Basics

- Name: Jiayue Qi
- Hometown: Xi'an, Shaanxi, China

Education

- Beihang University (Bachelor's degree study)
- Trinity College Dublin, on exchange (one semester, Bachelor's thesis)
- Bachelor's thesis: UTP semantics of non-deterministic side-effecting expression
- Key Laboratory of Mathematics-Mechanization, Chinese Academy of Sciences (Master's degree study)
- Master thesis: Group-theoretical Method for Matrix Multiplication
- PhD student in DK9

Education

- Beihang University (Bachelor's degree study)
- Trinity College Dublin, on exchange (one semester, Bachelor's thesis)
- Bachelor's thesis: UTP semantics of non-deterministic side-effecting expression
- Key Laboratory of Mathematics-Mechanization, Chinese Academy of Sciences (Master's degree study)
- Master thesis: Group-theoretical Method for Matrix Multiplication
- PhD student in DK9

Main results

- An example leading to a non-trivial bound: $\omega \leq 2.9262$
- TPP and DPP property of Sylow subgroups of a given group.
- 6×6 small matrix multiplication: Reduces to 56 candidates for groups of order <90.
- Relations between the TPP of an abstract group B and the group $C_{n} \times B$.

Main results

- An example leading to a non-trivial bound: $\omega \leq 2.9262$
- TPP and DPP property of Sylow subgroups of a given group.
- 6×6 small matrix multiplication: Reduces to 56 candidates for groups of order <90.
- Relations between the TPP(Triple Product Property) of an abstract group B and the group $C_{n} \times B$.

Triple Product Property

- If S is a subset of a group, let $Q(S)$ denote the right quotient set of S,i.e., $Q(S)=\left\{s_{1} s_{2}^{-1}: s_{1}, s_{2} \in S\right\}$.

Definition (CU03, Definition 2.1.)

A group realizes $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ if there are subsets $S_{1}, S_{2}, S_{3} \subseteq G$ such that $\left|S_{i}\right|=n_{i}$, and for $q_{i} \in Q\left(S_{i}\right)$, if $q_{1} q_{2} q_{3}=1$ then $q_{1}=q_{2}=q_{3}=1$. We call this condition on S_{1}, S_{2}, S_{3} the triple product property.

Constructing TPP

Theorem

A_{4} (alternating group of order 4) realizes $\langle 3,3,2\rangle$.

Proof.

TPP triples: $S:\{(1),(13)(24)\} ; T:\{(1),(243),(234)\} ;$ $U:\{(1),(124),(142)\}$.

Contructing TPP

Denote $G:=C_{6} \times A_{4}$.

Proposition

G realizes $\langle 6,6,3\rangle$ via S_{1}, T_{1}, U_{1} :
S_{1} :=
$\left\{(1,1),(1,(13)(24)),\left(\overline{3}^{(1)}, 1\right),\left(\overline{3}^{(1)},(13)(24)\right),\left(\overline{3}^{(2)}, 1\right),\left(\overline{3}^{(2)},(13)(24)\right)\right\} ;$
$T_{1}:=$
$\left\{(1,1),(1,(243)),(1,(234)),\left(\overline{2}^{(1)}, 1\right),\left(\overline{2}^{(1)},(243)\right),\left(\overline{2}^{(1)},(234)\right)\right\}$; $U_{1}:=\{(1,1),(1,(124)),(1,(142))\}$.

Constructing TPP triples

Denote $H:=C_{3} \times A_{4}$.

Proposition

H realizes $\langle 6,4,3\rangle$ via S, T, U :
$S:=$
$\left\{(1,1),(1,(13)(24)),\left(\overline{3}^{(1)},(13)(24)\right),\left(\overline{3}^{(2)},(13)(24)\right),\left(\overline{3}^{(1)}, 1\right),\left(\overline{3}^{(2)}, 1\right)\right\}$;
$T:=\{(1,1),(1,(14)(23)),(1,(143)),(1,(134))\} ;$
$U:=\{(1,1),(1,(123)),(1,(132))\}$.

Motivation

- From the examples above we can see that once I got a "TPP" triple of a subgoup, say A_{4}, I would like to expand it in some way to get a "TPP" triple of a bigger group, say $C_{6} \times A_{4}$ or $C_{3} \times A_{4}$.
- It's easier to obtain a TPP triple of a smaller group, so I would like to find some theory behind, say relations between TPP of A_{4} and TPP of $C_{n} \times A_{4}$. $\left(C_{n}\right.$: cyclic group of order $\left.n\right)$

constructing TPP triples-some principles

$D:=C_{2} \times B, Q:=C_{3} \times B, F:=C_{n} \times B$.
Take $\langle 6,6,6\rangle$ for S_{2}, T_{2}, U_{2} for example:

