
Topology analysis of complex curves singularities using
knot theory

Mădălina Hodorog1, Bernard Mourrain2, Josef Schicho1

1Johann Radon Institute for Computational and Applied Mathematics,
Doctoral Program ”Computational Mathematics”

Johannes Kepler University Linz, Austria
2INRIA Sophia-Antipolis, France

7th Conference on Curves and Surfaces, France
June 24, 2010

1 / 31

Table of contents

1 Motivation

2 Topology of plane complex curves singularities
Describing the problem
Solving the problem

3 A library for topology of plane complex curves singularities

4 Conclusion and future work

2 / 31

1 Motivation

2 Topology of plane complex curves singularities
Describing the problem
Solving the problem

3 A library for topology of plane complex curves singularities

4 Conclusion and future work

3 / 31

Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?

How to compute the topology?
Why using knot theory?

4 / 31

Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?

How to compute the topology?
Why using knot theory?

� To compute the genus of plane complex curves!

4 / 31

Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?

How to compute the topology?
Why using knot theory?

 To compute the genus of plane complex curves!
� The algebraic link of the singularity!

4 / 31

Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?

How to compute the topology?
Why using knot theory?

 To compute the genus of plane complex curves! We use

 The algebraic link of the singularity!
� We propose a symbolic-numeric algorithm for this purpose!

4 / 31

Motivation

Why study the topology of a complex curve singularity?
What is the topology of a singularity?

How to compute the topology?
Why using knot theory?

 To compute the genus of plane complex curves!

 The algebraic link of the singularity!

 We propose a symbolic-numeric algorithm for this purpose!
� The proposed algorithm is stable w.r.t. small perturbations!

4 / 31

Motivation

Why is this proposed symbolic-numeric algorithm ”special”?

5 / 31

Motivation

At present, there exists several...

Maple

RISC−Hagenberg Berlin University

Magma

Singular Axiom

INRIA−Roquencourt

algcurves

PAFFnormal.lib

GHS attack

Package by F. Hess

Kaiserslautern University

Florida University

CASA

Symbolic algorithms for

Genus computation

6 / 31

Motivation

But...

 Genus computation

Disadvantages of

For numeric input data:

they are unusable

For moderate symbolic input data:

they are too expensive

Symbolic algorithms for

6 / 31

Motivation
For instance, in Maple using algcurves package...

Error, (in content/polynom) general case of floats not handled

6 / 31

Motivation

Thus we need...

 ?!

(Symbolic) Numeric algorithms for

Genus computation

6 / 31

Motivation
Hopefully...
Project: Symbolic-Numeric techniques for genus computation (initiated by J. Schicho).

INRIA−Sophia Antipolis

Axel algebraic modeler

Implementation: Complex Invariants Plugin

(Now: The plugin is available as a library in Axel)

Symbolic Numeric algorithm for

GENUS COMPUTATION

based on

TOPOLOGY ANALYSIS OF SINGULARITIES

Other numeric method was reported (in the group of R. Sendra).

6 / 31

1 Motivation

2 Topology of plane complex curves singularities
Describing the problem
Solving the problem

3 A library for topology of plane complex curves singularities

4 Conclusion and future work

7 / 31

What?

• Input:

• F ∈ C[x, y] squarefree with coefficients of limited accuracy:

• integers or rational numbers: 1,−2,
1

2
.

• or real numbers. For 1.001 we associate a tolerance of σ = 10−3.

• C = {(x, y) ∈ C2|F (x, y) = 0} complex algebraic curve of degree m.
• ε ∈ R∗

+ a non-zero positive real number, the input parameter.

• Output:

• the algebraic link/topology of each singularity s ∈ Sing(C),
where Sing(C) is the set of singularities of the curve C.

8 / 31

What?

• Input:

• F ∈ C[x, y] squarefree with coefficients of limited accuracy:

• integers or rational numbers: 1,−2,
1

2
.

• or real numbers. For 1.001 we associate a tolerance of σ = 10−3.

