A calculus for monomials in Chow group $A^{n-3}(n)$

Jiayue Qi

Joint work with Josef Schicho (University of Linz) 2020.07.02. Fika Webinar KTH

Doctoral Program
Computational Mathematics
Numerical Analysis and Symbolic Computation

Der Wissenschaftsfonds.

basic setting

- Let $n \in \mathbb{N}, n \geq 3$, set $N:=\{1, \ldots, n\}$.
- A partition (I, J) of N where both cardinality of I and J are at least 2 is called a cut (of M_{n}).
- And I, J are called two parts of the cut (I, J).
- This talk focus on the Chow ring of M_{n}, where M_{n} is the moduli space of stable n-pointed curves of genus zero.
- Denote $\delta_{l, J}$ as the class of a cut subvariety $D_{l, J}$ of M_{n}.
- We will not focus on the details of M_{n}, what is important for this talk is the properties of this Chow ring.
- We denote the Chow ring of M_{n} as $A^{*}(n)$.

basic setting

- It is a graded ring, we have $A^{*}(n)=\bigoplus_{k=0}^{n-3} A^{k}(n)$; and these homogeneous components are defined as Chow groups (of M_{n}). Here, for instance, we say $A^{r}(n)$ is a Chow group of rank r.
- Fact1: $A^{r}(n)=\{0\}$ for $r>n-3$.
- Fact2: $A^{n-3}(n) \cong \mathbb{Z}$, we denote this isomorphism as $\int: A^{n-3}(n) \longrightarrow \mathbb{Z}$.
- $\left\{\delta_{I, J} \mid\{I, J\}\right.$ is a cut $\}$ is a set of generators for $A^{1}(n)$; they are also generators for $A^{*}(n)$.
- $\prod_{i=1}^{n-3} \delta_{l_{i}, J_{i}}$ can be viewed as an element in $A^{n-3}(n)$ since we are in a graded ring.
- Goal: calculate the integral value of this monomial, i.e., $\int\left(\prod_{i=1}^{n-3} \delta_{l_{i}, J_{i}}\right)$.

motivation

- For me, this calculus shows up as a subproblem when I want to improve an algorithm for realization-counting of Laman graphs on the sphere.
- With the help of the integral value calculation, I invent another algorithm for the same goal.
- However, by efficiency it does not seem faster or better than the existing one.
- But we see that this problem is fundamental, may be helpful for other similar problems, or even further-away problems.
- Then we focus on it, and try to formalize it as a result on its own.

two important properties of $A^{*}(n)$

- Quadratic relations between the generators.
- Linear relations between the generators.

Keel's quadratic relation

Among the generators of $A^{*}(n), \delta_{l_{1}, J_{1}} \cdot \delta_{l_{2}, J_{2}}=0$ and we say these two generators fulfill Keel's quadratic relation if the following conditions hold:

- $I_{1} \cap I_{2} \neq \emptyset$;
- $I_{1} \cap J_{2} \neq \emptyset$;
- $J_{1} \cap I_{2} \neq \emptyset$;
- $J_{1} \cap J_{2} \neq \emptyset$.

Easy example: When $n=5, \delta_{12 \mid 345} \cdot \delta_{13 \mid 245}=0$ but $\delta_{12 \mid 345}$ and $\delta_{123 \mid 45}$ does not fulfill this relation.

Keel's quadratic relation

- Inspired by this property, we know that if any two factors of the monomial fulfills this relation, the whole integral will be zero.
- Now we only need to focus on those monomials where no two factors fulfill this quadratic relation, we call those monomials tree monomial.
- This name also has a reason!
- Since there is a one-to-one correspondence between these monomials and a type of tree, which we define as loaded tree.

loaded tree

A loaded tree with n labels and k edges is a tree (V, E, h, m), where h denotes the labeling function from V to the power set of N and m denotes the multiplicity function for edges. The following conditions must hold:

- Non-empty labels $\{h(v)\}_{v \in V}$ form a partition of N;
- Number of edges is k, edges are counted with multiplicity, i.e., $\sum_{e \in E} m(e)=k$;
- $\operatorname{deg}(v)+|h(v)| \geq 3$ holds for every $v \in V$.
(Hint: this tree would correspond to a monomial in the Chow group $A^{k}(n)$.)

loaded tree

See some examples of loaded trees. (check with definitions)

Figure: This is a loaded tree with 5 labels and 2 edges.

