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Motivation

My current research refers to the subject of my PhD Thesis, focused on ”Symbolic
numeric algorithms for genus computation of plane complex algebraic curves based on
knot theory”. Among other important mathematical tools (i.e. computational geometry,
numerical polynomial algebra), we use combinatorial and algebraic methods from knot
theory to design some of our algorithms which turn out to be efficient. During one of
my talks, I was draw the attention on the importance and the potential of other
methods from knot theory. I will thus try:

• to give a basic summary of the most important aspects of knot theory;

• to show how knot theory can be analyzed from other important significant
domains of mathematics;

• Please: any person who is interested in one specific subject and wants to study it
in greater details, it is more than welcomed and encouraged to do so.

The talk will be more as a ”lecture” than as a ”presentation”.
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Introduction

Knot theory, which dates back to the late 19th century, gained increased attention in
the last two decades of the 20th century together with its potential applications in
physics, chemistry, biology or mathematics. Most of the problems in knot theory are
open problems.
But what is knot theory?
Most of the answers one gets or most of the definitions one finds:

”Knot theory is a branch of algebraic topology that is involved in the study
of three-dimensional manifolds,i.e. the study of the ways in which knotted
copies of a circle can be embedded in three-dimensional space...”
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Introduction

What does all of this mean?
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Preliminaries

Note: this section requires some notions from topology (i.e. topological
space, homeomorphism, homotopy, isotopy, ambient isotopy). We first
define these notions.

Definition

Let X,Y topological spaces. X ∼homeomorphic Y iff ∃ f : X → Y s.t. f is
continuous and bijective and f−1 is continuos (f is bicontinuos).

Definition

Let X,Y topological spaces, f, g : X → Y continuous functions.
f ∼homotopic g iff ∃ G : X × [0, 1]→ Y continuous s.t.
∀x ∈ X : G(x, 0) = f(x), G(x, 1) = g(x). G is called a homotopy.
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Preliminaries

Definition

Let X,Y topological spaces. f, g : X → Y homeomorphisms. f ∼isotopic g
iff ∃ H : X × [0, 1]→ Y homotopy s.t. Ht = H|X × t is an
homeomorphism for 0 ≤ t ≤ 1. H is called an isotopy.

Definition

Let X,Y ⊂ R3 topological spaces. X ∼ambientIsotopy Y iff
∃ F : R3 × [0, 1]→ R3 continuous s.t. all Ft = F |F × t, with 0 ≤ t ≤ 1
are homeomorphisms from R3 to R3 and F (·, ◦) is the identity on Y and
F (X, 1) = Y .
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Definition and equivalence of knots

Definition

A knot K ⊂ R3 or S3 is a subset of points homeomorphic to the circle
(S1).

Remark: The circle can be arranged as a smooth curve or polygonal curve.

Examples of knots:

• unknot (trivial knot)

• trefoil knot
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Definition and equivalence of knots

How would the idea of equivalence be captured?
(i.e. deformation of a knot K in R3?)

• Let h : K × [0, 1]→ R3 a homotopy. If t ∈ [0, 1] indicates time, then ht(K) for

increasing values of t show the evolution of K in R3 (h0 is the identity map, all ht
are continuous). Homotopy allows the knot to intersect itself, so it is not useful!

Why?

• ⇒ All knots are homotopic to the trivial knot!

• Let all ht injective (i.e. h is an isotopy). Isotopy allows to shrink a part of the

knot down to a point, so it is not useful! Why?

• ⇒ All knots are isotopic to the trivial knot!

• We need to consider h an ambient isotopy, which allows to deform the knot
through the space R3 in which it sits in. (i.e. an ambient isotopy of K ⊂ R3is an
isotopy that carries K with it).
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Definition and equivalence of knots

Definition

Two knots K1,K2 ⊂ R3 are ambient isotopic (isotopic) iff
∃ h : R3 × [0, 1]→ R3 an isotopy s.t. h(K1, 0) = h0(K1) = K1 and
h(K1, 1) = h1(K1) = K2. We denote K1 ∼ambientIsotopic K2 or
K1 ∼isotopic K2.

Example of knot equivalence:
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Definition and equivalence of knots

Remarks:

• When we work with knots we work with their projections in R2 with
additional information. Such projections are much easier to work
with, but they are ”artificial”: knot theory is concerned mainly with
3-dimensional topology.

• So far we have defined knots in general. We can specify a particular
knot using the following definition.
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Definition and equivalence of knots

Definition

A knot is a continuous simple closed curve in R3.

Remark: The continuity in this definition allows the existence of infinitely knotted loops
(wild knots). To eliminate the wild points in the wild knots (the point where the small
knots bunch up) we can introduce differentiability. This eliminates the wild points, since
there is no continuous way to define a tangent direction at this point. This remedy is
possible but difficult.

15 / 81



Definition and equivalence of knots

Alternatively, we can use polygonal curves to define knots (they are finite
by nature). We can think of knots as build up of straight lines and give
the coordinates of the corners.

Definition

Let p, q ∈ R3, p 6= q. Let [p, q] denote the segment line joining p, q. Let
(p1, ..., pn) be an ordered set with pi 6= qj , i, j ∈ {1, 2, ..., n}. Then
P =

⋃n−1
i=1 [pi, pi+1] ∪ [pn, p1] is a closed polygonal curve. P is simple iff

each segment intersects exactly two other segments only at their
endpoints.

Definition

A knot K is a simple closed polygonal curve P in R3. The line segments
of P are called the edges of the knots, and the corners of P are called the
vertices of the knot. A knot is called tame if it has a polygonal
representative.
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Definition and equivalence of links

Definition

A link is a finite disjoint union of knots L = K0 ∪K1 ∪ ...∪Kn. Each knot
Ki is called a component of the link. The number of components of a link
is called the multiplicity of the link µ(L). A subset of the components of
L embedded in the same way is called a sublink.

