
A symbolic-numeric algorithm for genus computation

Mădălina Hodorog
Supervisor: Prof. Dr. Josef Schicho

Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences,

Research Institute for Symbolic Computation,
Johannes Kepler University Linz, Austria

March 5, 2009

1 / 14

Table of contents

1 Introduction
Describing the problem
Solving the problem

2 Current results

3 State of work

4 Conclusion and future work

2 / 14

1 Introduction
Describing the problem
Solving the problem

2 Current results

3 State of work

4 Conclusion and future work

3 / 14

Describing the problem

• Input:
• C field of complex numbers;
• F ∈ C[z, w] irreducible with coefficients of limited accuracy 1;
• C = {(z, w) ∈ C2|F (z, w) = 0} =

= {(x, y, u, v) ∈ R4|F (x+ iy, u+ iv) = 0} complex algebraic curve
(d-degree, Sing(C) set of singularities);

• Output:
• approximate genus(C) s.t.

genus(C) =
1

2
(d− 1)(d− 2)−

X
P∈Sing(C)

δ-invariant(P);

1For now: symbolic coefficients
4 / 14

Solving the problem

• Strategy for computing the genus

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS

5 / 14

Solving the problem

•• Method for computing the genus

Singularities: Maths
compute

numerically
// Link: Maths

��

δ-invariant(singularities): Maths

��

AlexanderPolynomial:Maths
numerically

computeoo

GENUS: Maths

5 / 14

Solving the problem

•• Algorithm for the method

Singularities: Algo
compute

numerically
// Link: Algo

��

δ-invariant(singularities): Algo

��

Alexander Polynomial: Algo
numerically

computeoo

GENUS: Algo

5 / 14

Solving the problem

•• Algorithm for the method

Singularities: Algo
compute

numerically
// Link: Algo

��

Intermediate step

��

δ-invariant(singularities): Algo

��

Alexander Polynomial: Algo
numerically

computeoo

GENUS: Algo

5 / 14

Solving the problem

Implementation of the algorithm

•• Mathematica computer algebra system

• Axel algebraic geometric modeler
• developed by Galaad team

(INRIA Sophia-Antipolis);
• written in Qt scripting language;

• topology of implicit curves;
• intersections of implicit surfaces.

6 / 14

Solving the problem

Implementation of the algorithm

• Mathematica computer algebra system

• Axel algebraic geometric modeler
• developed by Galaad team

(INRIA Sophia-Antipolis);
• written in Qt scripting language;

• topology of implicit curves;
• intersections of implicit surfaces.

6 / 14

Solving the problem

Implementation of the algorithm

• Mathematica computer algebra system

• Axel algebraic geometric modeler
• developed by Galaad team

(INRIA Sophia-Antipolis);
• written in Qt scripting language;

• topology of implicit curves;
• intersections of implicit surfaces.

6 / 14

Solving the problem

Implementation of the algorithm

• Mathematica computer algebra system

• Axel algebraic geometric modeler
• developed by Galaad team

(INRIA Sophia-Antipolis);
• written in Qt scripting language;

• topology of implicit curves;
• intersections of implicit surfaces.

6 / 14

Solving the problem

Implementation of the algorithm

• Mathematica computer algebra system

• Axel algebraic geometric modeler
• developed by Galaad team

(INRIA Sophia-Antipolis);
• written in Qt scripting language;

• topology of implicit curves;
• intersections of implicit surfaces.

6 / 14

1 Introduction
Describing the problem
Solving the problem

2 Current results

3 State of work

4 Conclusion and future work

7 / 14

Computing the link of the singularity

Method (based on Milnor’s results)
1. Let C = {(x, y, u, v) ∈ R4|F (x + iy, u + iv) = 0} ⊂ C2 ∼= R4, with(

F (0, 0), δFδz (0, 0), δFδw (0, 0)
)

= (0, 0, 0) , where

z = x+ iy, w = u+ iv.

2. Consider S3 = {(x, y, u, v) ∈ R4|x2 + y2 + u2 + w2 = ε2} ⊂ R4 and
X = C

⋂
S3 = {(x, y, u, v) ∈ R4|F (x, y, u, v) = 0, x2+y2+u2+w2 = ε2}.

3. For P (0, 0, 0, ε) ∈ S3 \ C, construct
f : S3 \ {P} ⊂ R4 → R3, (x, y, u, v)→ (a, b, c) = (x

ε−v ,
y
ε−v ,

u
ε−v)

f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) ∈ C
⋂
S3 : (a, b, c) = f(x, y, u, v)}

f(X) is a link.

