Topology analysis of complex curves singularities using knot theory

Mădălina Hodorog ${ }^{1}$, Bernard Mourrain ${ }^{2}$, Josef Schicho ${ }^{1}$
${ }^{1}$ Johann Radon Institute for Computational and Applied Mathematics, Doctoral Program "Computational Mathematics"
Johannes Kepler University Linz, Austria
${ }^{2}$ INRIA Sophia-Antipolis, France

$7^{\text {th }}$ Conference on Curves and Surfaces, France June 24, 2010

Table of contents

(1) Motivation
(2) Topology of plane complex curves singularities

Describing the problem
Solving the problem
(3) A library for topology of plane complex curves singularities
(4) Conclusion and future work

(1) Motivation

(2) Topology of plane complex curves singularities

Describing the problem
Solving the problem
(3) A library for topology of plane complex curves singularities
(4) Conclusion and future work

Motivation

```
Why study the topology of a complex curve singularity?
    What is the topology of a singularity?
How to compute the topology?
    Why using knot theory?
```


Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?
How to compute the topology? Why using knot theory?

뭉웅 To compute the genus of plane complex curves!

Motivation

> Why study the topology of a complex curve singularity?
> What is the topology of a singularity?
> How to compute the topology? Why using knot theory?

- To compute the genus of plane complex curves!

鲒 The algebraic link of the singularity!

Motivation

> Why study the topology of a complex curve singularity?
> What is the topology of a singularity? How to compute the topology?

- To compute the genus of plane complex curves! We use
- The algebraic link of the singularity!

傕 We propose a symbolic-numeric algorithm for this purpose!

Motivation

$$
\begin{aligned}
& \text { Why study the topology of a complex curve singularity? } \\
& \text { What is the topology of a singularity? } \\
& \text { How to compute the topology? } \\
& \text { Why using knot theory? }
\end{aligned}
$$

- To compute the genus of plane complex curves!
- The algebraic link of the singularity!
- We propose a symbolic-numeric algorithm for this purpose!

鲒 The proposed algorithm is stable w.r.t. small perturbations!

Motivation

Why is this proposed symbolic-numeric algorithm "special"?

Motivation

At present, there exists several...

Doctoral Program
Conpatabove vateme
三

Motivation

But...
For moderate symbolic input data:
they are too expensive

Motivation

For instance, in Maple using algcurves package...
$>$ with(algcurves);
[AbelMap, Siegel, Weierstrassform, algfun_series_sol, differentials, genus, homogeneous, homology, implicitize, integral_basis, is_hyperelliptic, j_invariant, monodromy, parametrization, periodmatrix, plot_knot, plot_real_curve, puiseux, singularities]
$>f:=x^{2} y+y^{4}$

$$
f:=x^{2} y+y^{4}
$$

$>\operatorname{genus}(f, x, y)$

$$
-1
$$

$>g:=1.02 \cdot x^{2} y+1.12 \cdot y^{4}$

$$
g:=1.02 x^{2} y+1.12 y^{4}
$$

$>\operatorname{genus}(g, x, y)$
Error, (in content/polynom) general case of floats not handled $>$

Motivation

Thus we need...

Motivation

Hopefully...
Project: Symbolic-Numeric techniques for genus computation (initiated by J. Schicho).

Other numeric method was reported (in the group of R. Sendra).

(1) Motivation

(2) Topology of plane complex curves singularities

Describing the problem
Solving the problem

(3) A library for topology of plane complex curves singularities

(4) Conclusion and future work

What?

- Input:
- $F \in \mathbb{C}[x, y]$ squarefree with coefficients of limited accuracy:
- $C=\left\{(x, y) \in \mathbb{C}^{2} \mid F(x, y)=0\right\}$ complex algebraic curve of degree m.
- $\epsilon \in \mathbb{R}_{+}^{*}$ a non-zero positive real number, the input parameter.
- Output:
- the algebraic link/topology of each singularity $s \in \operatorname{Sing}(C)$, where $\operatorname{Sing}(C)$ is the set of singularities of the curve C.

What?

