A symbolic-numeric algorithm for genus computation

Mădălina Hodorog Supervisor: Prof. Dr. Josef Schicho

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria

March 5, 2009

Table of contents

1 Introduction

Describing the problem Solving the problem

2 Current results

3 State of work

4 Conclusion and future work

1 Introduction

Describing the problem Solving the problem

- **2** Current results
- **3** State of work
- Onclusion and future work

Describing the problem

• Input:

- C field of complex numbers;
- $F \in \mathbb{C}[z, w]$ irreducible with coefficients of limited accuracy ¹;
- $C = \{(z, w) \in \mathbb{C}^2 | F(z, w) = 0\} =$ = $\{(x, y, u, v) \in \mathbb{R}^4 | F(x + iy, u + iv) = 0\}$ complex algebraic curve (d-degree, Sing(C) set of singularities);

• Output:

• approximate genus(C) s.t.

$$genus(C) = \frac{1}{2}(d-1)(d-2) - \sum_{P \in Sing(C)} \delta\text{-invariant}(P);$$

4/14

• Strategy for computing the genus

• Method for computing the genus

• Algorithm for the method

• Algorithm for the method

- Mathematica computer algebra system
- Axel algebraic geometric modeler
 - developed by Galaad team (INPLA Saphia Antipalia);
 - (INTRA Sophia-Antipolis),
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

- Mathematica computer algebra system
- Axel algebraic geometric modeler
 - developed by *Galaad* team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

- Mathematica computer algebra system
- Axel algebraic geometric modeler
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

- Mathematica computer algebra system
- Axel algebraic geometric modeler
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

- Mathematica computer algebra system
- Axel algebraic geometric modeler
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

1 Introduction

Describing the problem Solving the problem

2 Current results

3 State of work

Onclusion and future work

Method (based on Milnor's results) 1. Let $C = \{(x, y, u, v) \in \mathbb{R}^4 | F(x + iy, u + iv) = 0\} \subset \mathbb{C}^2 \cong \mathbb{R}^4$, with $(F(0, 0), \frac{\delta F}{\delta z}(0, 0), \frac{\delta F}{\delta w}(0, 0)) = (0, 0, 0)$, where z = x + iy, w = u + iv.

2. Consider $S^3 = \{(x, y, u, v) \in \mathbb{R}^4 | x^2 + y^2 + u^2 + w^2 = \epsilon^2\} \subset \mathbb{R}^4$ and $X = C \bigcap S^3 = \{(x, y, u, v) \in \mathbb{R}^4 | F(x, y, u, v) = 0, x^2 + y^2 + u^2 + w^2 = \epsilon^2\}.$

3. For $P(0, 0, 0, \epsilon) \in S^3 \setminus C$, construct $f: S^3 \setminus \{P\} \subset \mathbb{R}^4 \to \mathbb{R}^3, (x, y, u, v) \to (a, b, c) = (\frac{x}{\epsilon - v}, \frac{y}{\epsilon - v}, \frac{u}{\epsilon - v})$ $f(X) = \{(a, b, c) \in \mathbb{R}^3 | \exists (x, y, u, v) \in C \bigcap S^3 : (a, b, c) = f(x, y, u, v)\}$ f(X) is a link.

$\begin{array}{l} \text{Method (next)} \\ \text{3.} \quad f(X) = \{(a,b,c) \in \mathbb{R}^3 | \exists (x,y,u,v) \in C \bigcap S^3 : (a,b,c) = f(x,y,u,v) \} \\ \quad f(X) = \{(a,b,c) \in \mathbb{R}^3 | \exists (x,y,u,v) = f^{-1}(a,b,c) \in C \bigcap S^3 \} \end{array}$

4. Compute
$$f^{-1} : \mathbb{R}^3 \to S^3 \setminus \{P\}$$

 $(a, b, c) \to (x, y, u, v) = (\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2})$

