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Motivation

• DK Project: Symbolic-Numeric Techniques for Genus Computation and
Parametrization

Symbolic Computation

• Pros

• exact algorithms exist for
a large class of problems;

• Cons

• expensive (time,
memory);

• no analytic solution for
some problems;

Numeric Computation

• Pros

• cheap (time, memory)
• always has a numerical

solution to the problem

• Cons

• need control of the
numerical errors

• ⇒ Symbolic-Numeric computation.
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Preliminaries

•• Algebraic Geometry

Basic Notions
plane algebraic curve
singularity of a curve

genus of a curve

Definition. Let K be an algebraically closed field, and f(x, y) ∈ K[x, y] a noncon-
stant squarefree polynomial. A plane algebraic curve over K is defined as the set
C = {(x, y) ∈ K2|f(x, y) = 0}; f is called the defining polynomial of C.
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Preliminaries

•• Algebraic Geometry

Basic Notions
plane algebraic curve
singularity of a curve

genus of a curve

Definition. Let C = {(x, y) ∈ K2|f(x, y) = 0} be a plane algebraic curve, and
(a, b) ∈ C (i.e.f(a, b) = 0 ). The point (a, b) is a singularity of C iff(

δf

δx
(a, b),

δf

δy
(a, b)

)
= (0, 0).
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Preliminaries

•• Algebraic Geometry

Basic Notions
plane algebraic curve
singularity of a curve

genus of a curve

Definition. Let C be a plane algebraic curve, Sing(C) the set of singularities of C,
and d the degree of C. Then:

genus(C) =
1
2
(d− 1)(d− 2)−

∑
P∈Sing(C)

δ-invariant(P ).

Theorem. A plane algebraic curve C is parametrizable iff genus(C)=0.
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What?

•• In:
• K a field;
• F ∈ K[x, y] irreducible with coefficients of limited accuracy;

• coefficients as exact data (α ∈ R,C);
• coefficients as numerical data ( (ᾱ ∈ R,C, ε ∈ R+) );

• C = {(x, y) ∈ K2|F (x, y) = 0} plane algebraic curve
(d-degree, Sing(C) set of singularities);

• Out:
• approximate genus(C) s.t.

genus(C) =
1

2
(d− 1)(d− 2)−

X
P∈Sing(C)

δ-invariant(P );

• approximate rationalParametrization(C) (if applicable);
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Preliminaries

A knot is a simple closed curve in R3.

A link is a finite union of disjoint knots.
A knot is a link with one component.

Trefoil Knot

Hopf Link
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Preliminaries

A knot projection is a regular projection if no three points
on the knot project to the same point, and no vertex
projects to the same point as any other point on the knot.

A knot/link diagram is the image under regular projec-
tion, together with the information on each crossings telling
which branch goes over and which under.

Regular projection

Knot Diagram
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Preliminaries

Given 2 knots, can we tell whether they are alike or not?

Projections of unknot
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Preliminaries

A knot invariant is a function from knot diagrams to
some discrete set which is invariant under the Reidemeister
moves.

Knot invariant: Alexander polynomial.

Two knots/links are equivalent iff some diagram of one
can be transformed to some diagram of the other by a
finite number of Reidemeister moves.

Reidemeister moves

↔

↔

↔
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How?

• How do we compute the genus?

Singularities of the curve
compute

numerically
// Link

��

δ-invariant(singularities)

��

Alexander Polynomial
numerically

computeoo

GENUS
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How?

•• Why the link of a singularity?
• drawing a singularity over R is easy.
• drawing a singularity over C is not so easy!

So we look at the link of the singularity.

• How do we compute the link?
• use stereographic projection;

•
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How

How do we compute the link?

• Consider C ⊂ C2 ∼= R4 s.t. (0, 0) singularity of C.

• Step 1: Consider S(0,ε) = {(z1, z2) : |z1|2 + |z2|2 = ε} ⊂ C2 ∼= R4

• choose a good radius ε!

• Step 2: X = C ∩ S(0,ε)

• For small ε, X is a disjoint union of closed loops.

• Step 3: P 6∈ X, apply stereographic projection f : (S(0,ε) − P )→ R3

• Y = f(X) is a link;

• Example: The link of the singularity of the curve y2 − x3 = 0 is the trefoil knot.
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Conclusion

Future Work

• construct the algorithm for the described method;

• realize the implementation of the algorithm;
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Thank you for your attention.
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