Figure: This is a loaded tree with 6 labels and 3 edges.

monomial of a given tree

- We define the monomial of a given loaded tree as the following:
- For each edge we collect the labels on one side of it to form I and labels on the other side of it to form J. And we say (I, J) is the corresponding cut for this edge.
- The monomial of this given loaded tree is $\prod_{i=1}^{m} \delta_{l_{i}, J_{i}}$, where m is the number of edges.
- Each edge of the tree contributes to the monomial a factor $\delta_{I, J}$ if (I, J) is the corresponding cut for this edge.
- We can see that it is well-defined and each loaded tree has a unique monomial representation.

monomial of a given tree

Figure: This is a loaded tree with 5 labels and 2 edges, the corresponding tree of tree monomial $\delta_{12 \mid 345} \cdot \delta_{123 \mid 45}$.

Figure: This is a loaded tree with 6 labels and 3 edges, the corresponding tree of tree monomial $\delta_{34 \mid 1256} \cdot \delta_{12 \mid 3456} \cdot \delta_{56 \mid 1234}$.

one-to-one correspondence

Theorem

There is a one to one correspondence between tree monomials $T=\prod_{i=1}^{m} \delta_{l_{i}, J_{i}}(1 \leq m \leq n-3)$ and loaded trees with n labels and m edges. We call the corresponding tree of a tree monomial tree of the given tree monomial.

We also have an algorithm converting the monomial to tree, we call it tree algorithm.

tree algorithm

- Input: a tree monomial M in $A^{k}(n)$
- Output: a loaded tree with n labels and k edges
- Step 1: collect all cuts in each factor of the monomial in set C.
- Step 2: collect all parts of those cuts in set P.
- Step 3: pick any cut from set C, say $c=(I, J) \in C$.
- Step 4: go through all elements in P, find those that is either a cubset of I or a subset of J, collect them together in set P_{1}.
- Step 5: create a Hasse diagram H of elements in P_{1} w.r.t. set containment order.
- Step 6: consider H as a graph (V, E). Each element in P_{1} has a corresponding vertex in H. We denote the vertex v_{l} for $l \in P_{1}$.

tree algorithm

- Step 7: For each vertex v of H, define the labeling set $h(v)$ as its corresponding element in P_{1}.
- Step 8: Go through the vertices again, update the labeling function: $h(v):=h(v) \backslash h\left(v_{1}\right)$ if v_{1} is less than v in H (in the Hasse diagram relation).
- Step 9: $E=E \cup\left\{v_{l}, v_{J}\right\}$. This edge corresponds to the cut we pick in Step 3.
- Step 10: set the multiplicity value $m(e)$ for each edge e as the power of its corresponding factor in M.
- Step 11: return $H=(V, E, h, m)$.

tree algorithm: an example

Let's see an example.

Example

- Given a tree monomial $\delta_{123,456789}^{3} \cdot \delta_{12345,6789} \cdot \delta_{1234589,67} \cdot \delta_{1234567,89}$.
- Obviously we have the labeling set $N:=\{1,2,3,4,5,6,7,8,9\}$.
- We collect the parts in set $P:=\{123,456789,12345,6789,1234589,67,1234567,89\}$ and we pick any cut $c=\{12345,6789\}$.
- After collecting all parts which are either contained in 12345 or 6789, we obtain $P_{1}=\{12345,6789,123,67,89\}$.
- Then we construct the corresponding Hasse diagram for c, see the figure below.

tree algorithm: an example

Figure: This is the Hasse diagram of set $\{12345,6789,123,67,89\}$ with respect to set containment order.

tree algorithm: an example

Example

- The corresponding loaded tree see the figure below.
- It is easy to see that if we go back from the tree constructing monomial, we get the same one as the given one.