8 / 14

Computing the link of the singularity

Method (next)
3. f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) ∈ C

⋂
S3 : (a, b, c) = f(x, y, u, v)}

f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) = f−1(a, b, c) ∈ C
⋂
S3}

4. Compute f−1 : R3 → S3 \ {P}
(a, b, c)→ (x, y, u, v) = (2aε

1+a2+b2+c2
, 2bε

1+a2+b2+c2
, 2cε

1+a2+b2+c2
, ε(a

2+b2+c2−1)
1+a2+b2+c2

)

5. Get
f(X) =

{
(a, b, c) ∈ R3|

F (2aε
1+a2+b2+c2

, 2bε
1+a2+b2+c2

, 2cε
1+a2+b2+c2

, ε(a
2+b2+c2−1)

1+a2+b2+c2
) = 0

} ⇔
f(X) = {(a, b, c) ∈ R3|ReF (...) = 0, ImF (...) = 0}

8 / 14

Computing the link of the singularity

Method (next)
3. f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) ∈ C

⋂
S3 : (a, b, c) = f(x, y, u, v)}

f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) = f−1(a, b, c) ∈ C
⋂
S3}

4. Compute f−1 : R3 → S3 \ {P}
(a, b, c)→ (x, y, u, v) = (2aε

1+a2+b2+c2
, 2bε

1+a2+b2+c2
, 2cε

1+a2+b2+c2
, ε(a

2+b2+c2−1)
1+a2+b2+c2

)

5. Get
f(X) =

{
(a, b, c) ∈ R3|

F (2aε
1+a2+b2+c2

, 2bε
1+a2+b2+c2

, 2cε
1+a2+b2+c2

, ε(a
2+b2+c2−1)

1+a2+b2+c2
) = 0

}
Compute B s.t.

f(X) = {(a, b, c) ∈ B ⊂ R3|ReF (...) = 0, ImF (...) = 0} is a link

8 / 14

Computing the link of the singularity

Method (summary)
f(X) = {(a, b, c) ∈ B ⊂ R3|ReF (...) = 0, ImF (...) = 0}

wwoooooooooooo

**TTTTTTTTTTTTTTTTT

compute 2 polynomials

��

visualize the intersection, get extra info

��

Mathematica

33ggggggggggg
Axel

8 / 14

Computing the link of the singularity

Why Axel?
Axel computes the topology of implicit curves in R3.

• Input:
• f, g ∈ R[x, y, z]
• C = {(x, y, z) ∈ R3|f(x, y, z) = 0, g(x, y, z) = 0}
• D = [a0, b0]× [a1, b1]× [a2, b2], ε ≥ 0

• Output:
• Graph(C) =< V, E > with
V = {p = (a, b, c) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

8 / 14

Computing the link of the singularity

Algorithm

• Get the 2 polynomials

• Compute the box B

• Generate the Axel file

Implementation-MMa

• formEqns[z2 − w2, 1]

• getBoxValue[z2 − w2, 1]

• genAxelFile[z2−w2, 1, ”ex.axl”]

• Note: We run the obtained file ”ex.axl” with Axel.

8 / 14

Computing the link of the singularity

Test experiments (with Axel)

Equation Tests on ε

ε=0.5 ε=1.0 ε=4.3

[−b, b]3 link [−b, b]3 link [−b, b]3 link

z2 − w2 2.41421 Hopf
link

2.41421 Hopf
link

2.41421 Hopf
link

z2 − w3 3.38298 Trefoil
knot

2.67567 Trefoil
knot

1.84639 Trefoil
knot

z2−w2−
w3

2.37636 Hopf
link

2.28464 Curve
one sin-
gularity

2.24247 Trefoil
knot

V.I. Arnold’s results: Top(z2 − w2 − w3) ∼= Top(z2 − w2)

8 / 14

1 Introduction
Describing the problem
Solving the problem

2 Current results

3 State of work

4 Conclusion and future work

9 / 14

Summary

• At present: for symbolic coefficients

Singularities
compute

numerically
// Link

��

Intermediate step

��

δ-invariant(singularities)

��

Alexander Polynomial
numerically

computeoo

GENUS

•• Future work: tests for algorithm with numeric coefficients

10 / 14

1 Introduction
Describing the problem
Solving the problem

2 Current results

3 State of work

4 Conclusion and future work

11 / 14

Conclusion

• first results and test experiments were presented;

• Future work:
• deeper introspection into some mathematical aspects

(i.e. Milnor’s fibration, Alexander polynomial);
• correctness/completeness for the algorithm;
• implementation of the algorithm;
• analysis of the algorithm.

12 / 14

Thank you for your attention.

13 / 14

14 / 14

	Introduction
	Describing the problem
	Solving the problem

	Current results
	State of work
	Conclusion and future work

