
title problem statement algorithm illustration correctness

A calculus for monomials in Chow group An−3(n)

Jiayue Qi

DK Statusseminar

2019.09.27.

title problem statement algorithm illustration correctness

basic setting

Let n ∈ N, n ≥ 3, set N := {1, . . . , n}.
A partition (I , J) of N where both cardinality of I and J are at
least 2 is called a cut (of Mn).

This talk focus on the Chow ring of Mn, where Mn is the
moduli space of stable n-pointed curves of genus zero.

Denote δI ,J as the class of a cut subvariety DI ,J of Mn.

We will not focus on the details of Mn, what is important for
this talk is the properties of this Chow ring.

We denote the Chow ring of Mn as A∗(n).

title problem statement algorithm illustration correctness

properties of A∗(n)

It is a graded ring, we have A∗(n) =
⊕n−3

k=0 A
k(n); and these

homogeneous components are defined as Chow groups (of
Mn). Here, for instance, we say Ar (n) is a Chow group of
dimension r .

Fact1: Ar (n) = {0} for r > n − 3.

Fact2: An−3(n) ∼= Z, we denote this isomorphism as∫
: An−3(n) −→ Z.

{δI ,J | {I , J} is a cut} is a set of generators for A1(n); hence
they are also generators for A∗(n).

For simplicity, we call them generators in the later text.∏n−3
i=1 δIi ,Ji can be viewed as an element in An−3(n) since we

are in a graded ring.

Quadratic relations between the generators.

Linear relations between the generators.

title problem statement algorithm illustration correctness

Keel’s quadratic relation

Among the generators of A∗(n), δI1,J1 · δI2,J2 = 0 and we say these
two generators fulfill Keel’s quadratic relation if the following
conditions hold:

I1 ∩ I2 6= ∅;
I1 ∩ J2 6= ∅;
J1 ∩ I2 6= ∅;
J1 ∩ J2 6= ∅.

Easy example: When n = 5, δ12|345 · δ13|245 = 0 but δ12|345 and
δ123|45 does not fulfill this relation.

title problem statement algorithm illustration correctness

Keel’s linear relation

Denote εij |kl :=
∑

i ,j∈I ,k,l∈J δI ,J . Then we have the equality
relations εij |kl = εil |kj = εik|jl , we call it Keel’s linear relation.

Example

When n = 6, we have ε12|35 = ε13|25 = ε15|23, i.e.,

δ12,3456 + δ124,356 + δ126,345 + δ1246,35

= δ13,2456 + δ134,256 + δ136,245 + δ1346,25

= δ15,2346 + δ145,236 + δ156,234 + δ1456,23

title problem statement algorithm illustration correctness

motivation

Many problems from yesterday’s rigidity workshop can be
reduced to computation of

∫ ∏n−3
r=1 εir jr |kr lr , subproblem of

which is to compute
∫ ∏n−3

r=1 δIr ,Jr .

Denote T :=
∏n−3

r=1 δIr ,Jr , we define the value of T to be∫
(
∏n−3

r=1 δIr ,Jr).

A easy case is when two factors of the monomial fulfill Keel’s
quadratic relation; we simply get value zero because of Keel’s
quadratic relation.

What if this is not the case?

Now we only need to consider the monomials T := Πn−3
i=1 δIi ,Ji

where no two factors fulfill Keel’s quadratic relation; we call
this type of monomials tree monomial since there is a
one-to-one correspondence between these monomials and
loaded tree with n labels and k edges. We come to the
definition of these trees now.

title problem statement algorithm illustration correctness

loaded tree

A loaded tree with n labels and k edges is a tree (V ,E)
together with a labeling function h from V to the power set of N
such that the following conditions hold:

Non-empty labels {h(v)}v∈V form a partition of N;

Number of edges is k and here multiple edges are allowed;

deg(v) + |h(v)| ≥ 3 holds for every v ∈ V .

title problem statement algorithm illustration correctness

loaded tree

See some examples of loaded trees. (check with definitions)

Figure: This is a loaded tree with 5 labels and 2 edges.

Figure: This is a loaded tree with 6 labels and 3 edges.

title problem statement algorithm illustration correctness

monomial of a given tree

We define the monomial of a given loaded tree as the
following:

For each edge we collect the labels on one side of it to form I
and labels on the other side of it to form J. And we say (I , J)
is the corresponding cut for this edge.

