Topology analysis of complex curves singularities using
knot theory

Madalina Hodorogl, Bernard Mourrain2, Josef Schicho!

1 Johann Radon Institute for Computational and Applied Mathematics,
Doctoral Program " Computational Mathematics”
Johannes Kepler University Linz, Austria

2INRIA Sophia-Antipolis, France

7t Conference on Curves and Surfaces, France

June 24, 2010

" Doctoral Program

1/31

Table of contents

©® Motivation

® Topology of plane complex curves singularities
Describing the problem
Solving the problem

® A library for topology of plane complex curves singularities

@ Conclusion and future work

E(Ducmra\ Program

2/31

© Motivation

KDOC[WE‘ fogrem
- =

3/31

Motivation

E(Dacmra\ Program

4/31

Motivation

Why study the topology of a complex curve singularity?

IZ” To compute the genus of plane complex curves!

" Doctoral Program

4/31

Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?

@ To compute the genus of plane complex curves!
BE" The algebraic link of the singularity!

" Doctoral Program

4/31

Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?
How to compute the topology?

@ To compute the genus of plane complex curves! We use
@ The algebraic link of the singularity!
EE” \We propose a symbolic-numeric algorithm for this purpose!

" Doctoral Program

4/31

Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?
How to compute the topology?
Why using knot theory?

@ To compute the genus of plane complex curves!

@ The algebraic link of the singularity!

@ \\/e propose a symbolic-numeric algorithm for this purpose!
BZ” The proposed algorithm is stable w.r.t. small perturbations!

" Doctoral Program

4/31

Motivation

Why is this proposed symbolic-numeric algorithm "special”?

E(Ducmra\ Program

5/31

Motivation

At present, there exists several...

Package by F. Hess

algcurves CASA GHS attack
Florida University RISC-Hagenberg Berlin University

Symbolic algorithms for
Genus computation

normal.lib PAFF
Kaiserslautern University INRIA-Roquencourt

P\/ boctoral Program

6/31

Motivation

But...

For moderate symbolic input data:
| they are too expensive

Disadvantages of
Symbolic algorithms for
Genus computation

-
>
@
<
o
5
o©
c
S
c
7
o
=
©

" Doctoral Program

6/31

Motivation

For instance, in Maple using algcurves package...

> with{algcurves);

[AbelMap, Siegel, Weierstrassform, algfun_series_sol, differentials, genus,
homogeneous, homology, implicitize, integral_basis, is_hyperelliptic,
J_invariant, monodromy, paramelrization, periodmatrix, plot_knot,
plot_real_curve, puiseux, singularities)

> f=Xy+y ,

fi=Xy+)"
> genus(f, X, y)
-1
> g:= 1.02~x2y+ 1.12~y"1 ,
g:=1.02 x2y+ 1.12 y4

> genus(g, X, y)
Error, (in content/polynom) general case of floats not handled

E(Ducmra\ Program

6/31

Motivation

Thus we need...

Motivation
Hopefully...

Project: Symbolic-Numeric techniques for genus computation (initiated by J. Schicho).

Implementation: Complex Invariants Plugin

(Now: The plugin is available as a library in Axel)

Axel algebraic modeler
INRIA-Sophia Antipolis

Symbolic Numeric algorithm for
GENUS COMPUTATION
based on
TOPOLOGY ANALYSIS OF SINGULARITIES

Other numeric method was reported (in the group of R. Sendra).

" Doctoral Program

6/31

® Topology of plane complex curves singularities
Describing the problem
Solving the problem

P\/ boctoral Program

7/31

What?

® Input:

o F € C[z,y] squarefree with coefficients of limited accuracy:

e C = {(z,y) € C?*|F(x,y) = 0} complex algebraic curve of degree m.
e ¢ € R a non-zero positive real number, the input parameter.

e Output:

e the algebraic link/topology of each singularity s € Sing(C),
where Sing(C') is the set of singularities of the curve C.

" Doctoral Program

8/31

What?

® Input:
o F € C[z,y] squarefree with coefficients of limited accuracy:
1
® integers or rational numbers: 1, —2, 3

e or real numbers. For 1.001 we associate a tolerance of ¢ = 1072,

e C = {(z,y) € C?*|F(x,y) = 0} complex algebraic curve of degree m.
e ¢ € R a non-zero positive real number, the input parameter.

e Output:

e the algebraic link/topology of each singularity s € Sing(C),
where Sing(C') is the set of singularities of the curve C.

" Doctoral Program

8/31

How?