Remarks:

• A knot is a link with one component

• The unlink (trivial link) is the union of unknots all lying in the same
plane

• Links can be oriented (each component is assigned an orientation).
An unoriented n-component link can be assigned orientations in...

• ...2n ways.
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Definition and equivalence of links

Examples of links:

• unlink (trivial link)

• Hopf link
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Definition and equivalence of links

Definition

Two links L1, L2 are ambient isotopic iff ∃ h : R3 × [0, 1]→ R3 an isotopy
s.t. h(L1, 0) = h0(L1) = L1 and h(L1, 1) = h1(L1) = L2.

Remarks:

• This isotopy has to preserve any orientations or labeling on the links.
Without this requirement, the definition is weak as it does not impose
any restriction on the isotopy: there is a free choice of how to match
the components of L1 with those of L2.
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Projections and diagrams of knots

Definition

Let p : R3 → R2 be the projection map with (x, y, z)→ (x, y). If K is a
knot then the image of K under p is called the projection of K (i.e.
K → p(K)).

Definition

A knot projection is regular iff no three points on the knot project to the
same point, and no vertex projects to the same point as any other point
on the knot. A crossing point is the image of two knot points of such a
regular projection from R3 to R2.
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Projections and diagrams of knots

Remark: Regular projections are useful due two 2 theorems according to which
(see C. Livingston, Knot theory for complete proofs):

• if a knot does not have a regular projection then there exists an equivalent knot
nearby that does have a regular projection.

• if a knot does have a regular projection then all nearby knots are equivalent and
have regular projections.

Definition

A diagram is the image under regular projection together with the
information on each crossing telling which branch goes under and which
goes over. We thus speak about overcrossings and undercrossings. An arc
is the part of the diagram between two undercrossings.
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Projections and diagrams of knots

Example of diagram:

Remarks:

• The crossing points correspond to double points in the projection.

• The number of arcs equals the number of crossings.

Summary:

• Knot is a subset of R3. Knots determine equivalence classes of knots.

• Knots with regular projections have diagrams (which are drawings in
the plane).
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Types of knots: Torus knots

F igure 3: T he trefoil knot is a torus knot - it can be tied on the surface of a
torus.

As shown by Gonzalez and Maddocks [16], the two conditions can be gat h-
ered into a single one providing that the notion of the globa l curvature radius
½ G is introduced:

½ G (r 1 ) = min
r 2 ; r 3 2 C

r 1 6= r 2 6= r 3 6= r 1

½( r1 ; r 2 ; r 3 ) (2)

where, ½(r 1; r 2; r3 ) is the radius of the unique circle (the circumcircle) which
passes through all of the three points: r 1; r2 and r 3 . Using the notion of the
global curvature, the condition which guaranties smoothness of the knot surface
can be reformulated as follows:

C . the global curvature radius ½ G of the knot axis is nowhere smaller t han
D =2.

A nalysis of the conformations produced by the SO N O algorithm proves t hat
conditions A and B , (and C ) are ful…lled.

3 P a r a me t ricall y t ied t r efoil k no t
T he trefoil knot can be tied on the surface of a torus. See F ig.3Consider t he set
of 3 periodic functions:

x = [R + r cos(2 º 1 ¼ t)] si n(2 º 2 ¼ t) (3)
y = [R + r cos(2 º 1 ¼ t)] cos(2 º 2 ¼ t) (4)
z = r sin(2 º 1 ¼ t) (5)

4

A torus is generated by taking a circle in the yz plane of radius r centred on the y-axis
at distance R+ r from the origin, then rotating it around the z-axis. If we parametrize
the circle by angle θ ∈ [0, 2π] and the rotation by angle φ ∈ [0, 2π] we can express the
torus as: 0@ cosφ −sinφ 0

sinφ cosφ 0
0 0 1

1A0@ 0
R+ rcosθ
rsinθ

1A =

0@ −sinφR+ rcosθ
cosφR+ rcosθ

rsinθ

1A
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4

The parameters r,R control the geometry of the torus: r is the radius of the tube, R is
the radius of the hole. The angles form a coordinate system: any point on the torus can
be labelled by a pair (θ, φ).

The subset of points defined by the equation pθ = qφ for coprime integers p, q winds its

way around the torus and forms a knot, called a (p, q)-torus knot. A (p, q)-torus knot is

equivalent with a (q, p)-torus knot. Since they lie in the surface of a standard torus,

torus knots are some of the simplest knots to describe parametrically.
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Types of knots: Torus knots
Example: Trefoil knot is a (3,2)-torus knot

F igure 3: T he trefoil knot is a torus knot - it can be tied on the surface of a
torus.

As shown by Gonzalez and Maddocks [16], the two conditions can be gat h-
ered into a single one providing that the notion of the globa l curvature radius
½ G is introduced:

½ G (r 1 ) = min
r 2 ; r 3 2 C

r 1 6= r 2 6= r 3 6= r 1

½( r1 ; r 2 ; r 3 ) (2)

where, ½(r 1; r 2; r3 ) is the radius of the unique circle (the circumcircle) which
passes through all of the three points: r 1; r2 and r 3 . Using the notion of the
global curvature, the condition which guaranties smoothness of the knot surface
can be reformulated as follows:

C . the global curvature radius ½ G of the knot axis is nowhere smaller t han
D =2.

A nalysis of the conformations produced by the SO N O algorithm proves t hat
conditions A and B , (and C ) are ful…lled.