- Input:
- $F \in \mathbb{C}[x, y]$ squarefree with coefficients of limited accuracy:
- integers or rational numbers: $1,-2, \frac{1}{2}$.
- or real numbers. For 1.001 we associate a tolerance of $\sigma=10^{-3}$.
- $C=\left\{(x, y) \in \mathbb{C}^{2} \mid F(x, y)=0\right\}$ complex algebraic curve of degree m.
- $\epsilon \in \mathbb{R}_{+}^{*}$ a non-zero positive real number, the input parameter.
- Output:
- the algebraic link/topology of each singularity $s \in \operatorname{Sing}(C)$, where $\operatorname{Sing}(C)$ is the set of singularities of the curve C.

How?

- Strategy for computing the topology of all the singularities of the curve

How?

- Strategy for computing the topology of all the singularities of the curve

Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$

[^0]

Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);

[^1]
Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in $C++$, Qt Script for Applications (QSA);

[^2]

Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in $C++$, Qt Script for Applications (QSA);
- provides algebraic tools for:
- implicit surfaces;

[^3]
Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in C++, Qt Script for Applications (QSA);
- provides algebraic tools for:
- implicit surfaces;
- implicit curves.

[^4]
Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in C++, Qt Script for Applications (QSA);
- provides algebraic tools for:
- implicit surfaces;
- implicit curves.
- free, available at:

http://axel.inria.fr/

[^5]
First

Computing the singularities of the curve

- Input:
- $F(x, y) \in \mathbb{C}[x, y]$ squarefree with coefficients of limited accuracy.
- $C=\left\{(x, y) \in \mathbb{C}^{2} \mid F(x, y)=0\right\}$ complex algebraic curve of degree m.
- Output:
- $\operatorname{Sing}(C)=\left\{\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2} \mid F\left(x_{0}, y_{0}\right)=0, \frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)=0, \frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)=0\right\}$
- Method: We solve the overderminate system of polynomial equations with coefficients of limited accuracy in \mathbb{C}^{2} :

$$
\left\{\begin{array}{l}
F\left(x_{0}, y_{0}\right)=0 \tag{1}\\
\frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)=0 \\
\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

Computing the singularities of the curve

For input polynomials with coefficients of limited accuracy:


```
AT PRESENT
We solve system (1) using
subdivision methods from
Mathemagix, a library of Axel
```


IN THE FUTURE:

We intend to solve system (1) using linear algebra methods from a new library of Axel, which is under construction

Note: We assume the subdivision methods return all the singularities.
Axel, which is under construction

Next

Knot theory - preliminaries

Trefoil Knot

- A knot is a piecewise linear or a differentiable simple closed curve in \mathbb{R}^{3}.
- A link is a finite union of disjoint knots.
- Links resulted from the intersection of a given curve with the sphere are called algebraic links.

Computing the algebraic link of the singularity

- Why the algebraic link of a singularity?
- helps to study the topology of a complex curve near a singularity;
- How do we compute the algebraic link?
- use the generalization of the stereographic projection;

Computing the link of the singularity

Method (based on Milnor's results)

1. Let $C=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid F(a, b, c, d)=0\right\}$ s.t. $(0,0,0,0) \in \operatorname{Sing}(C)$
2. Consider $S_{(0, \epsilon)}:=S=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid a^{2}+b^{2}+c^{2}+d^{2}=\epsilon^{2}\right\}$,

$$
X=C \bigcap S_{(0, \epsilon)} \subset \mathbb{R}^{4}
$$

3. For $P \in S \backslash C, f: S \backslash\{P\} \rightarrow \mathbb{R}^{3},(a, b, c, d) \mapsto\left(u=\frac{a}{\epsilon-d}, v=\frac{b}{\epsilon-d}, w=\frac{c}{\epsilon-d}\right)$, $f^{-1}: \mathbb{R}^{3} \rightarrow S \backslash\{P\}$
$(u, v, w) \mapsto\left(a=\frac{2 u \epsilon}{n}, b=\frac{2 v \epsilon}{n}, c=\frac{2 w \epsilon}{n}, d=\frac{\epsilon\left(u^{2}+v^{2}+w^{2}-1\right)}{n}\right)$, where $n=1+u^{2}+v^{2}+w^{2}$.
4. Compute $f(X)=\left\{(u, v, w) \in \mathbb{R}^{3} \left\lvert\, F\left(\frac{2 u \epsilon}{n}, \frac{2 v \epsilon}{n}, \ldots\right)=0\right.\right\} \Leftrightarrow$

$$
f(X)=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\}
$$ $f(X)$ is an implicitly defined algebraic curve!

For small $\epsilon, f(X)$ is a link (a differentiable algebraic link).