® Strategy for computing the topology of all the singularities of the curve

‘ Plane complex algebraic curve‘

computei numerically

Singularities

computei numerically-symbolically

’Algebraic link and operations on it (e needed) ‘
I

compute | symbolically

\i
‘Alexander polynomial, d-invariant, GENUS‘

" Doctoral Program

9/31

How?

® Strategy for computing the topology of all the singularities of the curve

‘ Plane complex algebraic curve‘

computei numerically

‘Singularities moved in origin ‘

computei numerically-symbolically

’Algebraic link and operations on it (e needed) ‘
I

compute | symbolically

\i
‘Alexander polynomial, d-invariant, GENUS‘

" Doctoral Program

9/31

Solving the problem

Implementation of the algorithm

® Axel algebraic geometric modeler ?

?Acknowledgements: Julien Wintz

10/31

Solving the problem
Implementation of the algorithm
e Axel algebraic geometric modeler ?

e developed by Galaad team
(INRIA Sophia-Antipolis);

INSTITUT NATIONAL

’ WI NRITA

ET EN AUTOMATIQUE

E(Ducmra\ Program

10/31

?Acknowledgements: Julien Wintz

Solving the problem

Implementation of the algorithm

e Axel algebraic geometric modeler ?

e developed by Galaad team
(INRIA Sophia-Antipolis);

e written in C++, Qt Script
for Applications (QSA);

E(Ducmra\ Program

10/31

?Acknowledgements: Julien Wintz

Solving the problem

Implementation of the algorithm

e Axel algebraic geometric modeler ?
e developed by Galaad team
(INRIA Sophia-Antipolis);
e written in C++, Qt Script
for Applications (QSA);
e provides algebraic tools for:
e implicit surfaces;

E(Ducmra\ Program

10/31

?Acknowledgements: Julien Wintz

Solving the problem

Implementation of the algorithm

e Axel algebraic geometric modeler ?

e developed by Galaad team
(INRIA Sophia-Antipolis);
e written in C++, Qt Script
for Applications (QSA);
e provides algebraic tools for:
e implicit surfaces;
e implicit curves.

P\/ boctoral Program
?Acknowledgements: Julien Wintz ‘
10/31

Solving the problem

Implementation of the algorithm

e Axel algebraic geometric modeler ?
e developed by Galaad team
(INRIA Sophia-Antipolis);
e written in C++, Qt Script
for Applications (QSA);
e provides algebraic tools for:

e implicit surfaces;
e implicit curves.

e free, available at:

http://axel.inria.fr/

?Acknowledgements: Julien Wintz

" Doctoral Program

10/31

First

‘ Plane complex algebraic curve ‘

computei numerically

Singularities

computei numerically-symbolically

’Algebraic link and operations on it (e needed) ‘
[

compute | symbolically

\i
‘Alexander polynomial, d-invariant, GENUS‘

" Doctoral Program

11/31

Computing the singularities of the curve

® Input:
o F(z,y) € C[z,y] squarefree with coefficients of limited accuracy.
e O ={(z,y) € C?}|F(z,y) = 0} complex algebraic curve of degree m.

e Output:
. oF oF
* Sing(C) = {(w0,y0) € C*|F(z0,y0) =0, %(Jz‘oyyo) =0, afy(wo,yc)) =0}

® Method: We solve the overderminate system of polynomial equations with
coefficients of limited accuracy in C? :

F(l’oyyo) =0

oF

%(J/‘o,yO) =0 (1)
oF

afy(l’o,yO) =0

" Doctoral Program

12/31

Computing the singularities of the curve

For input polynomials with coefficients of limited accuracy:

FIRSTLY
CoCoA, Singular, Bertini (ALY A
AT PRESENT
We solve system (1) using All real distinct

Computation singularities
of the curve

subdivision methods from
Mathemagix, a library of Axel

IN THE FUTURE: All complex distinct
We intend to solve system (1) Computation singularities
using linear algebra methods of the curve
from a new library of
Axel, which is under construction

Note: We assume the subdivision methods return all the singularities. N/ octors program

12/31

Next

‘ Plane complex algebraic curve ‘

computei numerically

‘Singularities moved in origin ‘

computei numerically-symbolically

’Algebraic link and operations on it (e needed) ‘
I

compute | symbolically

\i
‘Alexander polynomial, d-invariant, GENUS‘

" Doctoral Program

13/31

Knot theory - preliminaries

Trefoil Knot

® A knot is a piecewise linear or a differentiable simple
closed curve in R3.

® A link is a finite union of disjoint knots.

® Links resulted from the intersection of a given curve
with the sphere are called algebraic links.

