Singularities and knots

Mădălina Hodorog Supervisor: Prof. Dr. Josef Schicho

Johann Radon Institute for Computational and Applied Mathematics
Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria

March 17, 2009

Table of contents

(1) Motivation
(2) Describing the Problem

Preliminaries
What?
(3) Solving the Problem

Preliminaries
How?
(4) Conclusion

Motivation

- DK Project: Symbolic-Numeric Techniques for Genus Computation and Parametrization

Symbolic Computation

- Pros
- Cons

```
- expensive (time,
memory);
- no analytic solution for
some problems;
```

Numeric Computation

- Pros
- cheap (time, memory)
- always has a numerical
solution to the problem
- Cons
- need control of the
numerical errors
- \Rightarrow Symbolic-Numeric computation.

Motivation

- DK Project: Symbolic-Numeric Techniques for Genus Computation and Parametrization

Symbolic Computation

- Pros
- exact algorithms exist for a large class of problems;
- Cons
- expensive (time, memory);
- no analytic solution for some problems;

Numeric Computation

- Pros
- cheap (time, memory)
- always has a numerical
solution to the problem
- Cons
- need control of the
numerical errors
- \Rightarrow Symbolic-Numeric computation.

Motivation

- DK Project: Symbolic-Numeric Techniques for Genus Computation and Parametrization

Symbolic Computation

- Pros
- exact algorithms exist for
a large class of problems;
- Cons
- expensive (time, memory);
- no analytic solution for some problems;

Numeric Computation

- Pros
- cheap (time, memory)
- always has a numerical solution to the problem
- Cons
- need control of the
numerical errors
- \Rightarrow Symbolic-Numeric computation.

Motivation

- DK Project: Symbolic-Numeric Techniques for Genus Computation and Parametrization

Symbolic Computation

- Pros
- exact algorithms exist for a large class of problems;
- Cons
- expensive (time, memory);
- no analytic solution for some problems;

Numeric Computation

- Pros
- cheap (time, memory)
- always has a numerical solution to the problem
- Cons
- need control of the numerical errors
- \Rightarrow Symbolic-Numeric computation.

Preliminaries

- Algebraic Geometry

Basic Notions
plane algebraic curve
singularity of a curve
genus of a curve

Preliminaries

- Algebraic Geometry

Definition. Let K be an algebraically closed field, and $f(x, y) \in K[x, y]$ a nonconstant squarefree polynomial. A plane algebraic curve over K is defined as the set $C=\left\{(x, y) \in K^{2} \mid f(x, y)=0\right\} ; f$ is called the defining polynomial of C.

Preliminaries

- Algebraic Geometry

Basic Notions
plane algebraic curve
singularity of a curve
genus of a curve

Definition. Let $C=\left\{(x, y) \in K^{2} \mid f(x, y)=0\right\}$ be a plane algebraic curve, and $(a, b) \in C$ (i.e. $f(a, b)=0)$. The point (a, b) is a singularity of C iff

$$
\left(\frac{\delta f}{\delta x}(a, b), \frac{\delta f}{\delta y}(a, b)\right)=(0,0) .
$$

Preliminaries

- Algebraic Geometry

Basic Notions
plane algebraic curve
singularity of a curve
genus of a curve

Definition. Let C be a plane algebraic curve, $\operatorname{Sing}(C)$ the set of singularities of C, and d the degree of C. Then:

$$
\operatorname{genus}(C)=\frac{1}{2}(d-1)(d-2)-\sum_{P \in \operatorname{Sing}(C)} \delta \text {-invariant }(P)
$$

Theorem. A plane algebraic curve C is parametrizable iff $\operatorname{genus}(C)=0$.

What?

- In:
- K a field;
- $F \in K[x, y]$ irreducible with coefficients of limited accuracy;
- coefficients as exact data $(\alpha \in \mathbb{R}, \mathbb{C})$;
- coefficients as numerical data ($\left.\left(\bar{\alpha} \in \mathbb{R}, \mathbb{C}, \epsilon \in \mathbb{R}_{+}\right)\right)$
- $C=\left\{(x, y) \in K^{2} \mid F(x, y)=0\right\}$ plane algebraic curve (d-degree, $\operatorname{Sing}(C)$ set of singularities);
- Out:
- approximate genus(C) s.t.

