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What?

• Input:
• F ∈ C[x, y] squarefree with coefficients of limited accuracy
• C = {(x, y) ∈ C2|F (x, y) = 0} =

= {(a, b, c, d) ∈ R4|F (a+ ib, c+ id) = 0} complex algebraic curve
(m is the degree of C);

• ε ∈ R∗
+ a non-zero positive real number, the input parameter.

• Output:
• approximate genus(C), s.t.

genus(C) =
1

2
(m− 1)(m− 2)−

X
P∈Sing(C)

δ-invariant(P ),

where Sing(C) is the set of singularities of the curve C.

4 / 15



How?

• Strategy for computing the genus

Plane complex algebraic curve

numericallycompute
��

Singularities (moved in origin)
compute

numerically
// Link (ε ∈ R∗

+ needed)

numericallycompute
��

Computational algos 1, 2, 3

symbolicallycompute
��

δ-invariant(singularities)

symbolicallycompute
��

Alexander Polynomial
symbolically

computeks

GENUS
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How?

•• For the implementation we use
Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz
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Summary

At present:

• We have a symbolic-numeric algorithm, i.e. an approximate algorithm, for GENus
cOMputation of plane Complex algebraiC Curves using Knot theory implemented
in the GENOM3CK library.

• The algorithm is based on combinatorial techniques from knot theory, that allow
us to analyze the singularities of the input curve and to compute the invariants:
topology of singularities (algebraic link), Alexander polynomial, δ-invariant, genus.
The algorithm depends on the parameter ε ∈ R∗+.
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Summary

Next:

• The plane complex algebraic curves are defined by polynomials with coefficients of

limited accuracy, i.e the coefficients

• are either exact data, i.e. integers or rational numbers: 1,−2,
1

2
.

• or inexact data, i.e. real numbers/floating point numbers: 1.865. For 1.865

we associate a tolerance of 10−3, which means that the last digit is uncertain.

• For an arbitrary plane complex algebraic curve C defined by a polynomial with
coefficients of limited accuracy, i.e F (x, y) = x3 − 1.865y2 − y3 + 0.0xy, we want
to compute the approximate genus(C) using GENOM3CK.

Important questions arise:

• What does one mean by approximate genus?
• How does one control the error in numerical computation?
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Preliminaries-Approximate algebraic computation

Objects of approximate algebraic computation1: polynomials with coefficients of limited
accuracy, i.e. F (x, y) = x3 − 1.865y2 − y3 + 0.0xy.

Basic questions
What happens when using approximate computation?

Why using approximate computation?
What is (one) of the aims of approximate computation?

1Thanks to the colleagues from the DK for their helpful discussions
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accuracy, i.e. F (x, y) = x3 − 1.865y2 − y3 + 0.0xy.

Basic questions
What happens when using approximate computation?

Why using approximate computation?
What is (one) of the aims of approximate computation?

Tiny perturbations in data input produce huge error in solution (ill-posed problems). We
get failure of classical algorithms: Euclidean algorithm, root polynomial computation,
genus computation, etc.

Definition (Hadamard). A problem is well posed if: it has a solution, the solu-
tion is unique, and the solution depends continuously on data and parameters.
Remark. If the solution of the problem depends in a discontinuous way on the data, then
small errors can create large deviations, and the problem is called ill-posed.

1Thanks to the colleagues from the DK for their helpful discussions
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accuracy, i.e. F (x, y) = x3 − 1.865y2 − y3 + 0.0xy.

Basic questions
What happens when using approximate computation?

Why using approximate computation?
What is (one) of the aims of approximate computation?

There is no other choice since the input data are only approximately known, be-
cause for example the coefficients of the polynomials come from experimental data.

1Thanks to the colleagues from the DK for their helpful discussions
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Preliminaries-Approximate algebraic computation

Objects of approximate algebraic computation1: polynomials with coefficients of limited
accuracy, i.e. F (x, y) = x3 − 1.865y2 − y3 + 0.0xy.

Basic questions
What happens when using approximate computation?

Why using approximate computation?
What is (one) of the aims of approximate computation?

To deal with ill-posed problems in numerical computation!

What should a numerical algorithm really do?
⇒ Naive answer: Compute solutions.
⇒ Z. Zeng, E. Kaltofen, H. Stetter: A numerical algorithm generates the exact
solution of a nearby problem (related with regularization theory).

1Thanks to the colleagues from the DK for their helpful discussions
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Genus computation - Approximate algebraic computation

Approximate algebraic computation to an ill-posed problem

• is based on W. Kahan’s discovery: problems with certain solution
structure form a ”pejorative” manifold. The solution is lost when the
problem leaves the manifold, but it is preserved when the problem
stays on the manifold.

What is a manifold and its dimension?