S_{2}	T_{2}	U_{2}
$\left(1, s_{1}\right)$	$\left(1, t_{1}\right)$	$\left(1, u_{1}\right)$
$\left(1, s_{2}\right)$	$\left(1, t_{2}\right)$	$\left(1, u_{2}\right)$
$\left(1, s_{3}\right)$	$\left(1, t_{3}\right)$	$\left(2, z_{1}\right)$
$\left(2, x_{1}\right)$	$\left(2, y_{1}\right)$	$\left(2, z_{2}\right)$
$\left(2, x_{2}\right)$	$\left(2, y_{2}\right)$	$\left(2, z_{3}\right)$
$\left(2, x_{3}\right)$	$\left(2, y_{3}\right)$	$\left(2, z_{4}\right)$

Here,we have $S=\left\{s_{1}, s_{2}, s_{3}\right\}, T=\left\{t_{1}, t_{2}, t_{3}\right\}, U=\left\{u_{1}, u_{2}\right\}, X=$ $\left\{x_{1}, x_{2}, x_{3}\right\}, Y=\left\{y_{1}, y_{2}, y_{3}\right\}, Z=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$. And $C_{2}=\{1,2\}$ is the cyclic group of order 2, 1 is the unit and 2 represents the 2-ordered element in it.

constructing TPP triples-some principles

Theorem

If $S_{2}, T_{2}, U_{2} \subset D$ satisfy TPP and $S \cap X \neq \phi$, then $Y \cap T=\phi$ and $Z \cap U=\phi$ must hold.

Proof.

When $S_{2}, T_{2}, U_{2} \subset D$ has TPP property, if $S \cap X \neq \phi$. Suppose $Y \cap T \neq \phi$, w.l.o.g., $y_{1}=t_{1}, s_{1}=x_{1}$, then we have
$\left(1, s_{1}\right)\left(2, x_{1}\right)^{-1}\left(1, t_{1}\right)\left(2, y_{1}\right)^{-1}\left(1, u_{1}\right)\left(1, u_{1}\right)^{-1}=1$, but obviously $\left(1, s_{1}\right) \neq\left(2, x_{1}\right)$, contradiction! With the same approach, we can obtain $Z \cap U \neq \phi$.

constructing TPP triples-some principles

> Theorem
> If $S_{3}, T_{3}, U_{3} \subset Q$ satisfy TPP and $S \cap X \neq \phi$, then we have $Y \cap T=\phi$ and $Z \cap U=\phi$.

Theorem

If $S_{2}, T_{2}, U_{2} \subset D$ satisfy TPP, then the subset triples (S, Y, U), $(S, Y, Z),(S, T, Z),(X, T, U),(X, T, Z),(X, Y, U),(X, Y, Z)$ of B all satisfy TPP.

constructing TPP triples-some principles

Theorem

If $S_{2}, T_{2}, U_{2} \subset D$ satisfy TPP, and $\left.S_{2}\right|_{B}$ contains some repeated elements, then B realizes $\langle a, b, c\rangle$, where $a=r+1$ (r is the number of elements that has more than one occurrence in $\left.\left.S_{2}\right|_{B}\right)$, $b=\left|T_{2}\right|, c=\left|U_{2}\right|$.

An example for the theorem on the previous slide

Example

S_{2}	T_{2}	U_{2}
$\left(1, s_{1}\right)$	$\left(1, t_{1}\right)$	$\left(1, u_{1}\right)$
$\left(1, s_{2}\right)$	$\left(1, t_{2}\right)$	$\left(1, u_{2}\right)$
$\left(1, s_{3}\right)$	$\left(1, t_{3}\right)$	$\left(2, z_{1}\right)$
$\left(2, x_{1}\right)$	$\left(2, y_{1}\right)$	$\left(2, z_{2}\right)$
$\left(2, x_{2}\right)$	$\left(2, y_{2}\right)$	$\left(2, z_{3}\right)$
$\left(2, x_{3}\right)$	$\left(2, y_{3}\right)$	$\left(2, z_{4}\right)$

Here $|S \cap X|=r, a=r+1, b=\left|T_{2}\right|, c=\left|U_{2}\right|$, then if $S_{2}, T_{2}, U_{2} \subset D$ satisfy TPP, we can obtain that B satisfies TPP via $\langle a, b, c\rangle$, where $D=C_{2} \times B, C_{2}=\{1,2\}$ is the cyclic group of order 2,1 is the unit and 2 represents the 2-ordered element in it.

Reference

- (CU03) Cohn H, Umans C. A group-theoretic approach to fast matrix multiplication[C]. Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on. IEEE, 2003: 438-449.
- (IHupgrade2015) Hedtke I. Upgrading Subgroup Triple-Product-Property Triples[J]. Journal of Experimental Algorithmics (JEA), 2015, 20: 1.1.
- (Neumannnote2011) Peter M. Neumann. A note on the triple product property for subsets of finite groups. LMS J. Comput.Math., 14:232-237, 2011.

Thank You