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$
we compute with the previous method in Axel:

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$
we compute with the previous method in Axel:
- $f(C \cap S)=f(X):=L=$ $=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}$

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$
we compute with the previous method in Axel:
- $f(C \cap S)=f(X):=L=$ $=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}$
- $\operatorname{Graph}(L)=\langle\mathcal{V}, \mathcal{E}\rangle$ with
$\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$
$\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$
we compute with the previous method in Axel:
- $f(C \cap S)=f(X):=L=$ $=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}$
- $\operatorname{Graph}(L)=\langle\mathcal{V}, \mathcal{E}\rangle$ with
$\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$
$\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$
- s.t. $\operatorname{Graph}(L) \cong_{i \text { sotopic }} L$

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$ we compute with the previous method in Axel:
- $f(C \cap S)=f(X):=L=$ $=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}$
- $\operatorname{Graph}(L)=\langle\mathcal{V}, \mathcal{E}\rangle$ with $\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$ $\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$
- s.t. $\operatorname{Graph}(L) \cong_{i s o t o p i c} L$
- $\operatorname{Graph}(L)$ is the topology of L, a piecewise linear approximation for the differentiable algebraic link L;

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$
- and $L=$

$$
=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\}
$$

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$
- and $L=$

$$
=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\}
$$

- we also compute (for visualization reasons)

$$
\begin{aligned}
& S^{\prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)+\operatorname{Im} F(\ldots)=0\right\} \\
& S^{\prime \prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re}(F)-\operatorname{Im} F(\ldots)=0\right\}
\end{aligned}
$$

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method for certified topology of smooth implicit curves in \mathbb{R}^{3} !

- For $C=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}$
- and $L=$
$=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{ReF}(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}$
- we also compute (for visualization reasons)
$S^{\prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{ReF}(\ldots)+\operatorname{ImF}(\ldots)=0\right\}$
$S^{\prime \prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \operatorname{Re}(F)-\operatorname{ImF}(\ldots)=0\right\}$
- L is the intersection of any 2 of the surfaces: $\operatorname{ReF}(\ldots), \operatorname{ImF}(\ldots)$ $\operatorname{ReF}(\ldots)+\operatorname{ImF}(\ldots), \operatorname{ReF}(\ldots)-\operatorname{ImF}(\ldots)$

Next

Knot theory - preliminaries

Regular projection

A knot projection is a regular projection if no three points on the knot project to the same point, and no vertex projects to the same point as any other point on the knot. A double point of a regular projection is a crossing point.

A diagram is the image under regular projection, together with the information on each crossing telling which branch goes over/under.
An arc is the part of a diagram between two undercrossings.

Diagram

Knot theory - preliminaries

Oriented diagram

A diagram together with a given orientation of the link is called an oriented diagram.

A crossing is:
-righthanded if the underpass traffic goes from right to left.
 -lefthanded if the underpass traffic goes from left to right.

> Crossings

Doctoral Program

Computing operations on the algebraic link

- $G(L)=\langle P, E\rangle$
p (index, $\mathrm{x}, \mathrm{y}, \mathrm{z}$)
e(indexS, indexD)

$D(L)$
\longrightarrow number of arcs, crossings
\rightarrow type of crossings (under, over)
\rightarrow number of knots in the link(orientation)

Computing operations on the algebraic link

By performing operations on $G(L)$ we obtain the elements of $D(L)$!

Algorithm 1 - Adapted version of Bentley-Ottman

- Input: S a set of "short" edges ordered from left to right:
- A "short" edge is an edge whose projection contains at most one crossing point.

- Output: I - the set of all intersections among edges of S and
- for each $p=e_{i} \cap e_{j} \in I$, the "arranged" pair of edges $\left(e_{i}, e_{j}\right)$, i.e e_{i} is below e_{j} in \mathbb{R}^{3}

Algorithm 1 - Adapted version of Bentley-Ottman

- First: the edges are ordered by criteria (1),(2),(3):

Algorithm 1 - Adapted version of Bentley-Ottman

- we consider l a sweep line
- we keep track of two lists:
$E=\left\{e_{0}, e_{1}, \ldots, e_{11}\right\}$ the list of ordered edges
$S w=\{?\}$ the list of event points
- while traversing E we insert the edges in $S w$ in the "right" position
- That is...