• C = {(x, y) ∈ C2|F (x, y) = 0} complex algebraic curve of degree m.
• ε ∈ R∗

+ a non-zero positive real number, the input parameter.

• Output:

• the algebraic link/topology of each singularity s ∈ Sing(C),
where Sing(C) is the set of singularities of the curve C.

8 / 31

How?

• Strategy for computing the topology of all the singularities of the curve

Plane complex algebraic curve

numericallycompute

��
Singularities

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS

9 / 31

How?

•• Strategy for computing the topology of all the singularities of the curve

Plane complex algebraic curve

numericallycompute

��
Singularities moved in origin

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS

9 / 31

Solving the problem
Implementation of the algorithm

•• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz

10 / 31

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz

10 / 31

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz

10 / 31

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;

• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz

10 / 31

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz

10 / 31

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz

http://axel.inria.fr/

10 / 31

First

Plane complex algebraic curve

numericallycompute

��
Singularities

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS

11 / 31

Computing the singularities of the curve

• Input:

• F (x, y) ∈ C[x, y] squarefree with coefficients of limited accuracy.
• C = {(x, y) ∈ C2|F (x, y) = 0} complex algebraic curve of degree m.

• Output:

• Sing(C) = {(x0, y0) ∈ C2|F (x0, y0) = 0,
∂F

∂x
(x0, y0) = 0,

∂F

∂y
(x0, y0) = 0}

• Method: We solve the overderminate system of polynomial equations with
coefficients of limited accuracy in C2 :8>>>>>>><>>>>>>>:

F (x0, y0) = 0

∂F

∂x
(x0, y0) = 0

∂F

∂y
(x0, y0) = 0

, (1)

12 / 31

Computing the singularities of the curve

For input polynomials with coefficients of limited accuracy:

CoCoA, Singular, Bertini

We tried Mathematica
Computation FAILURE!

AT PRESENT

Computation singularities

Computation singularities

FIRSTLY

All complex distinct

All real distinct

of the curve

of the curve
Mathemagix, a library of Axel

Axel, which is under construction

using linear algebra methods

 We intend to solve system (1)

subdivision methods from

We solve system (1) using

IN THE FUTURE:

from a new library of

Note: We assume the subdivision methods return all the singularities.

12 / 31

Next

Plane complex algebraic curve

numericallycompute

��
Singularities moved in origin

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS

13 / 31

Knot theory - preliminaries

• A knot is a piecewise linear or a differentiable simple
closed curve in R3.

• A link is a finite union of disjoint knots.

• Links resulted from the intersection of a given curve
with the sphere are called algebraic links.

Trefoil Knot

Hopf Link

14 / 31

Computing the algebraic link of the singularity
• Why the algebraic link of a singularity?

• helps to study the topology of a complex curve near a singularity;

• How do we compute the algebraic link?

• use the generalization of the stereographic projection;

x, ξ

y, η

z, ζ

N

P̂

S

P
β

φ

a

15 / 31

Computing the link of the singularity

Method (based on Milnor’s results)

1. Let C = {(a, b, c, d) ∈ R4|F (a, b, c, d) = 0} s.t. (0, 0, 0, 0) ∈ Sing(C)

2. Consider S(0,ε) := S = {(a, b, c, d) ∈ R4|a2 + b2 + c2 + d2 = ε2},
X = C

⋂
S(0,ε) ⊂ R4

3. For P ∈ S \ C, f : S \ {P} → R3, (a, b, c, d) 7→ (u = a
ε−d , v = b

ε−d , w = c
ε−d),

f−1 : R3 → S \ {P}
(u, v, w) 7→ (a = 2uε

n , b = 2vε
n , c = 2wε

n , d = ε(u2+v2+w2−1)
n), where

n = 1 + u2 + v2 + w2.

4. Compute f(X) = {(u, v, w) ∈ R3|F (
2uε
n
,
2vε
n
, ...) = 0} ⇔

f(X) = {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}
f(X) is an implicitly defined algebraic curve!

For small ε, f(X) is a link (a differentiable algebraic link).

