Singularities and knots

Mădălina Hodorog Supervisor: Prof. Dr. Josef Schicho

Johann Radon Institute for Computational and Applied Mathematics Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria

March 17, 2009

Table of contents

1 Motivation

2 Describing the Problem

Preliminaries What?

Solving the Problem Preliminaries How?

4 Conclusion

• DK Project: Symbolic-Numeric Techniques for Genus Computation and Parametrization

Symbolic Computation

• Pros

 exact algorithms exist for a large class of problems;

• Cons

- expensive (time, memory);
- no analytic solution for some problems;
- \Rightarrow Symbolic-Numeric computation.

Numeric Computation

• Pros

- cheap (time, memory)
- always has a numerical solution to the problem

• Cons

• need control of the numerical errors

• DK Project: Symbolic-Numeric Techniques for Genus Computation and Parametrization

Symbolic Computation

- Pros
 - exact algorithms exist for a large class of problems;
- Cons
 - expensive (time, memory);
 - no analytic solution for some problems;
- \Rightarrow Symbolic-Numeric computation.

Numeric Computation

- Pros
 - cheap (time, memory)
 - always has a numerical solution to the problem
- Cons
 - need control of the numerical errors

• DK Project: Symbolic-Numeric Techniques for Genus Computation and Parametrization

Symbolic Computation

- Pros
 - exact algorithms exist for a large class of problems;
- Cons
 - expensive (time, memory);
 - no analytic solution for some problems;
- \Rightarrow Symbolic-Numeric computation.

Numeric Computation

- Pros
 - cheap (time, memory)
 - always has a numerical solution to the problem
- Cons
 - need control of the numerical errors

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• DK Project: Symbolic-Numeric Techniques for Genus Computation and Parametrization

Symbolic Computation

- Pros
 - exact algorithms exist for a large class of problems;
- Cons
 - expensive (time, memory);
 - no analytic solution for some problems;
- \Rightarrow Symbolic-Numeric computation.

Numeric Computation

- Pros
 - cheap (time, memory)
 - always has a numerical solution to the problem
- Cons
 - need control of the numerical errors

• Algebraic Geometry

Basic Notions

plane algebraic curve singularity of a curve genus of a curve

• Algebraic Geometry

Basic Notions plane algebraic curve singularity of a curve genus of a curve

Definition. Let K be an algebraically closed field, and $f(x, y) \in K[x, y]$ a nonconstant squarefree polynomial. A plane algebraic curve over K is defined as the set $C = \{(x, y) \in K^2 | f(x, y) = 0\}$; f is called the defining polynomial of C.

イロト イポト イヨト イヨト

4/10

• Algebraic Geometry

Basic Notions plane algebraic curve singularity of a curve

Definition. Let $C = \{(x, y) \in K^2 | f(x, y) = 0\}$ be a plane algebraic curve, and $(a, b) \in C$ (i.e. f(a, b) = 0). The point (a, b) is a singularity of C iff

$$\left(\frac{\delta f}{\delta x}(a,b),\frac{\delta f}{\delta y}(a,b)\right)=(0,0)$$

• Algebraic Geometry

Basic Notions plane algebraic curve singularity of a curve genus of a curve

Definition. Let C be a plane algebraic curve, Sing(C) the set of singularities of C, and d the degree of C. Then:

$$genus(C) = \frac{1}{2}(d-1)(d-2) - \sum_{P \in Sing(C)} \delta\text{-invariant}(P).$$

Theorem. A plane algebraic curve C is parametrizable iff genus(C)=0.

イロト イポト イヨト イヨト

What?

• In:

- K a field;
- $F \in K[x,y]$ irreducible with coefficients of limited accuracy;
 - coefficients as exact data ($\alpha \in \mathbb{R}, \mathbb{C}$);
 - coefficients as numerical data ($(\bar{\alpha} \in \mathbb{R}, \mathbb{C}, \epsilon \in \mathbb{R}_+)$);
- $C = \{(x, y) \in K^2 | F(x, y) = 0\}$ plane algebraic curve (d-degree, Sing(C) set of singularities);

• Out:

• approximate genus(C) s.t.

$$genus(C) = \frac{1}{2}(d-1)(d-2) - \sum_{P \in Sing(C)} \delta\text{-invariant}(P);$$

• approximate rationalParametrization(C) (if applicable);

What?

