A symbolic-numeric algorithm for genus computation

Mădălina Hodorog
Supervisor: Prof. Dr. Josef Schicho

Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria

March 5, 2009

Table of contents

(1) Introduction

Describing the problem
Solving the problem
(2) Current results
(3) State of work
(4) Conclusion and future work
(1) Introduction

Describing the problem Solving the problem

(2) Current results

(3) State of work
(4) Conclusion and future work

Describing the problem

- Input:
- \mathbb{C} field of complex numbers;
- $F \in \mathbb{C}[z, w]$ irreducible with coefficients of limited accuracy ${ }^{1}$;
- $C=\left\{(z, w) \in \mathbb{C}^{2} \mid F(z, w)=0\right\}=$ $=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid F(x+i y, u+i v)=0\right\}$ complex algebraic curve (d-degree, $\operatorname{Sing}(C)$ set of singularities);
- Output:
- approximate $\operatorname{genus}(C)$ s.t.

$$
\operatorname{genus}(C)=\frac{1}{2}(d-1)(d-2)-\sum_{P \in \operatorname{Sing}(C)} \delta \text {-invariant }(P) ;
$$

Solving the problem

- Strategy for computing the genus

Solving the problem

- Method for computing the genus

Solving the problem

- Algorithm for the method

Solving the problem

- Algorithm for the method

Solving the problem

Implementation of the algorithm

- Mathematica computer algebra system
- Axel algebraic geometric modeler

Solving the problem

Implementation of the algorithm

- Mathematica computer algebra system
- Axel algebraic geometric modeler

```
- developed by Galaad team
    (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- topology of implicit curves;
- intersections of implicit surfaces.
```


Solving the problem

Implementation of the algorithm

- Mathematica computer algebra system
- Axel algebraic geometric modeler
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- topology of implicit curves;
- intersections of implicit surfaces.

Solving the problem

Implementation of the algorithm

- Mathematica computer algebra system
- Axel algebraic geometric modeler
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- topology of implicit curves;
- intersections of implicit surfaces.

Solving the problem

Implementation of the algorithm

- Mathematica computer algebra system
- Axel algebraic geometric modeler
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- topology of implicit curves;
- intersections of implicit surfaces.

(1) Introduction

Describing the problem Solving the problem

(2) Current results

(3) State of work
(4) Conclusion and future work
$4 \square>4$ 可 1 -
三

Computing the link of the singularity

Method (based on Milnor's results)

1. Let $C=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid F(x+i y, u+i v)=0\right\} \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$, with $\left(F(0,0), \frac{\delta F}{\delta z}(0,0), \frac{\delta F}{\delta w}(0,0)\right)=(0,0,0)$, where $z=x+i y, w=u+i v$.
2. Consider $S^{3}=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+u^{2}+w^{2}=\epsilon^{2}\right\} \subset \mathbb{R}^{4}$ and $X=C \bigcap S^{3}=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid F(x, y, u, v)=0, x^{2}+y^{2}+u^{2}+w^{2}=\epsilon^{2}\right\}$.
3. For $P(0,0,0, \epsilon) \in S^{3} \backslash C$, construct
$f: S^{3} \backslash\{P\} \subset \mathbb{R}^{4} \rightarrow \mathbb{R}^{3},(x, y, u, v) \rightarrow(a, b, c)=\left(\frac{x}{\epsilon-v}, \frac{y}{\epsilon-v}, \frac{u}{\epsilon-v}\right)$
$f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v) \in C \bigcap S^{3}:(a, b, c)=f(x, y, u, v)\right\}$
$f(X)$ is a link.