16 / 31

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

we compute with the previous method in Axel:

• f(C ∩ S) = f(X) := L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• Graph(L) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(L) ∼=isotopic L

• Graph(L) is the topology of L,
a piecewise linear approximation
for the differentiable algebraic link L;

17 / 31

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

we compute with the previous method in Axel:

• f(C ∩ S) = f(X) := L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• Graph(L) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(L) ∼=isotopic L

• Graph(L) is the topology of L,
a piecewise linear approximation
for the differentiable algebraic link L;

17 / 31

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

we compute with the previous method in Axel:

• f(C ∩ S) = f(X) := L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• Graph(L) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(L) ∼=isotopic L

• Graph(L) is the topology of L,
a piecewise linear approximation
for the differentiable algebraic link L;

17 / 31

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

we compute with the previous method in Axel:

• f(C ∩ S) = f(X) := L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• Graph(L) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(L) ∼=isotopic L

• Graph(L) is the topology of L,
a piecewise linear approximation
for the differentiable algebraic link L;

17 / 31

Computing the link of the singularity

We use Axel for implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

we compute with the previous method in Axel:

• f(C ∩ S) = f(X) := L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• Graph(L) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(L) ∼=isotopic L

• Graph(L) is the topology of L,
a piecewise linear approximation
for the differentiable algebraic link L;

17 / 31

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

• and L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• we also compute (for visualization reasons)

S
′
= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}

S
′′

= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}
• L is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

18 / 31

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

• and L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• we also compute (for visualization reasons)

S
′
= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}

S
′′

= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}
• L is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

18 / 31

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

• and L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• we also compute (for visualization reasons)

S
′
= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}

S
′′

= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}

• L is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

18 / 31

Computing the link of the singularity

We use Axel for the implementation. Why Axel?
It is the only system to contain the implementation of a method
for certified topology of smooth implicit curves in R3!

• For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4

• and L =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• we also compute (for visualization reasons)

S
′
= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}

S
′′

= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}
• L is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

18 / 31

Next

Plane complex algebraic curve

numericallycompute

��
Singularities moved in origin

numerically-symbolicallycompute

��
Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial, δ-invariant, GENUS

19 / 31

Knot theory - preliminaries

A knot projection is a regular projection if no three points
on the knot project to the same point, and no vertex projects
to the same point as any other point on the knot.
A double point of a regular projection is a crossing point.

A diagram is the image under regular projection, together
with the information on each crossing telling which branch
goes over/under.
An arc is the part of a diagram between two undercrossings.

Regular projection

Diagram

20 / 31

Knot theory - preliminaries

A diagram together with a given orientation of the link is
called an oriented diagram.

A crossing is:
-righthanded if the underpass traffic goes from right to left.
-lefthanded if the underpass traffic goes from left to right.

Oriented diagram

Crossings

i

j

k i k

j

RH LH

20 / 31

Computing operations on the algebraic link

• ?⇒

2

1 3

c1

c2

c3

• G(L) = 〈P,E〉 D(L)

•
p(index,x,y,z)

e(indexS, indexD)

number of arcs, crossings
type of crossings (under, over)
number of knots in the link(orientation)

21 / 31

Computing operations on the algebraic link

By performing operations on G(L) we obtain the elements of D(L)!

D(L)

numbers of
arcs,crossings

ALGO1

G(L) =<P,E>

modified G(L)=<P,E>

ALGO3

D(L)

ALGO2
(our)

(our)

1.split undergoing edges

2.keep overgoing edges

3.update loops

knots
number of oriented

under/over crossings

2. decide crossing(RH/LH)

1. construct the arcs

intersections of edges

information on each
intersection

number of

number of
oriented loops

(adapted)

(Bentley−Ottman algo)

21 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

• Input: S a set of ”short” edges ordered from left to right:

• A ”short” edge is an edge whose projection contains at most one
crossing point.