P\/ boctoral Program

14/31

Computing the algebraic link of the singularity

e Why the algebraic link of a singularity?

o helps to study the topology of a complex curve near a singularity;
® How do we compute the algebraic link?

o use the generalization of the stereographic projection;

E(Dacmra\ Program
Compaatonalatamate

15/31

Computing the link of the singularity

Method (based on Milnor's results)
1. Let C = {(a,b,c,d) € R*F(a,b,c,d) =0} s.t. (0,0,0,0) € Sing(C)

2. Consider S(g) := S = {(a,b,c,d) € R*a® + b* + ¢ + d* = €*},
X = CﬂS(O,e) C R4

3. For PeS\C, f:S\{P} = R® (a,b,c,d) — (u= 25, v="L w=-2),
f7HR? = S\ {P}

(w,v,w) — (a = %,b = %,c = 2$6,d = M) where
n=1+u?+v? 4+ w?
31, 2U€E 20€
4. Compute f(X) = {(u,v,w) € R |F(— Seatl L) =0} <
f(X) ={(u,v w)ERg’\ReF() =0,ImF(...) =0}
f(X) is an implicitly defined algebraic curve!
For small ¢, f(X) is a link (a differentiable algebraic link).

" Doctoral Program

16/31

Computing the link of the singularity

We use Axel for implementation. Why Axel?

It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

e For C = {(z,y) € C?lz® —y* =0} CR*
we compute with the previous method in Axel:

E(Ducmra\ Program

17/31

Computing the link of the singularity

We use Axel for implementation. Why Axel?

It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R?!

e For C = {(z,y) € C?lz® —y* =0} CR*

we compute with the previous method in Axel:
o (CNS)=f(X)=L=

= {(u,v,w) € R}|ReF(...) = 0,ImF(..) =0}

Dae
17/31

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

e For C = {(z,y) € C?lz® —y* =0} CR*
we compute with the previous method in Axel:

o J(CNS) = f(X):=L=
= {(u,v,w) € R}|ReF(...) =0,ImF(...) =0}

® Graph(L) = (V,E) with
V= {p=(m,n,q) € R’}
&= {(7'7.])‘7‘7.7 € V}

" Doctoral Program

17/31

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

e For C = {(z,y) € C?lz® —y* =0} CR*
we compute with the previous method in Axel:

o J(CNS) = f(X):=L=
= {(u,v,w) € R}|ReF(...) =0,ImF(...) =0}

® Graph(L) = (V,E) with
V={p=(mn,q) € R’}
&= {(7'7.])‘7‘7.7 € V}

o s.t. Graph(L) isotopic L

" Doctoral Program

17/31

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

e For C = {(z,y) € C?lz® —y* =0} CR*

we compute with the previous method in Axel:
¢ J(CNS)=f(X):=L=

= {(u,v,w) € R}|ReF(...) =0,ImF(...) =0}
® Graph(L) = (V,E) with

V= {p=(m,n,q) € R*}

&={@J)li,j €V}
o s.t. Graph(L) isotopic L
® Graph(L) is the topology of L,

a piecewise linear approximation

for the differentiable algebraic link L;

" Doctoral Program

17/31

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R?!

e For C = {(z,y) € C*|z® —¢y* =0} C R*

!

E(Ducmra\ Program

18/31

Computing the link of the singularity

We use Axel for the implementation. Why Axel?

It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R?!

For C = {(z,y) € C*|2® —y* =0} C R*
® and L =
= {(u,v,w) € R}|ReF(...) = 0,ImF(..) =0}

18/31

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R?!

e For C = {(z,y) € C*|z® —¢y* =0} C R*
® and L =
= {(u,v,w) € R}|ReF(...) = 0,ImF(..) =0}
o we also compute (for visualization reasons)
S = {(u,v,w) €ER3|ReF(...) + ImF(..) =0}
= {(u,v,w) € R¥|Re(F) —ImF(...) =0}

E(Dacmra\ Program
ptaion

18/31

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R?!

e For C = {(z,y) € C*|z® —¢y* =0} C R*
® and L =
= {(u,v,w) € R}|ReF(...) = 0,ImF(..) =0}
® we also compute (for visualization reasons)
S = {(u,v,w) € R®| R () + ImP(.) =0}
§" = {(u,v,w) € R¥|Re(F) — ImF(...) = 0}
® [is the intersection of any 2 of the surfaces:

ReF(...),ImF(...)
ReF(...)+ ImF(...),ReF(...) — ImF(...)

E(Ducmra\ Program
v

18/31

Next

‘ Plane complex algebraic curve ‘

computei numerically

‘Singularities moved in origin ‘

computei numerically-symbolically

’Algebraic link and operations on it (e needed) ‘
I

compute | symbolically

\i
‘Alexander polynomial, d-invariant, GENUS‘

" Doctoral Program

19/31

Knot theory - preliminaries

Regular projection

A knot projection is a regular projection if no three points
on the knot project to the same point, and no vertex projects
to the same point as any other point on the knot.