3 P a r a me t ricall y t ied t r efoil k no t
T he trefoil knot can be tied on the surface of a torus. See F ig.3Consider t he set
of 3 periodic functions:

x = [R + r cos(2 º 1 ¼ t)] si n(2 º 2 ¼ t) (3)
y = [R + r cos(2 º 1 ¼ t)] cos(2 º 2 ¼ t) (4)
z = r sin(2 º 1 ¼ t) (5)

4

Definition
1. A (p, q)-torus knot is obtained by looping a string through the hole of a torus p times
with q revolutions before joining its ends, where p and q are relatively prime.
2. A (p, q)-torus knot is a curve on the torus, which is specified by winding p times
around the main axis of the torus and q times around the tube of the torus.
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Types of knots: Prime knots

What is the sum of two knots?
Intuition: Two oriented knots (or links) can be summed by placing them
side by side and joining them by straight bars so that orientation is
preserved in the sum.
Remarks:

• The knot sum is also known as composition (Adams 1994) or
connected sum (Rolfsen 1976)

• Given any 2 knots K,J one can form their connected sum denoted
K#J .

• Example: Connected sum of the trefoil and the figure eight knot.
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Types of knots: Prime knots

Definition

A knot is prime if it cannot be decomposed as a connected sum of
nontrivial knots.

Remarks:

• All torus knots are prime knots (Hoste et al. 1998, Burde and
Zieschang 2002). Figure eight knot is a prime knot.

• Schubert proved that any knot can be decomposed uniquely as the
connected sum of prime knots (1974). (he used geometric methods).
This is an analogy to positive integers.

• K(trefoil#unknot) = trefoil.
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Types of knots: Amphicheiral knots

Definition
A knot that is equivalent to its mirror image is called amphicheiral (or achiral).

Examples:

• Trefoil not is not amphicheiral (Jones polynomial distinguishes the trefoil knot
from its mirror image).

• Figure eight knot is amphicheiral .
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Types of knots: Alternating knots

Definition

An alternating knot is a knot which possesses a diagram in which crossings
alternate between under and over crossings. Not all knot diagrams of
alternating knots need to be alternating diagrams.

Remarks:

• Trefoil, figure eight knots are alternating knots;

• All prime knots with 7 or fewer crossings are alternating knots;
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Reidemeister moves and theorem

How can we tell if two diagrams represent the same knot?

• This is the ultimate question in knot theory and there is no algorithm for finding
an answer to it!

• But Kurt Reidemeister made a good start on the problem by proving that 2
diagrams representing the same knot are always related by a sequence of 3 special
moves called the Reidemeister moves (Reidemeister theorem-1926).

• Having this theorem makes it much easier to find invariants on knots based on
diagrams. To check that something is an invariant, we would only need to show
that it does not change under any single Reidemeister move.
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Reidemeister moves and theorem

Definition
A Reidemeister move is one of the 3 ways to change a diagram of a knot that will
change the relation between its crossings.

• First Redemeister move:

↔

• Second Redemeister move:

↔

• Third Redemeister move:

↔
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Reidemeister moves and theorem

Theorem (Reidemeister)

Two links are equivalent iff any diagram of one can be transformed into a diagram of
the other by a sequence of Reidemeister moves.

Remarks:

• Projection of the unknot:

• If two links are equivalent it can be difficult to decide the smallest number of
moves that can be used to transform one diagram into the other. If after some
time one cannot transform one diagram into another, maybe one is not smart
enough! Or it might just happen that the knots are really different.

• In order to show that 2 knots are different we use knot/link invariants!
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Invariants of knots/links

Definition
A link invariant is a function from the set of links to some other set whose value
depends only on the equivalence class of the link. Any representative from the class can
be chosen to calculate the invariant. There is no restriction on the kind of objects in the
target space (i.e. integers, polynomials, matrices or groups).

Some invariants of knots/links:

• numeric invariants: unknotting number, crossing number.

• colorability (and generalization of colorability: mod p labellings).

• polynomial invariants (Alexander, Jones, HOMFLY polynomials).
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Invariants of knots: Crossing number, Unknotting number

Basic facts:

• The crossing number and the unknotting number are the most
natural invariants to study knots.

• They are simple to define, but their computation is difficult and the
most natural questions about them are unanswered.

• The unknotting number remains unknown for many knots!
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Invariants of knots: Crossing number, Unknotting number

Definition
1. The crossing number of a knot K, denoted with c(K) is the least number of
crossings that occur in any diagram of the knot.
2. A knot K has unknotting number n (denoted u(K) = n) if ∃ a diagram of K s.t.
changing n crossings in the diagram turns the knot into the unknot and there is no
other diagram s.t. fewer changes would have turned it into the unknot.

• c(trefoil)=3, u(trefoil)=1.

• c(cinquefoil)=5, u(cinquefoil)=2.
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Invariants of knots: Crossing number, Unknotting number

Open problems

• Behaviour of c(k) under connected sum!?

• Presently, it is conjectured but unproven, that c(K) adds under
connected sum (this was proven for alternating knots only).

• Still we can not rule out the possibility that the connected sum of two
knots can have crossing number less than either factor!

• Behaviour of u(k) under connected sum!?

• Weaker results: the connected sum of two knots with unknotting
number 1 is a knot with unknotting number 2 (Scharlemann).
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Invariants of knots: Colorability

Definition
A diagram of a knot is colorable iff each arc can be drawn using one of the 3 colors s.t.
at each crossing either 3 different colors came together or the same color comes
together and at least 2 of the colors are used.

• Trefoil is colorable.

• Unknot is not colorable. Why?

• We use only one color to draw the unknot ( but we need at least 2).

• Conclusion: the trefoil and the unknot are different knots. Any colorable knot is
nontrivial.
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nontrivial.
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Invariants of knots: Colorability

Remarks:

• Figure eight knot is not colorable! Why?

• There is a crossing for which 2 different colors meet! (impossible,
either 3 or 0 colors can meet at one crossing)

• Colorability is not a complete invariant for knots! Why?