AA�������

//

))SSSS

��****

��****

??�����

EE������

//

��;;;;;;;
��44444

��44444

��44444

AA������

• Output: I - the set of all intersections among edges of S and

• for each p = ei ∩ ej ∈ I, the ”arranged” pair of edges (ei, ej),
i.e ei is below ej in R3

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
e8

??���������

• First: the edges are ordered by criteria (1),(2),(3):

(3)

e0 e1

e0

e1

e0

e1

slopes of edges y’s of destinationx’s of sources

(1) (2)

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj

l

�
�
�
�
�
�

e8

??���������

• we consider l a sweep line

• we keep track of two lists:
E = {e0, e1, ..., e11} the list of ordered edges
Sw = {?} the list of event points

• while traversing E we insert the edges in Sw in the ”right” position

• That is...

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e1}

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
_ _ _ _

'
'

'

e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e1}

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0(m,n)

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4

(p,q) ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg e2

(a,b) ,,ZZZZZZZZZZZ
e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
_ _ _ _

'
'

'

e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e1}; compute:

det(e2, e0) =

0@ m n 1
p q 1
a b 1

1A > 0⇒ e2 after e0 in Sw

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
_ _ _ _

qqqqq

e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e1}

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

(m,n) e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

(p,q)

e5

00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg e2
(a,b) ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
_ _ _ _

qqqqq

e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e1}; compute:

det(e2, e1) =

0@ m n 1
p q 1
a b 1

1A < 0⇒ e2 before e1 in Sw

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e0, e2, e1}
• Test e0 ∩ e2? No!

Test e2 ∩ e1? No!

• I = ∅
EI = ∅

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e4, e6, e3, e5}

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e4, e6, e7, e5}
• Test e6 ∩ e7 =? Yes!

Test e7 ∩ e5 =? No! ⇒ I = {(a1, b1)} EI = {(e6, e7)}
Sw = {e4, e7, e6, e5}

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77pppppppppppppppppppp
e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjjjjjjjjjjjj
e8

??���������

• E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
• Sw = {e4, e8, e6, e5}
• Test e4 ∩ e8 =?No!

Test e8 ∩ e6 =?No!

• Test dest(e4) = dest(e8)? No!
Test dest(e8) = dest(e6)? Yes! ⇒ Sw = {e4,��e8,��e6, e5} = {e4, e5}

22 / 31

Algorithm 1 - Adapted version of Bentley-Ottman

• •
e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

ooooo

e10

88ppppp

e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

jjj e6

55jjjj

e8

??���������

• The adapted Bentley-Ottman algorithm produces the final output:
I = {i1 = (x1, y1), i2 = (x2, y2)}
EI = {(e6, e7), (e10, e9)} with

• e6 below e7 in R3 and
• e10 below e9 in R3

22 / 31

Algorithm 2 - Constructing the loops

e7

e0

e1

e2

e3

e4

e5

e6

e8

e9

e10

e11

e7

e0

e4

e10

−e8
−e5

−e1

e2
e11

−e9
−e6

−e3

• E ordered by (1),(2),(3) ⇒ L0 = {e0, e4, e10,−e8,−e5,−e1}
L1 = {e2, e7, e11,−e9,−e6,−e3}

• Here, we introduce:
� the positive edges (

e−→): x.dest(e) > x.source(e)

� the negative edges (
−f←−): x.dest(−f) < x.source(−f)

23 / 31

Algorithm 2 - Constructing the loops

e7

e0

e1

e2

e3

e4

e5

e6

e8

e9

e10

e11

e7

e0

e4

e10

−e8
−e5

−e1

e2
e11

−e9
−e6

−e3

• E ordered by (1),(2),(3) ⇒ L0 = {e0, e4, e10,−e8,−e5,−e1}
L1 = {e2, e7, e11,−e9,−e6,−e3}

• Here, we introduce:
� the positive edges (

e−→): x.dest(e) > x.source(e)

� the negative edges (
−f←−): x.dest(−f) < x.source(−f)

23 / 31

Algorithm 3 - Constructing the arcs

last

e
s

n

l
e
u

u

u

d

d

d

e
n

e
l

e
s

−e

0
e

n
e
m

e
k

e
l

t

e
s

e
0

1
1

−e
−e

−e

−e

 e
last

e

• E = {e0, ..., elast} a0 = {eu
n, ..,−e1, e0, .., ek, .., e

d
s}

• EI = {(−en, em), (el, ek), (es,−et)} ⇒ a1 = {eu
l , ..,−et, ..,−ed

n}

• L0 = {e0, ..., es, el, ...,−e1} a2 = {eu
s , ..., em, ..., e

d
l }

• While constructing the arcs we also decide the type of crossings (RH or LH).

