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Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?

How to compute the topology?
Why using knot theory?

 To compute the genus of plane complex curves!
 The algebraic link of the singularity!
 We propose a symbolic-numeric algorithm for this purpose!
� The proposed algorithm is stable w.r.t. small perturbations!
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Motivation

Why is this proposed symbolic-numeric algorithm ”special”?
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Motivation

At present, there exists several...

Maple

RISC−Hagenberg Berlin University

Magma

Singular Axiom

INRIA−Roquencourt

algcurves

PAFFnormal.lib

GHS attack

Package by F. Hess

Kaiserslautern University

Florida University

CASA

Symbolic algorithms for

Genus computation
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Motivation

But...

  Genus computation

Disadvantages of

For numeric input data:

they are unusable

For moderate symbolic input data:

they are too expensive

Symbolic algorithms for
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Motivation
For instance, in Maple using algcurves package...

  

  

  

  

  

  

Error, (in content/polynom) general case of floats not handled
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Motivation

Thus we need...

  

   ?!

(Symbolic) Numeric algorithms for

Genus computation
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Motivation
Hopefully...
Project: Symbolic-Numeric techniques for genus computation (initiated by J. Schicho).

 
INRIA−Sophia Antipolis

Axel algebraic modeler

Implementation: Complex Invariants Plugin

(Now: The plugin is available as a library in Axel)

Symbolic Numeric algorithm for

GENUS COMPUTATION

based on

TOPOLOGY ANALYSIS OF SINGULARITIES

Other numeric method was reported (in the group of R. Sendra).
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What?

• Input:

• F ∈ C[x, y] squarefree with coefficients of limited accuracy:

• integers or rational numbers: 1,−2,
1

2
.

• or real numbers. For 1.001 we associate a tolerance of σ = 10−3.

• C = {(x, y) ∈ C2|F (x, y) = 0} complex algebraic curve of degree m.
• ε ∈ R∗

+ a non-zero positive real number, the input parameter.

• Output:

• the algebraic link/topology of each singularity s ∈ Sing(C),
where Sing(C) is the set of singularities of the curve C.
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How?

• Strategy for computing the topology of all the singularities of the curve

Plane complex algebraic curve

numericallycompute

��
Singularities

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS
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How?

•• Strategy for computing the topology of all the singularities of the curve

Plane complex algebraic curve

numericallycompute

��
Singularities moved in origin

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS
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Solving the problem
Implementation of the algorithm

•• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz
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Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz

http://axel.inria.fr/
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First

Plane complex algebraic curve

numericallycompute

��
Singularities

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS
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Computing the singularities of the curve

• Input:

• F (x, y) ∈ C[x, y] squarefree with coefficients of limited accuracy.
• C = {(x, y) ∈ C2|F (x, y) = 0} complex algebraic curve of degree m.

• Output:

• Sing(C) = {(x0, y0) ∈ C2|F (x0, y0) = 0,
∂F

∂x
(x0, y0) = 0,

∂F

∂y
(x0, y0) = 0}

• Method: We solve the overderminate system of polynomial equations with
coefficients of limited accuracy in C2 :8>>>>>>><>>>>>>>:

F (x0, y0) = 0

∂F

∂x
(x0, y0) = 0

∂F

∂y
(x0, y0) = 0

, (1)
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Computing the singularities of the curve

For input polynomials with coefficients of limited accuracy:

CoCoA, Singular, Bertini

We tried Mathematica
Computation FAILURE!

AT PRESENT

Computation singularities 

Computation singularities

FIRSTLY

All complex distinct

All real distinct

of the curve 

of the curve 
Mathemagix, a library of Axel

Axel, which is under construction

using linear algebra methods

 We intend to solve system (1)

subdivision methods from

We solve system (1) using

IN THE FUTURE:

from a new library of

Note: We assume the subdivision methods return all the singularities.
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Next

Plane complex algebraic curve

numericallycompute

��
Singularities moved in origin

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS
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Knot theory - preliminaries

• A knot is a piecewise linear or a differentiable simple
closed curve in R3.

• A link is a finite union of disjoint knots.

• Links resulted from the intersection of a given curve
with the sphere are called algebraic links.

Trefoil Knot

Hopf Link

14 / 31



Computing the algebraic link of the singularity
• Why the algebraic link of a singularity?

• helps to study the topology of a complex curve near a singularity;

• How do we compute the algebraic link?