The monomial of this given loaded tree is
∏n−3

i=1 δIi ,Ji ; each
edge of the tree contributes to the monomial a factor δI ,J if
(I , J) is the corresponding cut for this edge.

It is well-defined and each loaded tree has a unique monomial
representation.

title problem statement algorithm illustration correctness

monomial of a given tree

Figure: This is a loaded tree with 5 labels and 2 edges, the corresponding
tree of tree monomial δ12|345 · δ123|45.

Figure: This is a loaded tree with 6 labels and 3 edges, the corresponding
tree of tree monomial δ34|1256 · δ12|3456 · δ56|1234.

title problem statement algorithm illustration correctness

one-to-one correspondence

We claim that any monomial of a given loaded tree is actually a
tree monomial; and every tree monomial uniquely represents a
loaded tree.

Theorem

There is a one to one correspondence between tree monomials
T =

∏m
i=1 δIi ,Ji (1 ≤ m ≤ n − 3) and loaded trees with n labels and

m edges. We call the corresponding tree of a tree monomial tree
of the given tree monomial.

title problem statement algorithm illustration correctness

one-to-one correspondence

Proof.

Prove by induction on m.

Base case: m = 1, T = δI1,J1 . We define its corresponding
tree simply as a tree with two vertices and one edge
connecting them, setting two labeling sets of the vertices as I1
and J1, respectively. Obviously this tree is a loaded tree with
n labels and 1 edge and its monomial is exactly T .

Assume the statement holds for all m ≤ k (1 ≤ k ≤ n − 3).

When T =
∏k+1

i=1 δIi ,Ji , we define its corresponding tree as the
following:

title problem statement algorithm illustration correctness

one-to-one correspondence

Proof.

First collect these Ii , Ji (1 ≤ i ≤ k + 1) together in a set C
(which can be a multi-set).

Then pick any element x ∈ C such that x has minimum
cardinality; assume (x , y) is the cut (for Mn).

Define T1 := T
δx,y

, obviously it is still a tree monomial. By

induction, there is a unique loaded tree LT1 = (V1,E1, h1)
with n labels and k edges representing T1.

Then all nodes of x must be together in h1(v) for some
v ∈ V1; otherwise, there will be another factor of T fulfilling
Keel’s quadratic relation with δx ,y and this contradicts with
the fact that T is a tree monomial.

Then there are two cases: (1) x = h1(v); (2) x (h1(v).

title problem statement algorithm illustration correctness

one-to-one correspondence

Proof.

First case: x = h1(v), since x has minimal cardinality in set
C , v must be a leaf and its adjacent edge corresponds to cut
(x , y). In this case, we simply add one more multiplicity to
this edge. Denote this new tree as LT .

Second case: x (h1(v). Add a new vertex u with labelling
set x and one more edge uv connecting v and u; denote this
new tree as LT = (V ,E , h).

It is not hard to verify that in both cases LT is a loaded tree
with n labels and k + 1 edges and the monomial of LT is just
the product of δx ,y and the monomial of LT1, i.e., T1 · δx ,y ,
which is exacty T . In this way, we proved the uniqueness.

By induction, the statement holds.

title problem statement algorithm illustration correctness

one-to-one correspondence

From the proof above, we can extract an algorithm for
constructing a loaded tree of the given tree monomial.

However, the mutiplicity issue of edges can be simplified a bit.

We can set that set C in the algorithm to be a normal set.

The multiplicity of edges can be considered after the tree
structure is constructed easily.

(illustrate the example on the blackboard)

We call it tree algorithm.

title problem statement algorithm illustration correctness

one-to-one correspondence

Figure: This is the corresponding loaded tree of the given monomial.

title problem statement algorithm illustration correctness

value of a loaded tree

Goal: calculate
∫

(T) for any tree monomial T

Recall:
∫

represents the isomorphism from An−3(n) to Z
Because of this one-to-one correspondence, now we define
value of a loaded tree as

∫
(T), where T is the

corresponding monomial of this loaded tree.

title problem statement algorithm illustration correctness

value of a loaded tree

Goal: calculate
∫

(T) for any tree monomial T

Recall:
∫

represents the isomorphism from An−3(n) to Z
Because of this one-t-one correspondence, now we define
value of a loaded tree as

∫
(T), where T is the

corresponding monomial of this loaded tree.