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{0}, e_{1}\right\}$

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{0}, e_{1}\right\}$

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{0}, e_{1}\right\}$; compute:

$$
\operatorname{det}\left(e_{2}, e_{0}\right)=\left(\begin{array}{ccc}
m & n & 1 \\
p & q & 1 \\
a & b & 1
\end{array}\right)>0 \Rightarrow e_{2} \text { after } e_{0} \text { in } S w
$$

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{0}, e_{1}\right\}$

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{0}, e_{1}\right\}$; compute:

$$
\operatorname{det}\left(e_{2}, e_{1}\right)=\left(\begin{array}{ccc}
m & n & 1 \\
p & q & 1 \\
a & b & 1
\end{array}\right)<0 \Rightarrow e_{2} \text { before } e_{1} \text { in } S w
$$

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{0}, e_{2}, e_{1}\right\}$
- Test $e_{0} \cap e_{2}$? No!

Test $e_{2} \cap e_{1}$? No!

- $I=\emptyset$
$E_{I}=\emptyset$

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{4}, e_{6}, e_{3}, e_{5}\right\}$

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{4}, e_{6}, e_{7}, e_{5}\right\}$
- Test $e_{6} \cap e_{7}=$? Yes!

Test $e_{7} \cap e_{5}=$? No! $\Rightarrow I=\left\{\left(a_{1}, b_{1}\right)\right\} E_{I}=\left\{\left(e_{6}, e_{7}\right)\right\}$

$$
S w=\left\{e_{4}, e_{7}, e_{6}, e_{5}\right\}
$$

Algorithm 1 - Adapted version of Bentley-Ottman

- $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}\right\}$
- $S w=\left\{e_{4}, e_{8}, e_{6}, e_{5}\right\}$
- Test $e_{4} \cap e_{8}=$?No!

Test $e_{8} \cap e_{6}=$?No!

- Test $\operatorname{dest}\left(e_{4}\right)=\operatorname{dest}\left(e_{8}\right)$? No!

Test $\operatorname{dest}\left(e_{8}\right)=\operatorname{dest}\left(e_{6}\right) ?$ Yes! $\Rightarrow S w=\left\{e_{4}, \mathscr{C}, \mathscr{e}_{6}, e_{5}\right\}=\left\{e_{4}, e_{5}\right\}$

Algorithm 1 - Adapted version of Bentley-Ottman

- The adapted Bentley-Ottman algorithm produces the final output:
$I=\left\{i_{1}=\left(x_{1}, y_{1}\right), i_{2}=\left(x_{2}, y_{2}\right)\right\}$
$E_{I}=\left\{\left(e_{6}, e_{7}\right),\left(e_{10}, e_{9}\right)\right\}$ with
- e_{6} below e_{7} in \mathbb{R}^{3} and
- e_{10} below e_{9} in \mathbb{R}^{3}

Algorithm 2 - Constructing the loops

- E ordered by (1),(2),(3)

$$
\begin{aligned}
\Rightarrow & L_{0}
\end{aligned}=\left\{e_{0}, e_{4}, e_{10},-e_{8},-e_{5},-e_{1}\right\}, 子 \text { } \quad L_{1}=\left\{e_{2}, e_{7}, e_{11},-e_{9},-e_{6},-e_{3}\right\}
$$

Algorithm 2 - Constructing the loops

- E ordered by (1),(2),(3)

$$
\begin{aligned}
\Rightarrow \quad & L_{0}
\end{aligned}=\left\{e_{0}, e_{4}, e_{10},-e_{8},-e_{5},-e_{1}\right\}, 子 \begin{aligned}
& L_{1}
\end{aligned}=\left\{e_{2}, e_{7}, e_{11},-e_{9},-e_{6},-e_{3}\right\}
$$

- Here, we introduce:
the positive edges (\xrightarrow{e}) : $x . \operatorname{dest}(e)>x . \operatorname{source}(e)$
σ the negative edges $(\stackrel{-f}{\leftrightarrows}):$ x.dest $(-f)<x$.source $(-f)$

Algorithm 3 - Constructing the arcs

- $E=\left\{e_{0}, \ldots, e_{\text {last }}\right\}$
- $E_{I}=\left\{\left(-e_{n}, e_{m}\right),\left(e_{l}, e_{k}\right),\left(e_{s},-e_{t}\right)\right\}$
- $L_{0}=\left\{e_{0}, \ldots, e_{s}, e_{l}, \ldots,-e_{1}\right\}$

$$
\begin{aligned}
a_{0} & =\left\{e_{n}^{u}, . .,-e_{1}, e_{0}, . ., e_{k}, . ., e_{s}^{d}\right\} \\
\Rightarrow \quad a_{1} & =\left\{e_{l}^{u}, . .,-e_{t}, . .,-e_{n}^{d}\right\} \\
a_{2} & =\left\{e_{s}^{u}, \ldots, e_{m}, \ldots, e_{l}^{d}\right\}
\end{aligned}
$$

- While constructing the arcs we also decide the type of crossings (RH or LH).