• A manifold M is a topological space that is locally euclidean, i.e. around every
point, there is a neighborhood that is topologically the same as the open unit ball
in Rn. n is the dimension of M . (any object that can be ”charted” is a manifold.)
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Genus computation - Approximate algebraic computation

Approximate algebraic computation to an ill-posed problem

• We partition the data input of the problem into pejorative manifolds.
For given input we need to determine the nearby pejorative manifold
of the highest codimension (i.e the smallest nearby pejorative
manifold).

What does ”nearby” means?

• ”Nearby” depends on the input parameter ε.

• It is not precise what ”nearby” means.
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GENOM3CK and approximate algebraic computation

We consider the exact algorithm for genus computation as the function:

E : C[x, y]→ Z, F (x, y) 7→ E(F (x, y)).

We consider the approximate algorithm from GENOM3CK for genus com-
putation as the function:

Aε : C[x, y]× R∗
+ → Z, F (x, y) 7→ Aε(F (x, y)).

Remark: The output of Aε: the Alexander polynomial (∆), the δ-invariant
(δ), and the genus (g).
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GENOM3CK and approximate algebraic computation

Tests experiments performed with GENOM3CK indicate two important properties of Aε:
Convergency

• we consider F (x, y) with both exact and inexact coefficients; we compute
Aε(F (x, y)) for different values of the parameter ε.

• for x3 − xy + y2, we know that the exact topology is the Hopf link;

• we notice that the approximate solution computed with Aε converges to the exact

solution as ε tends to 0: ∀
F (x,y)

lim
ε→0

Aε(F (x, y)) = E(F (x, y)).

Equation and ε Link Alexander, δ invariants, genus
−x3 − xy + y2 1.00 Trefoil

knot
∆(t1) = t21 − t1 + 1 δ = 1 g = 0

−x3 − xy + y2 0.5 Trefoil
knot

∆(t1) = t21 − t1 + 1 δ = 1 g = 0

−x3 − xy + y2 0.25 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

−x3 − xy + y2 0.14 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

12 / 15



GENOM3CK and approximate algebraic computation

Tests experiments performed with GENOM3CK indicate two properties of Aε:
Continuity

• we consider p(x, y) a polynomial with exact coefficients;

• for δ ∈ R we consider pδ(x, y) perturbations of p;

• perturbations of type I: pδ(x, y) = p(x, y) + δ, where δ ∈ R∗.
• perturbations of type II: pδ(x, y) = p(x, y) + δq(x, y), where δ ∈ R∗,
q(x, y) ∈ C[x, y] is an arbitrary exact polynomial.

• we consider F (x, y) := pσ(x, y), and several values for ε. For each ε, we compute
Aε(F (x, y)) for different values of δ.

• we observe that small changes on the input data produce small changes on the
output solution:

∀
F (x,y)

∃
η>0

such that ∀
ε<η

∃
η1>0

∀
G(x,y)

G(x, y) ∈ I := (F (x, y)− η1, F (x, y) + η1)

Aε(G(x, y)) is constant in I.
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GENOM3CK and approximate algebraic computation

Continuity (next) small changes in the input produce small changes in the output:

Perturbations I and ε σ = 10−e, e ∈ N∗ Link Invariants
−x3−xy+ y2− 10−e 0.5 {10−2, ..., 10−10} Trefoil

knot
∆(t1) = t21−t1+1
δ = 1 g = 0

−x3−xy+ y2− 10−e 0.25 {10−2, ..., 10−10} Hopf
link

∆(t1, t2) = 1 δ =
1 g = 0

p(x, y) = −x3 − xy + y2 q(x, y) = −x3 − 2xy + y2;
F (x, y) := pδ(x, y) = p(x, y)+δq(x, y) = −(1+10−e)x3−(1+2·10−e)xy+(1+10−e)y2

δ = 0.1 : F (x, y) = −1.1x3 − 1.2x2 + 1.1y2

δ = 0.01 : F (x, y) = −1.01x3 − 1.02x2 + 1.01y2, etc .

Perturbations II and ε σ = 10−e, e ∈
N∗

Link Invariants

−(1+10−e)x3− (1+2 ·10−e)xy+
(1 + 10−e)y2

0.15 {10−1, ..., 10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0

−(1+10−e)x3− (1+2 ·10−e)xy+
(1 + 10−e)y2

0.14 {10−1, ..., 10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0
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Conclusion and future work

Achieved goals:

• complete automatization for
the steps of the approximate
algorithm (in the library
GENOM3CK);

• tests experiments show that
the approximate algorithm has
the continuity and convergency
properties;

• the approximate algorithm
computes discrete information
from continuous data and it
can be described using
principles from regularization
theory and approximate
algebraic computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
continuity, convergency);

• make precise the meaning of
the computed approximate
output with the approximate
algorithm.
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Thank you for your attention.
Questions?
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