24 / 31

Algorithm 3 - Deciding the type of crossing

LH

n
e
m

e
k

e
l

−e
e
s

c
1

c
3

c
2

t

−e

RH

• For instance c1 = (−en, em) is LH since:

• x.source(−en)>x.dest(−en),
• x.source(em)<x.dest(em),
• slope(em)<slope(−en)

• c2 = (el, ek) is LH, c3 = (es,−et) is LH.

25 / 31

1 Motivation

2 Topology of plane complex curves singularities
Describing the problem
Solving the problem

3 A library for topology of plane complex curves singularities

4 Conclusion and future work

26 / 31

Summary

We have a symbolic-numeric algorithm (i.e. approximate algorithm) for performing
operations on a plane complex algebraic curve, implemented in the library GENOM3CK.
About GENOM3CK: http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Equation Link
x2 − y2, ε = 1.0 Hopf link

x2 − y3, ε = 1.0 Trefoil
knot

x3 − y3, ε = 1.0 3-knots
link

x2 − y4, ε = 1.0 2-knots
link

x2 − y5, ε = 1.0 1-knot
link

x4 + x2y + y5, ε = 0.5 3-knots
link

27 / 31

http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Summary (pictures made with GENOM3CK in Axel)

x2 − y2

x3 − y3

28 / 31

Summary (pictures made with GENOM3CK in Axel)

x2 − y4

x2 − y5

28 / 31

1 Motivation

2 Topology of plane complex curves singularities
Describing the problem
Solving the problem

3 A library for topology of plane complex curves singularities

4 Conclusion and future work

29 / 31

Conclusion and future work

! DONE:

• complete automatization of the
approximate algorithm (in
GENOM3CK); we compute the
singularities, topology/algebraic
link, Alexander polynomial,
delta-invariant, genus;

• experiments show the output is
unique and continuously depends
on the data;

• we can describe it with principles
from regularization theory,
approximate algebraic
computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
convergency, continuity);

• make precise the meaning of
the computed output with the
approximate algorithm.

30 / 31

Conclusion and future work

! DONE:

• complete automatization of the
approximate algorithm (in
GENOM3CK); we compute the
singularities, topology/algebraic
link, Alexander polynomial,
delta-invariant, genus;

• experiments show the output is
unique and continuously depends
on the data;

• we can describe it with principles
from regularization theory,
approximate algebraic
computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
convergency, continuity);

• make precise the meaning of
the computed output with the
approximate algorithm.

30 / 31

Conclusion and future work

! DONE:

• complete automatization of the
approximate algorithm (in
GENOM3CK); we compute the
singularities, topology/algebraic
link, Alexander polynomial,
delta-invariant, genus;

• experiments show the output is
unique and continuously depends
on the data;

• we can describe it with principles
from regularization theory,
approximate algebraic
computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
convergency, continuity);

• make precise the meaning of
the computed output with the
approximate algorithm.

30 / 31

Conclusion and future work

! DONE:

• complete automatization of the
approximate algorithm (in
GENOM3CK); we compute the
singularities, topology/algebraic
link, Alexander polynomial,
delta-invariant, genus;

• experiments show the output is
unique and continuously depends
on the data;

• we can describe it with principles
from regularization theory,
approximate algebraic
computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
convergency, continuity);

• make precise the meaning of
the computed output with the
approximate algorithm.

30 / 31

Thank you for your attention.
Questions?

31 / 31

	Motivation
	Topology of plane complex curves singularities
	Describing the problem
	Solving the problem

	A library for topology of plane complex curves singularities
	Conclusion and future work