• Figure eight and unknot are not colorable, so colorability cannot be
used to show that figure eight is different from the unknot (and thus
nontrivial).
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Invariants of knots: Colorability

Theorem
If a diagram of a knot is colorable then all of its diagrams are colorable.

Proof: If a Reidemeister move is performed on a colorable diagram then the resulting
diagram is colorable.
1. We stay with one color on both sides.

2. On the right we have three colours, and on the left no crossing.

3. At a move some colors can be changed, but fulfilling the basic rule: at each crossing,
there must be either 1 colour or 3 colours.
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Invariants of knots: Generalization of colorability

What about other types of colouring?

• It is interesting to experiment with more than 3 colours, in the same
way, but it has been found that this does not directly give a knot
invariant. Instead one has to use a more subtle kind of labelling,
which does give new invariants, i.e. mod p labellings, where p is a
prime positive integer.

• That is why one wants to find the number of mod p labelings of a
knot diagram.
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Invariants of knots: Generalization of colorability

How many mod p labelings of a knot diagram are there?

• Finding mod p labelings of a knot diagram can be reduced to solving
a system of linear equations mod p.

• The dimension of the solution space for this system of equations is
called the mod p rank of the knot.

• It is proved that if K has mod p rank n, then the number of the mod
p labelings of the knot diagram is p(pn − 1) (see C. Livingston, Knot
theory for details) .
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Invariants of knots: Polynomial invariants

Introduction:The polynomial invariants are the most successful ways to tell knots apart:

• Alexander Polynomial (1928): it distinguishes all knots of 8 crossings or fewer, but
it does not distinguish a knot from its mirror image (i.e. amphicheiral knots).

• Jones polynomial (1984): it distinguishes all knots of 10 crossings or fewer, a knot
from its mirror image, but it does not distinguish mutant knots.

• HOMFLY polynomial (1985/87): it is a generalization of both Alexander and
Jones polynomials. It is named after its inventors Hoste, Ocneanu, Millet, Freyd,
Lickorish, Yetter (independently also Prztycki and Traczyk discovered the same
polynomial). It does not distinguish mutant knots.

Presently, there is no complete polynomial invariant for knots!
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Invariants of knots: Alexander polynomial

Introduction:Alexander polynomial can be computed in several ways:

• Alexander’s combinatorially method (1928): it uses the diagram of the knots, and
the Reidemeister moves (this method was presented at least 4 times as part of the
work concerning the DK9 project).

• Fox’s method (1963): it uses a representation of the fundamental group of the
complement of the knot. It was also mentioned in Alexander’s original paper in his
”Miscellaneous” section, but Fox’s description is more detailed.

• Conway’s skein relation (1969): it uses skein relation, some special equations that
connect the crossings of different knot diagrams. It was also mentioned in
Alexander’s original paper, but Conway’s presentation is clearer and thus it paved
the discovery for the Jones polynomial 15 years later.
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Invariants of knots: Alexander polynomial (Fox’s method)

Preliminaries

• Fox’s method is based on the study of the properties of the
fundamental groups of the complementary spaces of knots.

• the complementary space of a knot K denoted with R3 \K consists
of all the points of R3 that do not belong to K.

• We remember that K ⊂ R3 is a knot iff there exists a
homeomorphism of the unit circle S1 into R3 whose image is K.

• Problem: How do we define the fundamental group of the knot
complement?
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Invariants of knots: Alexander polynomial (Fox’s method)

The fundamental group of a topological space

Definition
A path in the topological space X is a continuous map p : [0, 1]→ X.
The continuos function f : [0, 1]→ X with the property that f(0) = f(1) is a loop.
f(0) = f(1) is called the base point of the loop.

Definition
Let x ∈ X, and denote with P (X,x) the set of all loops in X with the base point x.
Let f, g ∈ P (X,x). Two loops f, g are homotopic (f ∼homotopic g) iff
∃ H : [0, 1]× [0, 1]→ X continuous (i.e. the family of maps
Ht = H|[0, 1]× {t}, t ∈ [0, 1] is also continuous) s.t.:
1. H0(y) := H(y, 0) = f(y) and H1(y) := H(y, 1) = g(y) ∀y ∈ [0, 1].
2. The base point Ht(0) := H(0, t) = H(1, t) := Ht(1) = x is independent of t.

Remark: The homotopy relation from this definition is an equivalent relation.
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Invariants of knots: Alexander polynomial (Fox’s method)

The fundamental group of a topological space (next)

• Notation: We denote with π(X,x) = P (X,x)/∼homotopy the collection of all
equivalence classes of loops in the topological space X with the base point x.

• Remark: If on π(X,x) we define the following operations:

• Inverse: i : π(X,x)→ π(X,x)
s :∈ π(X,x)→ i(s)(t) := s−1(t) = s(1− t) ∈ π(X,x).

• Multiplication: m : π(X,x)2 → π(X,x)
(s1, s2) ∈ π(X,x)2 → m(s1, s2) := s1 ◦ s2 = s3 ∈ π(X,x), where

s3(t) =


s1(2 · t), t ∈ [0,

1
2
]

s2(2 · t− 1), t ∈ [
1
2
, 1]

then (π(X,x),m, i) := (π(X,x), ◦, −1) is a group called the fundamental group
of the topological space X relative to the base point x.
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Invariants of knots: Alexander polynomial (Fox’s method)

The fundamental group of a connected topological space

Definition
A topological space X is connected iff any two of its points can be joined by a path
lying in X.

Remark: R3 is a connected topological space.