5. Get
$$\begin{aligned} &f(X) = \left\{ (a,b,c) \in \mathbb{R}^3 \right| \\ &F(\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2}) = 0 \right\} \\ &f(X) = \left\{ (a,b,c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0 \right\} \end{aligned}$$

・ ロト く 一部 ト く 差 ト く 差 ト 差 の 9 ペ で 8 / 14

$\begin{array}{l} \text{Method (next)} \\ \text{3.} \quad f(X) = \{(a,b,c) \in \mathbb{R}^3 | \exists (x,y,u,v) \in C \bigcap S^3 : (a,b,c) = f(x,y,u,v) \} \\ \quad f(X) = \{(a,b,c) \in \mathbb{R}^3 | \exists (x,y,u,v) = f^{-1}(a,b,c) \in C \bigcap S^3 \} \end{array}$

4. Compute
$$f^{-1} : \mathbb{R}^3 \to S^3 \setminus \{P\}$$

 $(a, b, c) \to (x, y, u, v) = \left(\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2}\right)$

5. Get
$$\begin{array}{l} f(X) = \left\{ (a,b,c) \in \mathbb{R}^3 | \\ F(\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2}) = 0 \right\} \end{array}$$

 $\label{eq:compute} \begin{array}{l} \text{Compute B s.t.} \\ f(X) = \{(a,b,c) \in B \subset \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\} \quad \text{is a link} \end{array}$

Concurate Variation
 Concurate Variation

Why Axel?

Axel computes the topology of implicit curves in \mathbb{R}^3 .

• Input:

$$\begin{array}{l} \bullet \ f,g\in \mathbb{R}[x,y,z] \\ \bullet \ C=\{(x,y,z)\in \mathbb{R}^3 | f(x,y,z)=0,g(x,y,z)=0\} \\ \bullet \ D=[a_0,b_0]\times [a_1,b_1]\times [a_2,b_2], \epsilon\geq 0 \end{array}$$

• Output:

•
$$Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$$
 with
 $\mathcal{V} = \{p = (a, b, c) \in \mathbb{R}^3\}$
 $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$

• s.t. $Graph(C) \cong_{isotopic} C$

Algorithm

- Get the 2 polynomials
- Compute the box B
- Generate the Axel file

Implementation-MMa

- formEqns[$z^2 w^2, 1$]
- getBoxValue[$z^2 w^2, 1$]
- genAxelFile[$z^2 w^2, 1, "ex.axl"$]
- Note: We run the obtained file "ex.axl" with Axel.

Test experiments (with <u>Axel</u>)

Equation	Tests on ϵ					
	ϵ =0.5		$\epsilon = 1.0$		<i>ϵ</i> =4.3	
	$[-b, b]^3$	link	$[-b, b]^3$	link	$[-b, b]^{3}$	link
$z^2 - w^2$	2.41421	Hopf link	2.41421	Hopf link	2.41421	Hopf link
$z^2 - w^3$	3.38298	Trefoil knot	2.67567	Trefoil knot	1.84639	Trefoil knot
$\frac{z^2 - w^2 - w^2}{w^3}$	2.37636	Hopf link	2.28464	Curve one sin- gularity	2.24247	Trefoil knot

V.I. Arnold's results: $Top(z^2 - w^2 - w^3) \cong Top(z^2 - w^2)$

Control Program Control of Strends イロト イクト イヨト イヨト ヨークへで 8/14

1 Introduction

Describing the problem Solving the problem

- **2** Current results
- 3 State of work

Onclusion and future work

Summary

• At present: for symbolic coefficients

• Future work: tests for algorithm with numeric coefficients

1 Introduction

Describing the problem Solving the problem

- **2** Current results
- **3** State of work
- **4** Conclusion and future work

Conclusion

- first results and test experiments were presented;
- Future work:
 - deeper introspection into some mathematical aspects (i.e. Milnor's fibration, Alexander polynomial);

イロト 不同下 イヨト イヨト

12/14

- correctness/completeness for the algorithm;
- implementation of the algorithm;
- analysis of the algorithm.

Thank you for your attention.