Figure: This is the corresponding loaded tree of monomial $\delta_{123,456789}^{3} \cdot \delta_{12345,6789} \cdot \delta_{1234589,67} \cdot \delta_{1234567,89}$. Multiplicity function values are written in blue.

value of a loaded tree

- Goal: Calculate $\int(T)$ for any tree monomial $T \in A^{n-3}(n)$.
- Recall: \int represents the isomorphism from $A^{n-3}(n)$ to \mathbb{Z}
- Because of this one-to-one correspondence, now we define value of a loaded tree as $\int(T)$, where T is the corresponding monomial of this loaded tree.
- Given a loaded tree with n labels and $n-3$ edges, we want to calculate its value.

weighted tree

- $L T=(V, E, h)$: loaded tree with n labels and k edges.
- its corresponding weighted tree: $W T=(V, E, w)$.
- weight function $w: V \cup E \rightarrow \mathbb{N}, w(v):=\operatorname{deg}(v)+|h(v)|-3$ for all $v \in V$ and $w(e):=$ multipicity $(e)-1$ for all $e \in E$.
- Tree monomial \longrightarrow Loaded tree \longrightarrow Weighted tree
- Since permuting/renaming the labels doesn't change the integral value, we see that if two monomial have the same weighted tree, they also must have the same value.

weighted tree

- Given a weighted tree of some tree monomial, its value is defined to be the value of the monomial.
- Our goal can also be to calculate the value of the weighted tree (of some loaded tree with n labels and $n-3$ edges).
- Assume $W T=(V, E, w)$ is a weighted tree of some loaded tree with n labels and $n-3$ edges, then we can verify the following identity about the weight function w.
- $\sum_{v \in V} w(v)=\sum_{e \in E} w(e)$.

weight identity

$$
\begin{aligned}
\sum_{v \in V} w(v) & =\sum_{v \in V}(\operatorname{deg}(v)+|h(v)|-3) \\
& =\sum_{v \in V} \operatorname{deg}(v)+\sum_{v \in V}|h(v)|-3 \cdot|V| \\
& =2 \cdot|E|+n-3 \cdot|V| \\
& =2 \cdot|E|+n-3 \cdot|E|-3 \\
& =n-3-|E|
\end{aligned}
$$

$$
\sum_{e \in E} w(e)=\sum_{e \in E}(\text { multiplicity }(e)-1)
$$

$$
=\sum_{e \in E} \text { multiplicity }(e)-|E|
$$

$$
=n-3-|E|
$$

clever tree

For tree monomials in $A^{n-3}(n)$, there is a known result.

Theorem

If all factors are distinct in $T:=\prod_{i=1}^{n-3} \delta_{l_{i}, J_{i}}$, then $\int(T)=1$. We call this type of tree monomial clever monomial and its corresponding loaded tree clever tree.

Remark

For clever trees, we know that they have value 1. What about non-clever trees? Stage time for Keel's linear relation.

Recall: two important properties of $A^{*}(n)$

- Quadratic relations between the generators.
- Linear relations between the generators.

Keel's linear relation

Denote $\epsilon_{i j \mid k l}:=\sum_{i, j \in I, k, l \in J} \delta_{l, J}$. Then we have the equality relations $\epsilon_{i j \mid k l}=\epsilon_{i| | k j}=\epsilon_{i k \mid j l}$, we call it Keel's linear relation.

Example

When $n=6$, we have $\epsilon_{12 \mid 35}=\epsilon_{13 \mid 25}=\epsilon_{15 \mid 23}$, i.e.,

$$
\begin{aligned}
& \delta_{12,3456}+\delta_{124,356}+\delta_{126,345}+\delta_{1246,35} \\
= & \delta_{13,2456}+\delta_{134,256}+\delta_{136,245}+\delta_{1346,25} \\
= & \delta_{15,2346}+\delta_{145,236}+\delta_{156,234}+\delta_{1456,23}
\end{aligned}
$$

Remark

In the motivation, we mention the realization-counting of Laman graphs pn the sphere, actually this integral value is the key thing to solve there: $\int \prod_{r=1}^{n-3} \epsilon_{i_{r} j_{r} \mid k_{r} l_{r}}$. We can then see that the goal in our talk is indeed a subproblem of it.