Theorem
If X is a connected topological space with x, y ∈ X then π(X,x) ∼isomorphic π(X, y) (i.e.
in a connected topological space X the fundamental group of X is independent on the
base point).
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Invariants of knots: Alexander polynomial (Fox’s method)

The knot group

• The fundamental group of a knot K ⊂ R3 for some choice of basepoint x ∈ K
denoted with π(K,x) is isomorphic to Z. This group is not so interesting to study
due to Dehn’s lemma, proved by Papakyriakopoulos (1957).

• The fundamental group of the complement of the knot K denoted with
π(R3 \K,x) is more interesting to study. Since R3 \K is a connected topological
space, we use simply the notation π(R3 \K) for the fundamental group of the
complement of the knot because π(R3 \K) is independent of the base point.

• The fundamental group of the complement of the knot K denoted with

π(R3 \K) := G(K) is simply called the knot group of K.

• Dehn’s lemma: If a knot group is isomorphic to the group of integers
then the knot is trivial (unknot).
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of a group

• What is the free group?

Let S = |n| be a set of cardinality n. Then any a ∈ S is called a letter of S, any

an with a ∈ S, n ∈ Z is called a syllable, and a finite ordered sequence of syllables

such as b−3a0a1c2c2a0c1 is called a word. The unique word 1 is called the empty

word. We denote with W (S) the set of all words formed on S. On W (S) we

define the operations:

• the product of 2 words formed by writing one word after the other;
• the elementary expansions and contractions: If w1, w2 ∈W (S) then:
u = w1a

0w2 ⇔ v = w1w2

u = w1a
paqw2 ⇔ v = w1a

p+qw2

• If u, v ∈W (S) then u ∼ v iff one can be obtained from the other by a finite
sequence of elementary expansions and contractions.
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of a group (next)

• We denote F (S) = W (S)/∼ the set of equivalence classes of words. On F (S) we

define the operations:

• multiplication: [u][v] = [uv] (inherited from W (S));
• inverse: [u]−1 the word obtained from u by reversing the order of its syllables

and changing the sign of each exponent.
• (F (S), ·, −1) is a group, called the free group on the set S.

• Intuition for the significance of the free group: a free group on a set S denoted
F (S) is a group in which each element can be uniquely described as a finite length
product of the form sa11 · s

a2
2 · ... · san

n , where si are distinct elements of S and
ai ∈ Z∗, ∀i ∈ {1, ..., n}. The set S is called the set of generators.

• Theorem: Any group is the homomorphic image of some free group.
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of a group (next)

• Informally , for the presentation of a group one specifies a set S of generators of G
s.t. every element of the group can be written as a product of some of these
generators, and a set R of relations among those generators. We say G has a
presentation G = 〈S | R〉.

• Formally , a group G has the presentation G = 〈S | R〉 if it is isomorphic to the

quotient of the free group F (S) by the normal subgroup N of F (S) generated by

the relations R.

• G = 〈S | R〉 ∼isomorphic F (S)/N
• To form G = 〈S | R〉 the idea is to take the smallest quotient of F (S) s.t.

each element of R gets identified with the identity element. R may not be a
subgroup (normal subgroup), so we cannot take a quotient by R. We take N
the normal closure of R in F (S), i.e. the smallest normal subgroup in F (S)
which contains R.
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of a knot group

• A presentation of a knot group G(K) (i.e. the fundamental group of the knot
complement G(K) := π(R3 \K)) is the Wirtinger presentation. A proof that this
presentation describe G(K) is found in Dale Rolfsen, ”Knots and links”. The
proof uses the van Kampen theorem. We now describe the Wirtinger presentation
of G(K).

• G(K) and operations on G(K) (in the Wirtinger presentation)

• an element of G(K) is represented by a loop which begins at some fixed base
point x0 6∈ K, winds through the space around K and returns to x0.

• the composition operation in G(K) corresponds to the concatenation of
loops;

• the identity element is represented by a path that never leaves x0, or by a
loop at x0 which never gets tangled up with any part of K s.t. it can be
shrunk back to x0 without getting caught anywhere;

• the inverse of the group element represented by a loop σ is represented by
the same path traced in the opposite direction.
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of a knot group (next)

• G(K) and operations on G(K) (in the Wirtinger presentation)

• Three loops in the complement of a figure-eight knot:

• If loop σ1 represents the group element g, then σ2 represents g2, σ3

represents the identity.
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of a knot group (next)
Given an oriented diagram of K, we have a ”recipe” to write down a
group presentation for G(K) = 〈S | R〉
• How do we get the generators S ?

• we consider x0 somewhere off to the side of the diagram. For each arc i in
the diagram, we write down a group element gi, represented by a loop which
begins at x0, crosses under arc i from right to left and then crosses over arc i
and returns to x0 without getting tangled up anywhere else in the knot.

• all the elements gi generate G(K) with gi ∈ S: ∀x0-based loop through the
space around K can be deformed into a sequence of loops each of which
leaves x0, circles one arc of K and returns to x0.
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of a knot group (next)

• How do we get the generators S ?

• The generators of the knot group of the trefoil knot are:

• S = {g1, g2, g3}
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of a knot group (next)

• How do we get the relations R ?
• for each crossing in the diagram, we have a relation among the generators
gi ∈ S. At the following type of crossing:

the loop which passes under all the 3 arcs and circles the crossing once
represents the group element gigkg

−1
i g−1

j since it can be deformed into 4
loops representing these generators. Since this loop can be pulled clear of K,
it is the identity element, so we get gigkg

−1
i g−1

j = 1.
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Invariants of knots: Alexander polynomial (Fox’s method)

Presentation of the knot group of the trefoil knot (example)
G = 〈S | R〉 =?

• S =?

• S = {g1, g2, g3}

• R =?

• R = {g2g1g−1
2 g−1

3 = 1, g3g2g−1
3 g−1

1 = 1, g1g3g−1
1 g−1

2 = 1}
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Invariants of knots: Alexander polynomial (Fox’s method)

The knot polynomials The existence and the uniqueness of the knot polynomials depend
on the abelianized group of a knot group.

