < 161
|G | ≤ 117.



Necessary conditions for 6× 6 small matrix multiplication

Definition (〈6, 6, 6〉C1 candidate)

If a group G realizes 〈6, 6, 6〉 and has R[G ] < 161, we call this
group a 〈6, 6, 6〉 C1 candidate.

Proposition

If group G is a 〈6, 6, 6〉 C1 candidate, then 66 ≤ |G | ≤ 117.



Necessary conditions for 6× 6 small matrix multiplication

Definition (HHMM555, definition3.4)

Let G be a group with a TPP triple (S ,T ,U), and suppose H is a
subgroup of index 2 in G . We define
S0 = S ∩ H,T0 = T ∩ H,U0 = U ∩ H, S1 = S \ H, T1 = T \ H
and U1 = U \ H.

Theorem (generalized)

If group G realizes 〈n, n, n〉. When n is odd, if G has a subgroup H
of index 2, then H realizes 〈n+1

2 , n+1
2 , n+1

2 〉; When n is even, if G
has a subgroup H of index 2, then H realizes〈n2 ,

n
2 ,

n
2 〉.

Lemma

Suppose G realizes 〈6, 6, 6〉. If G has a subgroup H of index 2,
then H realizes 〈3, 3, 3〉.



Necessary conditions for 6× 6 small matrix multiplication

Lemma

If G realizes 〈6, 6, 6〉 and |G | < 90, then G has no abelian
subgroups of index 2.



6× 6 small matrix multiplication—result

Remark

After all these necessary conditions and GAP calculations on the
bound of R(G ) (rule out those groups G with R(G ) ≥ 161).

Among all the groups of order less than 90, possible C1 candidates
are listed as below by their GAP ID (56 groups in total):
(68,3),(72,3),(72,15),(72,16),(72,19),(72,20),(72,21),(72,22),
(72,23),(72,24),(72,25), (72,39),(72,40),(72,41),(72,42),(72,43),
(72,44),(72,45),(72,46),(72,47),(75,2),(78,1), (78,2),(80,3),
(80,15),(80,18),(80,28),(80,29),(80,30),(80,31),(80,32),(80,33),
(80,34), (80,39),(80,40),(80,41),(80,42),(80,49),(80,50),(81,3),
(81,4),(81,6),(81,7),(81,8), (81,9),(81,10),(81,12),(81,13),
(81,14),(84,1),(84,2),(84,7),(84,8),(84,9),(84,10),(84,11).
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Constructing TPP triples

Definition (IHupgrade2015, TPP capacity)

Denote the TPP capacity of group G as β(G ),
β(G ) := max{npm,whereG realize 〈n, p,m〉}.

Theorem

A4 realizes 〈3, 3, 2〉, β(A4) = 18.

TPP triples S : {(1), (13)(24)}; T : {(1), (243), (234)};
U : {(1), (124), (142)}.



constructing TPP triples

Denote G := C6 × A4.

Proposition

G realizes 〈6, 6, 3〉 via S1,T1,U1:
S1 :=
{(1, 1), (1, (13)(24)), (3̄(1), 1), (3̄(1), (13)(24)), (3̄(2), 1), (3̄(2), (13)(24))};
T1 :=
{(1, 1), (1, (243)), (1, (234)), (2̄(1), 1), (2̄(1), (243)), (2̄(1), (234))};
U1 := {(1, 1), (1, (124)), (1, (142))}.



Constructing TPP triples

Denote H := C3 × A4.

Proposition

H realizes 〈6, 4, 3〉 via S ,T ,U:
S :=
{(1, 1), (1, (13)(24)), (3̄(1), (13)(24)), (3̄(2), (13)(24)), (3̄(1), 1), (3̄(2), 1)};
T := {(1, 1), (1, (14)(23)), (1, (143)), (1, (134))};
U := {(1, 1), (1, (123)), (1, (132))}.



constructing TPP triples—some principles

First explain S2,T2,U2,X ,Y ,Z , S ,T ,U,D,S3,T3,U3,Q!

Theorem

If S2,T2,U2 ⊂ D satisfy TPP and S ∩ X 6= φ, then Y ∩ T = φ
and Z ∩ U = φ must hold.

Theorem (generalized)

If S3,T3,U3 ⊂ Q satisfy TPP and S ∩ X 6= φ, then we have
Y ∩ T = φ and Z ∩ U = φ.



Constructing TPP triples—some principles

Proposition

If S2,T2,U2 ⊂ D satisfy TPP, then the subset triples (S ,Y ,U),
(S ,Y ,Z ), (S ,T ,Z ), (X ,T ,U), (X ,T ,Z ), (X ,Y ,U), (X ,Y ,Z ) of
B all satisfy TPP.

Theorem

If S2,T2,U2 ⊂ D satisfy TPP, and S2|B contains some repeated
elements, then B realizes 〈a, b, c〉, where a = r + 1 (r is the
number of elements that has more than one occurrence), b = |T2|,
c = |U2|.



Constructing TPP triples—some principles

Theorem (generalized)

If S ′,T ′,U ′ ⊂ F satisfy TPP and Si |B contains some repeated
elements, then B realizes 〈a, b, c〉, where a = max{r + 1, |Si |} (r is
the number of elements that has more than one occurrence),
b = max{|Ti |}, c = max{|Ui |}.(explain Si ,Ti ,Ui , division of S ′|B ,
T ′|B ,U ′|B)
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Main results

An example leading to a non-trivial bound: ω ≤ 2.63682

TPP and DPP property of Sylow subgroups of a given group.

6× 6 small matrix multiplication: Reduces to 56 candidates
for groups of order < 90.

Relations between the TPP of an abstract group B and the
group Cn × B.
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