- In:
 - K a field;
 - $F \in K[x,y]$ irreducible with coefficients of limited accuracy;
 - coefficients as exact data ($\alpha \in \mathbb{R}, \mathbb{C}$);
 - coefficients as numerical data ($(\bar{\alpha} \in \mathbb{R}, \mathbb{C}, \epsilon \in \mathbb{R}_+)$);
 - $C = \{(x, y) \in K^2 | F(x, y) = 0\}$ plane algebraic curve (d-degree, Sing(C) set of singularities);
- Out:
 - approximate genus(C) s.t.

$$genus(C) = \frac{1}{2}(d-1)(d-2) - \sum_{P \in Sing(C)} \delta\text{-invariant}(P);$$

5/10

• approximate rationalParametrization(C) (if applicable);

A **link** is a finite union of disjoint knots. A knot is a link with one component.

Regular projection

A knot projection is a **regular projection** if no three points on the knot project to the same point, and no vertex projects to the same point as any other point on the knot.

A **knot/link diagram** is the image under regular projection, together with the information on each crossings telling which branch goes over and which under.

Knot Diagram

Projections of unknot

Given 2 knots, can we tell whether they are alike or not?

Reidemeister moves

A **knot** invariant is a function from knot diagrams to some discrete set which is invariant under the Reidemeister moves.

Knot invariant: Alexander polynomial.

Preliminaries

Two knots/links are equivalent iff some diagram of one can be transformed to some diagram of the other by a finite number of Reidemeister moves.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How?

• How do we compute the genus?

How?

• Why the link of a singularity?

- drawing a singularity over $\mathbb R$ is easy.
- drawing a singularity over C is not so easy!
 So we look at the link of the singularity.
- How do we compute the link?
 - use stereographic projection;

How

How do we compute the link?

- Consider $C \subset \mathbb{C}^2 \cong \mathbb{R}^4$ s.t. (0,0) singularity of C.
- Step 1: Consider $S_{(0,\epsilon)} = \{(z_1, z_2) : |z_1|^2 + |z_2|^2 = \epsilon\} \subset \mathbb{C}^2 \cong \mathbb{R}^4$ • choose a good radius $\epsilon!$
- Step 2: $X = C \cap S_{(0,\epsilon)}$
 - For small ϵ , X is a disjoint union of closed loops.
- Step 3: P ∉ X, apply stereographic projection f : (S_(0,ε) − P) → ℝ³
 Y = f(X) is a link;
- Example: The link of the singularity of the curve $y^2 x^3 = 0$ is the trefoil knot.

How

How do we compute the link?

- Consider $C \subset \mathbb{C}^2 \cong \mathbb{R}^4$ s.t. (0,0) singularity of C.
- Step 1: Consider $S_{(0,\epsilon)} = \{(z_1, z_2) : |z_1|^2 + |z_2|^2 = \epsilon\} \subset \mathbb{C}^2 \cong \mathbb{R}^4$
 - choose a good radius ϵ !
- Step 2: $X = C \cap S_{(0,\epsilon)}$
 - For small ϵ , X is a disjoint union of closed loops.
- Step 3: P ∉ X, apply stereographic projection f : (S_(0,ε) − P) → ℝ³
 Y = f(X) is a link;
- Example: The link of the singularity of the curve $y^2 x^3 = 0$ is the trefoil knot.

How

How do we compute the link?

- Consider $C \subset \mathbb{C}^2 \cong \mathbb{R}^4$ s.t. (0,0) singularity of C.
- Step 1: Consider $S_{(0,\epsilon)} = \{(z_1, z_2) : |z_1|^2 + |z_2|^2 = \epsilon\} \subset \mathbb{C}^2 \cong \mathbb{R}^4$
 - choose a good radius ϵ !
- Step 2: $X = C \cap S_{(0,\epsilon)}$
 - For small ϵ , X is a disjoint union of closed loops.
- Step 3: P ∉ X, apply stereographic projection f : (S_(0,ϵ) − P) → ℝ³
 Y = f(X) is a link;
- Example: The link of the singularity of the curve $y^2 x^3 = 0$ is the trefoil knot.

Conclusion

Future Work

- construct the algorithm for the described method;
- realize the implementation of the algorithm;

Thank you for your attention.