• ∀g, h ∈ G group, the commutator of g, h is [g, h] = g−1h−1gh. The commutator
group [G,G] is the subgroup of G generated by all commutators, and [G,G] is a
normal subgroup of G. The quotient G/[G,G] is an abelian group, called
abelianization of G.

Definition
Let F (〈x1, ..., xn〉) be the free group of the generators 〈x1, ..., xn〉 and Z[F ] the group
ring of F . We define the free derivative for every generator xi from 〈x1, ..., xn〉 as

follows: Di : F (〈x1, ..., xn〉)→ Z[F ], Di :=
∂

∂xi
with the properties:

∂

∂xi
1 = 0,

∂xj
∂xi

= δij =


1, i = j
0, i 6= j

,
∂x−1

j

∂xi
= −δijx−1

j ,

and for any word w = uxj ∈ F (〈x1, ..., xn〉):
∂

∂xi
uxj =

∂

∂xi
u+ u

∂xj
∂xi

.
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Invariants of knots: Alexander polynomial (Fox’s method)

The knot polynomials

• Let F (S) be the free group on S = 〈x1, ..., xn〉,
G(K) = (〈x1, ..., xn〉 | 〈r1, ..., rn〉) a knot group presentation. Let
φ : F (S)→ G,φ(s) = s a group homomorphism (any group is a homomorphic
image of some free group). Then φ : Z[F ]→ Z[G] is a ring homomorphism.

• Let ψ : G→ G
′

group homomorphism with G
′

= ψ(G) abelian group (i.e. ψ is

the abelianization of G). Based on the theorem below, ψ(G) is an infinite cyclic

group generated by one element let’s choose it to be t and so

ψ : Z[G]→ Z[G
′
] = Z[t, t−1], xi

ψ→ t ring homomorphism.

• Theorem: The abelianized group of every knot group is infinite cyclic (The
generators of a presentation are all mapped into the same generator).

• Theorem: The group ring of an infinite cyclic group is a gcd domain.

• Definition: Let G be an infinite cyclic group. Then to any knot group presentation
G(K) = (〈x1, ..., xn〉 | 〈r1, ..., rm〉) we associate a Jacobian matrix of dimension

m× n called the Alexander matrix of G(K) whose ijth entry is ψφ(
∂ri
∂xj

) with

i ∈ [1, ...,m], j ∈ {1, ..., n}.
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Invariants of knots: Alexander polynomial (Fox’s method)

The knot polynomials

• Definition: For any integer k ≥ 0, the kth knot polynomial ∆k of a finite
presentation G(K) = (〈x1, ..., xn〉|〈r1, ..., rm〉) of a knot group is the gcd of the
determinants of all (n− k)× (n− k) submatrices of the Alexander matrix of
G(K) where ∆k = 0, if n− k > m and ∆k = 1, if n− k ≤ 0.

• Definition: Let A ∈Mm×n(R) be the Alexander matrix of the knot group
presentation G(K) = (S|R). Then ∀k ∈ Z+ the kth elementary ideal Ek(A) of A
is the ideal generated by the determinants of all (n− k)× (n− k) submatrices of
A if 0 < n− k ≤ m and Ek(A) = 0, n− k > m,Ek(A) = R,n− k ≥ 0.

• Theorem: The 1st elementary ideal of a knot group is an invariant for the knot
and does not depend on the presentation of the knot group.

• Theorem: The 1st elementary ideal of a knot group is a principal ideal generated
by the 1st knot polynomial ∆1(t) = ∆(t) called the Alexander polynomial. It
follows that the determinant of any one of the (n− 1)× (n− 1) submatrices of A
may be taken to be ∆.
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Invariants of knots: Alexander polynomial (Fox’s method)
The Alexander knot polynomial of the trefoil knot (example)

• A presentation of the knot group of the trefoil knot is:

G = (S | R) = ({g1, g2, g3} | {g2g1g−1
2 g−1

3 = 1, g3g2g
−1
3 g−1

1 = 1, g1g3g
−1
1 g−1

2 = 1})

• The Alexander matrix is the Jacobian J =
n

(aij) = ψφ
` ∂ri
∂gj

´
|i, j ∈ {1, 2, 3}

o
with φ : Z[F ]→ Z[G], φ(s) = s, and
ψ : Z[G]→ Z[t, t−1], ψ(gi) = t, i ∈ {1, 2, 3}.
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Invariants of knots: Alexander polynomial (Fox’s method)

The Alexander knot polynomial of the trefoil knot (example)

• G = ({g1, g2, g3}|{r1 := g2g1g
−1
2 g−1

3 = 1, r2 := g3g2g
−1
3 g−1

1 = 1, r3 :=
g1g3g

−1
1 g−1

2 = 1})

• J =

0BBBBBBBBBBB@

g1 g2 g3
∂r1
gi

ψ(g2) ψ(1− g2g1g−1
2 ) ψ(−g2g1g−1

2 g−1
3 )

∂r2
gi

ψ(−g3g2g−1
3 g−1

1 ) ψ(g3) ψ(1− g3g2g−1
3 )

∂r3
gi

ψ(1− g1g3g−1
1 ) ψ(−g1g3g−1

1 g−1
2 ) ψ(g1)

1CCCCCCCCCCCA
• J =

0@ t 1− t −1
−1 t 1− t

1− t −1 t

1A
• The 2× 2 minors generate the elementary ideal 〈t2 − t+ 1〉, which is a principal

ideal generated by the Alexander polynomial ∆K(t) = t2 − t+ 1.
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Invariants of knots: Alexander polynomial (Conway’s
method)

J. Conway (1969) became famous for discovering a polynomial which satisfy a skein
relation. Unfortunately, it turned out that he had rediscovered the Alexander
polynomial, plus Alexander himself mentioned the same method in his original paper.
Still, Conway’s paper prepared the discovery of the Jones polynomial 15 years later.