Goal: Given a loaded tree with n labels and n − 3 edges, we
want to calculate its value.

title problem statement algorithm illustration correctness

special case

Theorem

If all factors are distinct in T := Πn−3
i=1 δIi ,Ji , then

∫
(T) = 1. We

call this type of tree monomial clever monomial and its
corresponding loaded tree clever tree.

Remark

For clever trees, we know that they have value 1. What about
non-clever trees? Let’s see the following example for a general idea.

title problem statement algorithm illustration correctness

Recall Keel’s linear relation

Example

When n = 6, we have ε12|35 = ε13|25 = ε15|23, i.e.,

δ12,3456 + δ124,356 + δ126,345 + δ1246,35

= δ13,2456 + δ134,256 + δ136,245 + δ1346,25

= δ15,2346 + δ145,236 + δ156,234 + δ1456,23

Remark

From the exmaple above we easily see that we can replace some
δI ,J , say δ12|3456, by ε13|25 − (ε12|35 − δ12|3456). Basicly we can
replace δI ,J by a sum of (2n−3 − 1) many (±)δI ′,J′ .

title problem statement algorithm illustration correctness

main idea behind

Example

Given: δ212|3456 · δ1234|56
corresponding tree see below

use Keel’s linear relation:

δ212|3456·δ1234|56 = δ12|3456·δ1234|56·(ε13|25−δ124|356−δ126|345−δ1246|35).

After cancellations caused by Keel’s quadratic relation, we get
δ212|3456 · δ1234|56 = −δ12|3456 · δ1234|56 · δ124|356.

obtain tree value/monomial value: −1

title problem statement algorithm illustration correctness

main idea behind

For simpler monomials we can try to replace those higher
powered factors using Keel’s linear relation.

And hopefully finally get a sum of clever monomials (maybe
with a negative sign).

Then the number of of clever monomials should be the
absolute value of given monomial.

Based on this idea, we have an algorithm for calculus for all
tree monomials in An−3(n).

title problem statement algorithm illustration correctness

sketch of the algorithm

Input: a loaded tree with n labels and n − 3 edges

Output: a natural number

Transfer the loaded tree to a semi-redundancy tree.

Calculate the sign of the tree value.

Construct a redundancy forest from the semi-redundancy tree.

Apply a recursive algorithm to this redundancy forest,
obtaining the absolute tree value.

Product of the sign and absolute value gives us tree value.

We call it forest algorithm.

Now we explain these terminologies.

title problem statement algorithm illustration correctness

semi-redundancy tree

Given: loaded tree LT = (V ,E , h).

Define a weight function w : V ∪ E −→ N as the following:

For any v ∈ V , w(v) := deg(v) + |h(v)| − 3.

Note that here in the degree of v , multiple edges are counted
only once. And from the definition of loaded tree we know the
weight of any vertex must be non-negative.

For any e ∈ E , w(e) :=multiplicity of e − 1. Then we see the
weight of any edge is also non-negative.

semi-redundancy tree (of LT) SRT := (LT ,w).

title problem statement algorithm illustration correctness

semi-redundancy tree

Figure: This is a loaded tree LT with 14 labels and 11 edges.

Let’s figure out its semi-redundancy tree!

title problem statement algorithm illustration correctness

semi-redundancy tree

Figure: This is the semi-redundancy tree of the loaded tree LT , where the
weight of vertices and edges are tagged in red. For simplicity we ommit
labels for vertices here.

title problem statement algorithm illustration correctness

sign of the tree value

Given a semi-redundancy tree SRT = (LT ,w).

Let S be the sum of vertex weight (or edge weight) of LT .

Sign of the tree value of loaded tree LT is (−1)S .