A double point of a regular projection is a crossing point.

A diagram is the image under regular projection, together
with the information on each crossing telling which branch
goes over/under.

An arc is the part of a diagram between two undercrossings.

Diagram

" Doctoral Program

20/31

Knot theory - preliminaries

Oriented diagram

A diagram together with a given orientation of the link is
called an oriented diagram.
A crossing is:

-righthanded if the underpass traffic goes from right to left.

-lefthanded if the underpass traffic goes from left to right. .
Crossings

X

" Doctoral Program

20/31

Computing operations on the algebraic link

[) ~ 5 . =
* G(L)= (P,E)

p(index,x,y,z) —= number of arcs, crossings
—= type of crossings (under, over)
—= number of knotsin the link(orientation)

L]
e(indexS, indexD)

E(Ducmra\ Program
:

21/31

Computing operations on the algebraic link

By performing operations on G(L) we obtain the elements of D(L)!

G(L)=<P,E> DL)
intersections arcs,crossings
intersections of edges ——— ALGOI g
. - (adapted) ;
information on each

. . (Bentley—Ottman algo)

intersection

oriented loops ALGO2 ——— knots
(our)
modified G(L)=<P,E> D(L)

1.split undergoing edges ALGO3 1. construct the arcs
2.keep overgoing edges (our) 2. decide crossing(RH/LH)
3.update loops

" Doctoral Program

21/31

Algorithm 1 - Adapted version of Bentley-Ottman

® [nput: S a set of "short” edges ordered from left to right:

e A "short” edge is an edge whose projection contains at most one
crossing point.

D X

® Output: [- the set of all intersections among edges of S and

e for each p =e; Ne; € I, the "arranged” pair of edges (e;, e;),
i.e e; is below e; in R3

" Doctoral Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

e First: the edges are ordered by criteria (1),(2),(3):

1 @) o

X’s of sources slopes of edges y’s of destination

P\/ boctoral Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

® we consider [a sweep line

® we keep track of two lists:
E = {eo,e1,...,e11} the list of ordered edges
Sw = {7} the list of event points

e while traversing F we insert the edges in Sw in the "right” position

e That is...

" Doctoral Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

e F = {eo,e1,e2,€3,¢€4,€s5,€6,€7,€8,€9,€10, €11 }

e Sw={eo,e1}

E(Ducmra\ Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

e F = {eo,e1,e2,€3,¢€4,€s5,€6,€7,€8,€9,€10, €11}

e Sw={ep,e1}

E(Ducmra\ Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

e F = {eo,e1,e2,€3,¢€4,€s5,€6,€7,€8,€9,€10, €11}
e Sw = {eo, e1}; compute:

1
1) > 0 = ey after g in Sw

o 3

m
det(ez,e0) = | p
a 1

E(Ducmra\ Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

e F = {eo,e1,e2,€3,¢€4,€s5,€6,€7,€8,€9,€10, €11 }

e Sw={eg,e1}

E(Ducmra\ Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

s E= {eoa61762763764,65,66,67768,69,610,611}

e Sw = {eo, e1}; compute:

m n 1
det(ez,e1) = p q 1 < 0 = ey before e; in Sw
a b 1

E(Ducmra\ Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

e F = {eo,e1,e2,€3,¢€4,€s5,€6,€7,€8,€9,€10, €11
e Sw={eo, ez, €1}

® Test eg Nea? No!
Test e2 Ne;? No!

e [=1
Er=0

E(Ducmra\ Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

° F= {60761762763764765766767,68769,6107611}

® Sw={e4, e5,€3,e5}

E(Ducmra\ Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

e E ={eo,e1,e2,e3,€4,65,€6,€7,€s8,€9,€10, €11 }
® Sw={e4,e5,€7,€5}

® Test eg Ner =7 Yes!
Test e;Nes =7 No! = I = {(al,bl)} Er = {(66,67)}
Sw = {64767566765}

E(Ducmra\ Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

e E ={eo,e1,e2,e3,€4,65,€6,€7,€s8,€9,€10, €11 }
e Sw ={e4,es,€6,e5}

® Test e Neg =7Nol!
Test es Neg =7No!