Definition
A skein relation is an equation that relates the polynomial of a link to the polynomials of
links obtained by changing the crossings in a diagram of the original link.
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Invariants of knots: Alexander polynomial (Conway’s
method)
Conway showed that the Alexander polynomial can be computed using just three rules
(axioms).

• Rule 1: To each oriented knot/link there is associated a polynomial ∆(K) ∈ Z[z].

Equivalent knots/links receive identical polynomials: K ∼ K
′
⇒ ∆(K) = ∆(K

′
).

• Rule 2:
6 RAQUEL LOPEZ

Rule 2:

This rule is the usual one, namely that the trivial knot has a polyno-
mial equal to 1. This holds true for any projection of the trivial knot,
not just the usual one.
Rule 3:

∆(L+) = ∆(L−)− z∆(L0)

This is the skein relation. We take three projections of links L+,
L−, and L0 such that they are identical except in the region depicted
below.

These rules are enough to ensure that the Alexander polynomial is
an invariant for knots and links [A]. Given a particular projection, we
could choose a crossing such that it is one of the crossings that we would
like to change in order to turn the projection into a trivial projection.
This process of repeatedly choosing a crossing, and then applying the
skein relation to obtain two simpler links, yields a tree of links called
the resolving tree. Note that the Conway polynomial is a polynomial
in z, where z = (t1/2 − t−1/2).

Example: Compute the Conway polynomial of the trefoil knot, using
the rules above starting with a resolving tree.

We start by letting the original projection correspond to L+, so using
the skein relation equation, ∆(L+) = ∆(L−) − z∆(L0) the resolving
tree is below.
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pq + qr + qr = (1)(2) + (1)(1) + (2)(1) = 5 Trees (see below)

Since the number of maximal trees is five, that is also the deter-
minant. This agrees with the calculation made using the Alexander
polynomial ∆K(t).

4. The Conway Polynomial

As we saw above, the very first polynomial for knots was the Alexan-
der polynomial, invented back in 1928. It is a polynomial for oriented
links, and we described it in terms of a variable t. At the time of
its invention, it was defined in terms of relatively abstract mathemat-
ical concepts. It wasn’t until 1969, that John Conway found a way to
calculate the Alexander polynomial of a link using a so-called skein re-
lation, which is an equation that relates the polynomial of a link to the
polynomial of links obtained by changing the crossings in a projection
of the original link. Conway showed that the Alexander polynomial
∆K(t) can be computed using just three rules.
Rule 1:

This rule says that the polynomial of the unlink is equal to 0.• Rule 3: Suppose that 3 knots/links differ at the arcs of one crossing as show below:

6 RAQUEL LOPEZ

Rule 2:

This rule is the usual one, namely that the trivial knot has a polyno-
mial equal to 1. This holds true for any projection of the trivial knot,
not just the usual one.
Rule 3:

∆(L+) = ∆(L−)− z∆(L0)

This is the skein relation. We take three projections of links L+,
L−, and L0 such that they are identical except in the region depicted
below.

These rules are enough to ensure that the Alexander polynomial is
an invariant for knots and links [A]. Given a particular projection, we
could choose a crossing such that it is one of the crossings that we would
like to change in order to turn the projection into a trivial projection.
This process of repeatedly choosing a crossing, and then applying the
skein relation to obtain two simpler links, yields a tree of links called
the resolving tree. Note that the Conway polynomial is a polynomial
in z, where z = (t1/2 − t−1/2).

Example: Compute the Conway polynomial of the trefoil knot, using
the rules above starting with a resolving tree.

We start by letting the original projection correspond to L+, so using
the skein relation equation, ∆(L+) = ∆(L−) − z∆(L0) the resolving
tree is below.

then
∆(L+) = ∆(L−)− z∆(L0)(skein relation.)
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Invariants of knots: Alexander polynomial (Conway’s
method)

• It can be proven that these rules are enough to ensure that the Alexander
polynomial is an invariant for knots and links (Conway’s achievement). A
thoroughly description of the proof can be found in Kauffman’s paper ”On knots”.

• Given a diagram, we choose a crossing point to be the crossing point we change in
order to turn the projection into the trivial projection. This process of repeatedly
choosing a crossing, and then applying the skein relation to obtain 2 simpler links
yields a tree of links called the resolving tree. Conway polynomial is a polynomial
in z, where z = t1/2 − t−1/2.
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Invariants of knots: Alexander polynomial (Conway’s
method)

Resolving tree of the trefoil: use recursively the skein relation
∆(L+) = ∆(L−)− z∆(L0)

THE ALEXANDER POLYNOMIAL, COLORING, AND DETERMINANTS OF KNOTS7

So the trefoil Conway polynomial is

5. The Alexander polynomial for Non-alternating Knots

We want to investigate whether or not the skein relation allows us to
calculate the Alexander polynomial for non-alternating pretzel knots.
It was always clear that the application of the skein relation to a cross-
ing would eventually lead to a set of trivial links, for which we could
calculate the polynomials. In the case of non-alternating pretzel knots,
it is less clear, but is also possible.