Algorithm 3 - Deciding the type of crossing

RH

LH

- For instance $c_{1}=\left(-e_{n}, e_{m}\right)$ is LH since:
- x.source $\left(-e_{n}\right)>x . \operatorname{dest}\left(-e_{n}\right)$,
- x.source $\left(e_{m}\right)<x$.dest $\left(e_{m}\right)$,
- $\operatorname{slope}\left(e_{m}\right)<$ slope $\left(-e_{n}\right)$
- $c_{2}=\left(e_{l}, e_{k}\right)$ is $\mathrm{LH}, c_{3}=\left(e_{s},-e_{t}\right)$ is LH.
(2) Topology of plane complex curves singularities Describing the problem Solving the problem
(3) A library for topology of plane complex curves singularities
(4) Conclusion and future work

Summary

We have a symbolic-numeric algorithm (i.e. approximate algorithm) for performing operations on a plane complex algebraic curve, implemented in the library GENOM3CK. About GENOM3CK: http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Equation	Link
$x^{2}-y^{2}, \epsilon=1.0$	Hopf link
$x^{2}-y^{3}, \epsilon=1.0$	Trefoil knot
$x^{3}-y^{3}, \epsilon=1.0$	3-knots link
$x^{2}-y^{4}, \epsilon=1.0$	2-knots link
$x^{2}-y^{5}, \epsilon=1.0$	1-knot link
$x^{4}+x^{2} y+y^{5}, \epsilon=0.5$	3-knots link

Summary (pictures made with GENOM3CK in Axel)

Summary (pictures made with GENOM3CK in Axel)

(1) Motivation
(2) Topology of plane complex curves singularities

Describing the problem
Solving the problem
(3) A library for topology of plane complex curves singularities
(4) Conclusion and future work

Conclusion and future work

DONE:

- complete automatization of the approximate algorithm (in GENOM3CK); we compute the singularities, topology/algebraic link, Alexander polynomial, delta-invariant, genus;
- experiments show the output is unique and continuously depends on the data;

X TO DO's:

Conclusion and future work

DONE:

- complete automatization of the approximate algorithm (in GENOM3CK); we compute the singularities, topology/algebraic link, Alexander polynomial, delta-invariant, genus;
- experiments show the output is unique and continuously depends on the data;

X TO DO's:

- prove the properties of the approximate algorithm (i.e. convergency, continuity);

Conclusion and future work

DONE:

- complete automatization of the approximate algorithm (in GENOM3CK); we compute the singularities, topology/algebraic link, Alexander polynomial, delta-invariant, genus;
- experiments show the output is unique and continuously depends on the data;
- we can describe it with principles from regularization theory, approximate algebraic computation.

X TO DO's:

- prove the properties of the approximate algorithm (i.e. convergency, continuity);

Conclusion and future work

DONE:

- complete automatization of the approximate algorithm (in GENOM3CK); we compute the singularities, topology/algebraic link, Alexander polynomial, delta-invariant, genus;
- experiments show the output is unique and continuously depends on the data;
- we can describe it with principles

X TO DO's:

- prove the properties of the approximate algorithm (i.e. convergency, continuity);
- make precise the meaning of the computed output with the approximate algorithm.

Thank you for your attention. Questions?

[^0]: ${ }^{a}$ Acknowledgements: Julien Wintz

[^1]: ${ }^{a}$ Acknowledgements: Julien Wintz

[^2]: ${ }^{\text {a }}$ Acknowledgements: Julien Wintz

[^3]: ${ }^{a}$ Acknowledgements: Julien Wintz

[^4]: ${ }^{a}$ Acknowledgements: Julien Wintz

[^5]: ${ }^{a}$ Acknowledgements: Julien Wintz