It’s not hard to verify that weight sum of edges and of vertices
are the same.

title problem statement algorithm illustration correctness

sign of the tree value

∑
v∈V

w(v) =
∑
v∈V

(deg(v) + |h(v)| − 3)

=
∑
v∈V

deg(v) +
∑
v∈V
|h(v)| − 3 · |V |

= 2 · |E |+ n − 3 · |V |
= 2 · |E |+ n − 3 · |E | − 3

= n − 3− |E |∑
e∈E

w(e) =
∑
e∈E

(multiplicity(e)− 1)

=
∑
e∈E

multiplicity(e)− |E |

= n − 3− |E |

Note that here in |E | multiple edges are counted only once.

title problem statement algorithm illustration correctness

sign of the tree value

Figure: This is the semi-redundancy tree of the loaded tree LT , where the
weight of vertices and edges are tagged in red. For simplicity we ommit
labels for vertices here.

Sum of vertex weight S = 1 + 4 + 1 + 0 + 1 = 7, so the sign of LT
value is (−1)7 = −1.

title problem statement algorithm illustration correctness

redundancy forest

How do we transfer a semi-redundancy tree (LT ,w) (assume
LT = (V ,E , h)) to a redundancy forest?

Replace each edge by a length-two edge with a new vertex
connecting them which has the same weight as the replaced
edge.

Then we obtain the redundancy tree (of loaded tree LT)
RT := (V ∪ E ,E1, h,w).

Union of subtrees of RT such that no vertex has weight zero
is the redundancy forest of LT .

title problem statement algorithm illustration correctness

redundancy forest

Figure: This is the semi-redundancy tree of the loaded tree LT , where the
weight of vertices and edges are tagged in red. For simplicity we ommit
labels for vertices here.

Let’s figure out its redundancy forest!

title problem statement algorithm illustration correctness

redundancy forest

Figure: This is the redundancy forest RF of loaded tree LT , which
contains two trees and the weight of vertices of RF are tagged in red.

Let’s figure out how to apply the recursive algorithm to obtain the
absolute value!

title problem statement algorithm illustration correctness

absolute value

Let RF = (V ,E , h,w) be the redundancy forest of a loaded
tree LT .
We define the value of RF as the following:
Pick any leaf of this forest, say l ∈ V , denote the unique
parent of l as l1.
If w(l) > w(l1), return 0 and terminate the algorithm;
otherwise, remove l from RF and assign weight
(w(l1)− w(l)) to l1, replacing its previous weight. Denote the
new forest as RF1.
Value of RF is the product of binomial coefficient

(w(l1)
w(l)

)
and

the value of RF1.
Base cases: whenever we reach a degree-zero vertex, if it has
non-zero weight, return 0 and terminate the algorithm;
otherwise, return 1.
Product of absolute value of the corresponding redundancy
forest of LT and sign of its tree value gives us the value of LT .

title problem statement algorithm illustration correctness

absolute value

Figure: This is the redundancy forest RF of loaded tree LT , which
contains two trees and the weight of vertices of RF are tagged in red.

Let’s figure out how to apply the recursive algorithm to obtain the
absolute value!

title problem statement algorithm illustration correctness

absolute value

title problem statement algorithm illustration correctness

tree value

Finally we get the absolute value of RF as
1×

(1
1

)
×
(2
1

)
×
(4
3

)
×
(4
1

)
×
(1
1

)
= 32.

Combining with the sign −1, we obtain the value of LT as
−32.

title problem statement algorithm illustration correctness

forest algorithm

Input: a loaded tree with n labels and n − 3 edges

Output: a natural number

Transfer the loaded tree to a semi-redundancy tree.

Calculate the sign of the tree value.

Construct a redundancy forest from the semi-redundancy tree.

Apply a recursive algorithm to this redundancy forest, obtain
the absolute tree value.

Prduct of the sign and absolute value gives us tree value.

Implemented in Python; based on forest algorithm,
computation of

∫ ∏n−3
r=1 εir jr |kr lr is also implemented in Python.

title problem statement algorithm illustration correctness

well-definedness; termination

Not hard to verify that at every step it does not matter from
which leaf we start and base cases are well-defined. Hence
forest algorithm is well-defined.

Input is a tree with (n− 2) vertices maximally, the redundancy
forest can have at most (2n − 5) vertices.

The recursive algorithm strictly reduces the number of vertices
by 1 in each step, obtaining a proper sub-forest.

Hence the algorithm terminates and is well-defined.

title problem statement algorithm illustration correctness

correctness

Conjecture

Forest algorithm is correct.

title problem statement algorithm illustration correctness

Thank You

	title
	problem statement
	algorithm illustration
	correctness