• use the generalization of the stereographic projection;

x, ξ

y, η

z, ζ

N

P̂

S

P
β

φ

a
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Computing the link of the singularity

Method (based on Milnor’s results)

1. Let C = {(a, b, c, d) ∈ R4|F (a, b, c, d) = 0} s.t. (0, 0, 0, 0) ∈ Sing(C)

2. Consider S(0,ε) := S = {(a, b, c, d) ∈ R4|a2 + b2 + c2 + d2 = ε2},
X = C

⋂
S(0,ε) ⊂ R4

3. For P ∈ S \ C, f : S \ {P} → R3, (a, b, c, d) 7→ (u = a
ε−d , v = b

ε−d , w = c
ε−d ),

f−1 : R3 → S \ {P}
(u, v, w) 7→ (a = 2uε

n , b = 2vε
n , c = 2wε

n , d = ε(u2+v2+w2−1)
n ), where

n = 1 + u2 + v2 + w2.

4. Compute f(X) = {(u, v, w) ∈ R3|F (
2uε
n
,
2vε
n
, ...) = 0} ⇔

f(X) = {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}
f(X) is an implicitly defined algebraic curve!

For small ε, f(X) is a link (a differentiable algebraic link).
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Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

we compute with the previous method in Axel:

• f(C ∩ S) = f(X) := L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• Graph(L) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(L) ∼=isotopic L

• Graph(L) is the topology of L,
a piecewise linear approximation
for the differentiable algebraic link L;
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Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

• and L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• we also compute (for visualization reasons)

S
′
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Next

Plane complex algebraic curve

numericallycompute

��
Singularities moved in origin

numerically-symbolicallycompute
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Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
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Knot theory - preliminaries

A knot projection is a regular projection if no three points
on the knot project to the same point, and no vertex projects
to the same point as any other point on the knot.
A double point of a regular projection is a crossing point.

A diagram is the image under regular projection, together
with the information on each crossing telling which branch
goes over/under.
An arc is the part of a diagram between two undercrossings.

Regular projection

Diagram
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Knot theory - preliminaries

A diagram together with a given orientation of the link is
called an oriented diagram.

A crossing is:
-righthanded if the underpass traffic goes from right to left.
-lefthanded if the underpass traffic goes from left to right.

Oriented diagram

Crossings

i

j

k i k

j

RH LH
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Computing operations on the algebraic link

• ?⇒

2

1 3

c1

c2

c3

• G(L) = 〈P,E〉 D(L)

•
p(index,x,y,z)

e(indexS, indexD)

number of arcs, crossings
type of crossings (under, over)
number of knots in the link(orientation) 
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Computing operations on the algebraic link

By performing operations on G(L) we obtain the elements of D(L)!

D(L)

numbers of 
arcs,crossings

ALGO1

 

G(L) =<P,E>

 

modified G(L)=<P,E>

ALGO3

D(L)

ALGO2
(our)

(our)

1.split undergoing edges

2.keep overgoing edges

3.update loops

knots
number of oriented

under/over crossings

2. decide crossing(RH/LH)

1. construct the arcs

intersections of edges

information on each
intersection

number of 

number of
oriented loops

(adapted)

(Bentley−Ottman algo)
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Algorithm 1 - Adapted version of Bentley-Ottman

• Input: S a set of ”short” edges ordered from left to right:

• A ”short” edge is an edge whose projection contains at most one
crossing point.

AA�������

//

))SSSS

��****

��****

??�����

EE������

//

��;;;;;;;
��44444

��44444

��44444

AA������

• Output: I - the set of all intersections among edges of S and

• for each p = ei ∩ ej ∈ I, the ”arranged” pair of edges (ei, ej),
i.e ei is below ej in R3
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Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
e8

??���������

• First: the edges are ordered by criteria (1),(2),(3):

(3)

e0 e1

e0

e1

e0

e1

slopes of edges y’s of destinationx’s of sources

(1) (2)
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Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj

l

�
�
�
�
�
�

e8

??���������

• we consider l a sweep line

• we keep track of two lists:
E = {e0, e1, ..., e11} the list of ordered edges
Sw = {?} the list of event points

• while traversing E we insert the edges in Sw in the ”right” position

• That is...
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Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e1}
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Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0(m,n)

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4

(p,q) ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg e2

(a,b) ,,ZZZZZZZZZZZ
e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
_ _ _ _

'
'

'

e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e1}; compute:

det(e2, e0) =

0@ m n 1
p q 1
a b 1

1A > 0⇒ e2 after e0 in Sw
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• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e2, e1}
• Test e0 ∩ e2? No!

Test e2 ∩ e1? No!

• I = ∅
EI = ∅
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• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e4, e6, e3, e5}
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Algorithm 1 - Adapted version of Bentley-Ottman
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• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e4, e6, e7, e5}
• Test e6 ∩ e7 =? Yes!