Computing the link of the singularity

Method (next)
3. $\quad f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v) \in C \bigcap S^{3}:(a, b, c)=f(x, y, u, v)\right\}$

$$
f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v)=f^{-1}(a, b, c) \in C \bigcap S^{3}\right\}
$$

4. Compute $f^{-1}: \mathbb{R}^{3} \rightarrow S^{3} \backslash\{P\}$
$(a, b, c) \rightarrow(x, y, u, v)=\left(\frac{2 a \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 b \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 c \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{\epsilon\left(a^{2}+b^{2}+c^{2}-1\right)}{1+a^{2}+b^{2}+c^{2}}\right)$
5. Get $f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid\right.$

Computing the link of the singularity

Method (next)
3. $\quad f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v) \in C \bigcap S^{3}:(a, b, c)=f(x, y, u, v)\right\}$

$$
f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v)=f^{-1}(a, b, c) \in C \bigcap S^{3}\right\}
$$

4. Compute $f^{-1}: \mathbb{R}^{3} \rightarrow S^{3} \backslash\{P\}$
$(a, b, c) \rightarrow(x, y, u, v)=\left(\frac{2 a \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 b \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 c \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{\epsilon\left(a^{2}+b^{2}+c^{2}-1\right)}{1+a^{2}+b^{2}+c^{2}}\right)$
5. Get $f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid\right.$

$$
\left.F\left(\frac{2 a \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 b \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 c \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{\epsilon\left(a^{2}+b^{2}+c^{2}-1\right)}{1+a^{2}+b^{2}+c^{2}}\right)=0\right\}
$$

Compute B s.t.

$$
f(X)=\left\{(a, b, c) \in B \subset \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\} \text { is a link }
$$

Computing the link of the singularity

Method (summary)

$$
f(X)=\left\{(a, b, c) \in B \subset \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\}
$$

Computing the link of the singularity

Why Axel?
Axel computes the topology of implicit curves in \mathbb{R}^{3}.

- Input:
- $f, g \in \mathbb{R}[x, y, z]$
- $C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=0, g(x, y, z)=0\right\}$
- $D=\left[a_{0}, b_{0}\right] \times\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right], \epsilon \geq 0$
- Output:
- $\operatorname{Graph}(C)=<\mathcal{V}, \mathcal{E}>$ with $\mathcal{V}=\left\{p=(a, b, c) \in \mathbb{R}^{3}\right\}$ $\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$
- s.t. $\operatorname{Graph}(C) \cong_{i \text { sotopic }} C$

Computing the link of the singularity

Algorithm

- Get the 2 polynomials
- Compute the box B
- Generate the Axel file

Implementation-MMa

- formEqns $\left[z^{2}-w^{2}, 1\right]$
- getBoxValue $\left[z^{2}-w^{2}, 1\right]$
- genAxelFile[$z^{2}-w^{2}, 1$,"ex.axl"]
- Note: We run the obtained file "ex.axl" with Axel.

Computing the link of the singularity

Test experiments (with Axel)

Equation	Tests on ϵ					
	$\epsilon=0.5$		$\epsilon=1.0$		$\epsilon=4.3$	
	$[-b, b]^{3}$	link	$[-b, b]^{3}$	link	$[-b, b]^{3}$	link
$z^{2}-w^{2}$	2.41421	Hopf link	2.41421	Hopf link	2.41421	Hopf link
$z^{2}-w^{3}$	3.38298	Trefoil knot	2.67567	Trefoil knot	1.84639	Trefoil knot
$\begin{aligned} & z^{2}-w^{2}- \\ & w^{3} \end{aligned}$	2.37636	Hopf link	2.28464	Curve one singularity	2.24247	Trefoil knot

V.I. Arnold's results: $\operatorname{Top}\left(z^{2}-w^{2}-w^{3}\right) \cong \operatorname{Top}\left(z^{2}-w^{2}\right)$

(1) Introduction

Describing the problem
Solving the problem
(2) Current results
(3) State of work

(4) Conclusion and future work

Summary

- At present: for symbolic coefficients

- Future work: tests for algorithm with numeric coefficients

(1) Introduction

Describing the problem Solving the problem

(2) Current results
(3) State of work
(4) Conclusion and future work

Conclusion

- first results and test experiments were presented;
- Future work:
- deeper introspection into some mathematical aspects (i.e. Milnor's fibration, Alexander polynomial);
- correctness/completeness for the algorithm;
- implementation of the algorithm;
- analysis of the algorithm.

Thank you for your attention．
三 ๑Q \propto
14 / 14