Keel's linear relation

Example

When $n=6$, we have $\epsilon_{12 \mid 35}=\epsilon_{13 \mid 25}=\epsilon_{15 \mid 23}$, i.e.,

$$
\begin{aligned}
& \delta_{12,3456}+\delta_{124,356}+\delta_{126,345}+\delta_{1246,35} \\
= & \delta_{13,2456}+\delta_{134,256}+\delta_{136,245}+\delta_{1346,25} \\
= & \delta_{15,2346}+\delta_{145,236}+\delta_{156,234}+\delta_{1456,23}
\end{aligned}
$$

Remark

From the example above we easily see that we can replace some $\delta_{I, J}$, say $\delta_{12 \mid 3456}$, by $\epsilon_{13 \mid 25}-\left(\epsilon_{12 \mid 35}-\delta_{12 \mid 3456}\right)$. Basicly we can replace $\delta_{l, J}$ by a sum of $\left(2^{n-3}-1\right)$ many $(\pm) \delta_{l^{\prime}, J^{\prime}}$.

non-clever trees?

Example

- Given: $\delta_{12 \mid 3456}^{2} \cdot \delta_{1234 \mid 56}$
- Corresponding tree see below, note that for the multiplicity function of edges, sometimes we draw all the edges down, sometimes just write the multiplicity besides it.
- use Keel's linear relation:

$$
\delta_{12 \mid 3456}^{2} \cdot \delta_{1234 \mid 56}=\delta_{12 \mid 3456} \cdot \delta_{1234 \mid 56} \cdot\left(\epsilon_{13 \mid 25}-\delta_{124 \mid 356}-\delta_{126 \mid 345}-\delta_{1246 \mid 35}\right)
$$

- After cancellations caused by Keel's quadratic relation, we get $\delta_{12 \mid 3456}^{2} \cdot \delta_{1234 \mid 56}=-\delta_{12 \mid 3456} \cdot \delta_{1234 \mid 56} \cdot \delta_{124 \mid 356}$.
- obtain tree value/monomial value: -1

non-clever trees?

- Above is the newly generated tree in the example.
- We can also see from the process that whenever we substitute some term with the linear relation, we create a negative sign for the value.
- We call it one-step reduction.
- Meanwhile, we generate one or more loaded tree of the same type.
- However, the weight sum of the edges (equivalently, of the vertices) is reduced by one.

non-clever trees?

- Then we apply again this reduction to each one of the newly generated trees.
- When at some stage, it is reduced to zero, we directly know the absolute value, by counting the number of clever trees in total.
- As for the sign, it is simply -1 to the power of weight sum of the given loaded tree.
- In this example, weight sum is reduced from 1 to 0 .
- The sign is $(-1)^{1}=-1$ and one clever tree is generated. Therefore, the value of the given tree is -1 .
- We can also see that in order to compute the value of a loaded tree, the tricky part is to figure out its absolute value.
- Based on this idea, we have an algorithm for computing all tree monomials in $A^{n-3}(n)$. We call it forest algorithm.

forest algorithm

- Input: a loaded tree with n labels and $n-3$ edges.
- Output: value of this loaded tree.
- Transfer the loaded tree to a weighted tree.
- Calculate the sign of the tree value.
- Construct a redundancy forest from the weighted tree.
- Apply a recursive algorithm to this redundancy forest, obtaining the absolute tree value.
- Product of the sign and absolute value gives us tree value.

running example: loaded tree

Figure: This is a loaded tree $L T$ with 14 labels and 11 edges.