We began by creating a table of Conway polynomials (see below) for
(2, n) torus knots and links. When the number of crossings n is odd,
we get a knot, while an even number of crossings gives a link of two
components. For knots, the choice of orientation will not change the
answer. For links orientation is very important. We will limit ourselves
to torus knots up to 5 crossings.
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Invariants of knots: Alexander polynomial (Conway’s
method)

The Conway polynomial for the trefoil knot using recursively the skein relation
∆(L+) = ∆(L−)− z∆(L0):

THE ALEXANDER POLYNOMIAL, COLORING, AND DETERMINANTS OF KNOTS7

So the trefoil Conway polynomial is

5. The Alexander polynomial for Non-alternating Knots

We want to investigate whether or not the skein relation allows us to
calculate the Alexander polynomial for non-alternating pretzel knots.
It was always clear that the application of the skein relation to a cross-
ing would eventually lead to a set of trivial links, for which we could
calculate the polynomials. In the case of non-alternating pretzel knots,
it is less clear, but is also possible.

We began by creating a table of Conway polynomials (see below) for
(2, n) torus knots and links. When the number of crossings n is odd,
we get a knot, while an even number of crossings gives a link of two
components. For knots, the choice of orientation will not change the
answer. For links orientation is very important. We will limit ourselves
to torus knots up to 5 crossings.

Replacing z = t1/2 − t−1/2 we get ∆trefoil(t) = t2 − t+ 1.
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Invariants of knots: Jones polynomial

The Jones polynomial computed using the following rules is an invariant for knots:

• Rule 1: Vunknot(t) = 1

• Rule 2: Suppose that 3 knots/links differ at the arcs of one crossing as show below:

6 RAQUEL LOPEZ

Rule 2:

This rule is the usual one, namely that the trivial knot has a polyno-
mial equal to 1. This holds true for any projection of the trivial knot,
not just the usual one.
Rule 3:

∆(L+) = ∆(L−)− z∆(L0)

This is the skein relation. We take three projections of links L+,
L−, and L0 such that they are identical except in the region depicted
below.

These rules are enough to ensure that the Alexander polynomial is
an invariant for knots and links [A]. Given a particular projection, we
could choose a crossing such that it is one of the crossings that we would
like to change in order to turn the projection into a trivial projection.
This process of repeatedly choosing a crossing, and then applying the
skein relation to obtain two simpler links, yields a tree of links called
the resolving tree. Note that the Conway polynomial is a polynomial
in z, where z = (t1/2 − t−1/2).

Example: Compute the Conway polynomial of the trefoil knot, using
the rules above starting with a resolving tree.

We start by letting the original projection correspond to L+, so using
the skein relation equation, ∆(L+) = ∆(L−) − z∆(L0) the resolving
tree is below.

then:
t−1 ∗ V (L+)− t ∗ V (L−)− (t1/2 − t−1/2) ∗ V (L0) = 0

Example: Vtrefoil(t) = −t4 + t3 + t
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Invariants of knots: HOMFLY polynomial

The HOMFLY polynomial computed with the following rules is an invariant for knots:

• Rule 1: Punknot(l,m) = 1

• Rule 2: Suppose that 3 knots/links differ at the arcs of one crossing as show below:

6 RAQUEL LOPEZ

Rule 2:

This rule is the usual one, namely that the trivial knot has a polyno-
mial equal to 1. This holds true for any projection of the trivial knot,
not just the usual one.
Rule 3:

∆(L+) = ∆(L−)− z∆(L0)

This is the skein relation. We take three projections of links L+,
L−, and L0 such that they are identical except in the region depicted
below.

These rules are enough to ensure that the Alexander polynomial is
an invariant for knots and links [A]. Given a particular projection, we
could choose a crossing such that it is one of the crossings that we would
like to change in order to turn the projection into a trivial projection.
This process of repeatedly choosing a crossing, and then applying the
skein relation to obtain two simpler links, yields a tree of links called
the resolving tree. Note that the Conway polynomial is a polynomial
in z, where z = (t1/2 − t−1/2).

Example: Compute the Conway polynomial of the trefoil knot, using
the rules above starting with a resolving tree.

We start by letting the original projection correspond to L+, so using
the skein relation equation, ∆(L+) = ∆(L−) − z∆(L0) the resolving
tree is below.

then:
l ∗ P (L+) + l−1 ∗ P (L−) +m ∗ P (L0) = 0

• The HOMFLY polynomial is a two-variable Laurent polynomial, the variables being
l and m, i.e. P (L+) ∈ [Z]l±1,m±1.

• Substitution for Alexander polynomial: l = i, m = i ∗ (t1/2 − t−1/2)

• Substitution for Jones polynomial: l = i ∗ t−1, m = i ∗ (t−1/2 − t1/2)
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Tabulation of knots

Type Achievements Purpose
classification complete

table only
up to prime
knots with 13
crossings

complete knot table

knot invariants distinguish
certain types
of knots

complete set of knot invariants

Remark: Some knot tables are made up using Dowker notation, which was
not presented in this lecture.
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Modern aspects of knot theory

• At present, knot theory is still a dynamic branch of topology. It has
concrete applications in the study of enzymes acting on DNA strands.

• DNA is tangled up in knots. DNA are long, thin molecules found
inside the nucleus of a cell. Imagine the nucleus as a basketball, and
inside it a thin fishing line with 200 km, packed inside, which is the
DNA.

• DNA must be topologically manipulated in order for vital process to
take place. DNA must first unpack itself so that it can interact with
enzymes. By thinking of DNA as a knot, we can use knot theory to
estimate how hard DNA is to unknot.

78 / 81



1 Motivation

2 Fundamentals of Knot Theory
Knots and equivalence of knots
Diagrams of knots
Types of knots

3 Advanced topics in knot theory
Reidemeister moves and theorem
Invariants of knots/links
Tabulation of knots

4 Modern aspects of knot theory

5 Conclusion

79 / 81



Conclusion

• we tried to present and formalize some of the notions and results of
knot theory (a lot of aspects were still not presented such as braids,
or rational tangles).

• knot theory is a dynamic area of topology, with a lot of open
problems, which represent a challenge for mathematicians.
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Thank you for your attention.
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