® Test dest(es) = dest(es)? Nol
Test dest(es) = dest(es)? Yes! = Sw = {es, g6, 66, e5} = {ea, e5}

P\/ boctoral Program

22/31

Algorithm 1 - Adapted version of Bentley-Ottman

® The adapted Bentley-Ottman algorithm produces the final output:
I = {’Ll = (»’017.@1),’&'2 = ($27y2)}
Er = {(es, e7), (€10, €9)} with

e e below e7 in R? and
e e19 below eg in R3

PN\ Doctoral Program

22/31

Algorithm 2 - Constructing the loops

e F ordered by (1),(2),(3)

—-e3

ell
e2 _eS
—el

e7
c0

el0
e4

Lo = {eo, €4, €10, —€8, —€5, —€1}
L1 = {e2,e7,e11, —e9, —e6, —€3}

E(Ducmra\ Program

23/31

Algorithm 2 - Constructing the loops

-6 —e9
—-e3
&2 ell
—-e5 —e8
—el
e7
c0 /
el0
e4
e F ordered by (1),(2),(3) = Lo = {eo, €4, €10, —€s, —€5, —€1}

L1 = {e2,e7,e11, —e9, —e6, —€3}

® Here, we introduce:
® the positive edges (—): x.dest(e) > x.source(e)

© the negative edges (<i) z.dest(—f) < x.source(—f)

P\/ boctoral Program

23/31

Algorithm 3 - Constructing the arcs

S

r last

l
& \\\/

T

o £ ={eo,...,€last} ao = {e%,..,—e1, €0, .., ek, .., el }
e b= {(_en:em)»((ihek)y (es,—et)} = a1 = {GZI, ey —€t, ..,fefl}
e Lo={eo,...,es,€1,....,—C1} az ={e%em,....,el'}

® While constructing the arcs we also decide the type of crossings (RH or LH).

E(Ducmra\ Program

24 /31

Algorithm 3 - Deciding the type of crossing

® For instance ¢1 = (—en, em) is LH since:

x.source(—e,)>xz.dest(—ey,,),
x.source(e,,)<z.dest(e,,),
slope(e,) <slope(—e,,)

® 2= (6[,6k) is LHv Cc3 = (es,*et) is LH.

P\/ boctoral Program

25/31

© A library for topology of plane complex curves singularities

E(Dacmra\ Program
Compa

26 /31

Summary

We have a symbolic-numeric algorithm (i.e. approximate algorithm) for performing
operations on a plane complex algebraic curve, implemented in the library GENOM3CK.
About GENOM3CK: http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Demo

http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Summary (pictures made with GENOM3CK in Axel)

Summary (pictures made with GENOM3CK in Axel)

@ —y! — * i
2=y) 6 | .
Gy @ 2> Er B

@ Conclusion and future work

E(Docmra\ Program
o = =

29/31

Conclusion and future work

v/ DONE:

® complete automatization of the
approximate algorithm (in
GENOMB3CK); we compute the
singularities, topology/algebraic
link, Alexander polynomial,
delta-invariant, genus;

® experiments show the output is
unique and continuously depends
on the data;

X TO DO's:

P\/ boctoral Program

30/31

Conclusion and future work

v/ DONE:

® complete automatization of the
approximate algorithm (in

GENOMB3CK); we compute the X TO DQO's:

singularities, topology/algebraic)

link, Alexander polynomial, ® prove the properties of the
delta-invariant, genus; approximate algorithm (i.e.

. . convergency, continuity);
® experiments show the output is

unique and continuously depends
on the data;

P\/ boctoral Program

30/31

Conclusion and future work

v/ DONE:

® complete automatization of the
approximate algorithm (in
GENOMB3CK); we compute the X TO DQO's:
singularities, topology/algebraic
link, Alexander polynomial,
delta-invariant, genus;

® prove the properties of the
approximate algorithm (i.e.

. . convergency, continuity);
® experiments show the output is

unique and continuously depends
on the data;

® we can describe it with principles <
from regularization theory,
approximate algebraic
computation.

P\/ boctoral Program

30/31

Conclusion and future work

v/ DONE:

® complete automatization of the
approximate algorithm (in
GENOMB3CK); we compute the X TO DQO's:
singularities, topology/algebraic
link, Alexander polynomial,
delta-invariant, genus;

® prove the properties of the
approximate algorithm (i.e.

. . convergency, continuity);
® experiments show the output is

unique and continuously depends
on the data;

® make precise the meaning of
the computed output with the

o o approximate algorithm.
® we can describe it with principles <

from regularization theory,
approximate algebraic
computation.

P\/ boctoral Program

30/31

Thank you for your attention.

Questions?

E(Docmra\ Prog!

Compatstionai Mather

Do
31/31

	Motivation
	Topology of plane complex curves singularities
	Describing the problem
	Solving the problem

	A library for topology of plane complex curves singularities
	Conclusion and future work