Let's figure out its weighted tree!

running example: weighted tree

Figure: This is the weighted tree of the loaded tree $L T$, where the weight of vertices and edges are tagged in red.

running example: sign of the tree value

- Given a weighted tree $W T=(V, E, w)$.
- Let S be the sum of vertex weight (or equivalently, sum of edge weight) of $L T$.
- Sign of the tree value is $(-1)^{S}$.

sign of the tree value

Figure: This is the weighted tree of the loaded tree $L T$, where the weight of vertices and edges are tagged in red.

Sum of vertex weight $S=1+4+1+0+1=7$, so the sign of $L T$ value is $(-1)^{7}=-1$.

redundancy forest

- How do we transfer a weighted tree (V, E, w) (assume its corresponding loaded tree $L T=(V, E, h))$ to a redundancy forest?
- Replace each edge by a length-two edge with a new vertex connecting them which has the same weight as the replaced edge.
- Then we obtain the redundancy tree (of loaded tree $L T$) $R T:=\left(V \cup E, E_{1}, w_{1}\right)$.
- Omit those vertices with weight zero and their adjacent edges, we then obtain the redundancy forest of $L T$.

running example: weighted tree

Figure: This is the weighted tree of the loaded tree $L T$, where the weight of vertices and edges are tagged in red.

- First let's figure out its redundancy tree on the whiteboard!
- Let's figure out its redundancy forest!

running example: redundancy forest

Figure: This is the redundancy forest $R F$ of loaded tree $L T$, which contains two trees and the weight of vertices of $R F$ are tagged in red.

What is the recursive algorithm mentioned above for absolute tree value?

recursive algorithm?

- Let $R F=(V, E, w)$ be the redundancy forest of a loaded tree $L T$.
- We define the value of RF as the following:
- Pick any leaf of this forest, say $I \in V$, denote the unique parent of I as I_{1}.
- If $w(I)>w\left(I_{1}\right)$, return 0 and terminate the process; otherwise, remove I from RF and assign weight $\left(w\left(l_{1}\right)-w(I)\right)$ to I_{1}, replacing its previous weight. Denote the new forest as $R F_{1}$.
- Value of $R F$ is the product of binomial coefficient $\binom{w\left(l_{1}\right)}{w(l)}$ and the value of $R F_{1}$.
- Base cases: whenever we reach a degree-zero vertex, if it has non-zero weight, return 0 and terminate the process; otherwise, return 1.
- Value of $R F$ is then the absolute value of $L T$.

absolute value

Figure: This is the redundancy forest $R F$ of loaded tree $L T$, which contains two trees and the weight of vertices of $R F$ are tagged in red.

Let's figure out how to apply the recursive algorithm to obtain the absolute value!

absolute value

tree value

- Finally we get the absolute value of $R F$ as
$1 \times\binom{ 1}{1} \times\binom{ 2}{1} \times\binom{ 4}{3} \times\binom{ 4}{1} \times\binom{ 1}{1}=32$.
- Combining with the sign -1 , we obtain the value of $L T$ as -32.

forest algorithm

- Input: a loaded tree with n labels and $n-3$ edges
- Output: a natural number
- Transfer the loaded tree to a weighted tree.
- Calculate the sign of the tree value.
- Construct a redundancy forest from the weighted tree.
- Apply a recursive algorithm to this redundancy forest, obtaining the absolute tree value.
- Product of the sign and absolute value gives us tree value.
- Implemented in Python; based on forest algorithm, computation of $\int \prod_{r=1}^{n-3} \epsilon_{i_{r} j_{r} \mid k_{r} I_{r}}$ is also implemented in Python.

well-definedness; termination

- Not hard to verify that at every step it does not matter from which leaf we start and base cases are well-defined. Hence forest algorithm is well-defined.
- Input is a tree with $(n-2)$ vertices maximally, the redundancy forest can have at most $(n-2)+(n-3)=2 n-5$ many vertices, which is finite.
- The recursive algorithm strictly reduces the number of vertices by 1 in each step, obtaining a proper sub-forest.
- Hence the algorithm terminates and is well-defined.

correctness

Theorem
Forest algorithm is correct.

Thank You

Happy Birthday Kathlén