Test e7 ∩ e5 =? No! ⇒ I = {(a1, b1)} EI = {(e6, e7)}
Sw = {e4, e7, e6, e5}
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Algorithm 1 - Adapted version of Bentley-Ottman
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• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e4, e8, e6, e5}
• Test e4 ∩ e8 =?No!

Test e8 ∩ e6 =?No!

• Test dest(e4) = dest(e8)? No!
Test dest(e8) = dest(e6)? Yes! ⇒ Sw = {e4,��e8,��e6, e5} = {e4, e5}
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Algorithm 1 - Adapted version of Bentley-Ottman

• •
e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10
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e10

88ppppp

e11

FF

e3
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e6
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55jjjj

e8
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• The adapted Bentley-Ottman algorithm produces the final output:
I = {i1 = (x1, y1), i2 = (x2, y2)}
EI = {(e6, e7), (e10, e9)} with

• e6 below e7 in R3 and
• e10 below e9 in R3
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Algorithm 2 - Constructing the loops

e7

e0

e1

e2

e3

e4

e5

e6

e8

e9

e10

e11

e7

e0

e4

e10

−e8
−e5

−e1

e2
e11

−e9
−e6

−e3

• E ordered by (1),(2),(3) ⇒ L0 = {e0, e4, e10,−e8,−e5,−e1}
L1 = {e2, e7, e11,−e9,−e6,−e3}

• Here, we introduce:
� the positive edges (

e−→): x.dest(e) > x.source(e)

� the negative edges (
−f←−): x.dest(−f) < x.source(−f)

23 / 31



Algorithm 2 - Constructing the loops

e7

e0

e1

e2

e3

e4

e5

e6

e8

e9

e10

e11

e7

e0

e4

e10

−e8
−e5

−e1

e2
e11

−e9
−e6

−e3

• E ordered by (1),(2),(3) ⇒ L0 = {e0, e4, e10,−e8,−e5,−e1}
L1 = {e2, e7, e11,−e9,−e6,−e3}

• Here, we introduce:
� the positive edges (

e−→): x.dest(e) > x.source(e)

� the negative edges (
−f←−): x.dest(−f) < x.source(−f)

23 / 31



Algorithm 3 - Constructing the arcs

last

e
s

n

l
e
u

u

u

d

d

d

e
n

e
l

e
s

−e

0
e

n
e
m

e
k

e
l

t

e
s

e
0

1
1

−e
−e

−e

−e

 e
last

e

• E = {e0, ..., elast} a0 = {eu
n, ..,−e1, e0, .., ek, .., e

d
s}

• EI = {(−en, em), (el, ek), (es,−et)} ⇒ a1 = {eu
l , ..,−et, ..,−ed

n}

• L0 = {e0, ..., es, el, ...,−e1} a2 = {eu
s , ..., em, ..., e

d
l }

• While constructing the arcs we also decide the type of crossings (RH or LH).
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Algorithm 3 - Deciding the type of crossing

LH

n
e
m

e
k

e
l

−e
e
s

c
1

c 
3

c
2

t

−e

RH

• For instance c1 = (−en, em) is LH since:

• x.source(−en)>x.dest(−en),
• x.source(em)<x.dest(em),
• slope(em)<slope(−en)

• c2 = (el, ek) is LH, c3 = (es,−et) is LH.
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1 Motivation

2 Topology of plane complex curves singularities
Describing the problem
Solving the problem

3 A library for topology of plane complex curves singularities

4 Conclusion and future work
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Summary

We have a symbolic-numeric algorithm (i.e. approximate algorithm ) for performing
operations on a plane complex algebraic curve, implemented in the library GENOM3CK.
About GENOM3CK: http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Equation Link
x2 − y2, ε = 1.0 Hopf link

x2 − y3, ε = 1.0 Trefoil
knot

x3 − y3, ε = 1.0 3-knots
link

x2 − y4, ε = 1.0 2-knots
link

x2 − y5, ε = 1.0 1-knot
link

x4 + x2y + y5, ε = 0.5 3-knots
link
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Summary (pictures made with GENOM3CK in Axel)

x2 − y2

x3 − y3
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Summary (pictures made with GENOM3CK in Axel)

x2 − y4

x2 − y5
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2 Topology of plane complex curves singularities
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3 A library for topology of plane complex curves singularities

4 Conclusion and future work
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Conclusion and future work

! DONE:

• complete automatization of the
approximate algorithm (in
GENOM3CK); we compute the
singularities, topology/algebraic
link, Alexander polynomial,
delta-invariant, genus;

• experiments show the output is
unique and continuously depends
on the data;

• we can describe it with principles
from regularization theory,
approximate algebraic
computation.

# TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
convergency, continuity);

• make precise the meaning of
the computed output with the
approximate algorithm.
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Thank you for your attention.
Questions?
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