- approximate rationalParametrization (C) (if applicable);

What?

- In:
- K a field;
- $F \in K[x, y]$ irreducible with coefficients of limited accuracy;
- coefficients as exact data ($\alpha \in \mathbb{R}, \mathbb{C}$);
- coefficients as numerical data ($\left(\bar{\alpha} \in \mathbb{R}, \mathbb{C}, \epsilon \in \mathbb{R}_{+}\right)$);
- $C=\left\{(x, y) \in K^{2} \mid F(x, y)=0\right\}$ plane algebraic curve (d-degree, $\operatorname{Sing}(C)$ set of singularities);
- Out:
- approximate $\operatorname{genus}(C)$ s.t.

$$
\operatorname{genus}(C)=\frac{1}{2}(d-1)(d-2)-\sum_{P \in \operatorname{Sing}(C)} \delta \text {-invariant }(P) ;
$$

- approximate rationalParametrization(C) (if applicable);

Preliminaries

Trefoil
Knot

A knot is a simple closed curve in \mathbb{R}^{3}.
A link is a finite union of disjoint knots. A knot is a link with one component.

Hopf
Link

$6 / 10$

Preliminaries

Regular projection

 A knot projection is a regular projection if no three points on the knot project to the same point, and no vertex projects to the same point as any other point on the knot.

Knot Diagram
A knot/link diagram is the image under regular projection, together with the information on each crossings telling which branch goes over and which under.

Preliminaries

Projections of unknot

Given 2 knots, can we tell whether they are alike or not?

Preliminaries

Reidemeister moves

A knot invariant is a function from knot diagrams to some discrete set which is invariant under the Reidemeister moves.

Knot invariant: Alexander polynomial.
Two knots/links are equivalent iff some diagram of one can be transformed to some diagram of the other by a finite number of Reidemeister moves.

How?

- How do we compute the genus?

How?

- Why the link of a singularity?
- drawing a singularity over \mathbb{R} is easy.
- drawing a singularity over \mathbb{C} is not so easy! So we look at the link of the singularity.
- How do we compute the link?
- use stereographic projection;

How

How do we compute the link?

- Consider $C \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$ s.t. $(0,0)$ singularity of C.
- Step 1: Consider $S_{(0, \epsilon)}=\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\epsilon\right\} \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$
- Step 2: $X=C \cap S_{(0, \epsilon)}$
- For small ϵ, X is a disjoint union of closed loops.
- Step 3: $P \notin X$, apply stereographic projection $f:\left(S_{(0, \epsilon)}-P\right) \rightarrow \mathbb{R}^{3}$
- Example: The link of the singularity of the curve $y^{2}-x^{3}=0$ is the trefoil knot.

How

How do we compute the link?

- Consider $C \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$ s.t. $(0,0)$ singularity of C.
- Step 1: Consider $S_{(0, \epsilon)}=\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\epsilon\right\} \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$
- choose a good radius ϵ !
- Step 2: $X=C \cap S_{(0, \epsilon)}$
- For small ϵ, X is a disjoint union of closed loops.
- Step 3: $P \notin X$, apply stereographic projection $f:\left(S_{(0, \epsilon)}-P\right) \rightarrow \mathbb{R}^{3}$
- Example: The link of the singularity of the curve $y^{2}-x^{3}=0$ is the trefoil knot.

How

How do we compute the link?

- Consider $C \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$ s.t. $(0,0)$ singularity of C.
- Step 1: Consider $S_{(0, \epsilon)}=\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=\epsilon\right\} \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$
- choose a good radius ϵ !
- Step 2: $X=C \cap S_{(0, \epsilon)}$
- For small ϵ, X is a disjoint union of closed loops.
- Step 3: $P \notin X$, apply stereographic projection $f:\left(S_{(0, \epsilon)}-P\right) \rightarrow \mathbb{R}^{3}$
- $Y=f(X)$ is a link;
- Example: The link of the singularity of the curve $y^{2}-x^{3}=0$ is the trefoil knot.

Conclusion

Future Work

- construct the algorithm for the described method;
- realize the implementation of the algorithm;

Thank you for your attention.

