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Why hybrid symbolic-numeric methods?

In general, in polynomial algebra one is interested in solving problems whose input are
polynomials with complex coefficients, i.e. the coefficients are only imperfectly known
(i.e floating point numbers).

Example: Given p(x) = x2 + 1.99x+ 1.00, q(x) = x+ 1.00 and a tolerance δ = 0.01,
compute the greatest common divisor of p, q, i.e. gcd(p, q)! The tolerance δ = 0.01
means that the third and subsequent decimals of the coefficients are unknown!

In particular, we1 address a similar problem in polynomial algebra!

1Mădălina Hodorog, Bernard Mourrain, Josef Schicho
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Why hybrid symbolic-numeric methods?

Example: Given f(x) = x2 − y3 − 0.01 ∈ C[x, y] squarefree, C = {(x, y ∈ C2|f(x, y) =
0)} plane complex algebraic curve and a tolerance δ = 0.01,
compute a set of δ-invariants of C (i.e. genus, etc) and its singularities (i.e. algebraic
link, Alexander polynomial, etc).

We developed1 several symbolic-numeric algorithms for computing all these δ-invariants.
We presented them also in january at the Research Seminar in Rastenfeld.

1Mădălina Hodorog, Bernard Mourrain, Josef Schicho
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Example: Given f(x) = x2 − y3 − 0.01 ∈ C[x, y] squarefree, C = {(x, y ∈ C2|f(x, y) =
0)} plane complex algebraic curve and a tolerance δ = 0.01,
compute a set of δ-invariants of C (i.e. genus, etc) and its singularities (i.e. algebraic
link, Alexander polynomial, etc).

We implemented1 the algorithms in our library GENOM3CK using Axel.
Support: http://people.ricam.oeaw.ac.at/m.hodorog/software.html


 M. Hodorog, B. Mourrain, J. Schicho. GENOM3CK - A library for GENus
cOMputation of plane Complex algebraiC Curves using Knot theory. International
Symposium on Symbolic and Algebraic Computation. Münich, Germany, 2010.

1Mădălina Hodorog, Bernard Mourrain, Josef Schicho
4 / 29

http://people.ricam.oeaw.ac.at/m.hodorog/software.html


Why hybrid symbolic-numeric methods?

Example: Given f(x) = x2 − y3 − 0.01 ∈ C[x, y] squarefree, C = {(x, y ∈ C2|f(x, y) =
0)} plane complex algebraic curve and a tolerance δ = 0.01,
compute a set of δ-invariants of C (i.e. genus, etc) and its singularities (i.e. algebraic
link, Alexander polynomial, etc).

Question: What does our algorithm really computes? What can we certify about the
computed output? What do we mean by δ-invariants?
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0)} plane complex algebraic curve and a tolerance δ = 0.01,
compute a set of δ-invariants of C (i.e. genus, etc) and its singularities (i.e. algebraic
link, Alexander polynomial, etc).

Question: What does our algorithm really computes? What can we certify about the
computed output? What do we mean by δ-invariants?
Answer: In order to provide our solution to these problems, we study different
approaches for hybrid symbolic-numeric methods!
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What are hybrid symbolic-numeric methods?

We use the name ”hybrid symbolic-numeric methods” as in the book
”Computer Algebra Handbook” (Editors: J. Grabmeier, E. Kaltofen,
V. Weispfenning).

The objects of study are polynomials with both:


 exact coefficients, i.e. integer and rational numbers: 1,−2,
1
2

.


 and inexact coefficients, i.e. numerical values. For 1.001 we associate a
tolerance of 10−3, i.e. the last digit is uncertain.
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What are hybrid symbolic-numeric methods?
Numerical/approximate polynomial algebra

Basic Notions
symbolic-numeric methods
approximate polynomials

ill-posed problems

7 / 29



What are hybrid symbolic-numeric methods?
Numerical/approximate polynomial algebra

Basic Notions
symbolic-numeric methods
approximate polynomials

ill-posed problems

Intuition. A symbolic-numeric method is similar to what Knuth calls a seminu-
merical algorithm, one that lies ”on the borderline between numeric and symbolic
computation.”
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What are hybrid symbolic-numeric methods?
Numerical/approximate polynomial algebra

Basic Notions
symbolic-numeric methods
approximate polynomials

ill-posed problems

Remark. Consider R[x](C[x]) with the metric given by the euclidean norm || · ||.
Given f ∈ R[x] and δ ∈ R+, define an δ-neighborhood of f as:

Nf,δ = {g ∈ R[x] : ||f − g|| ≤ δ}.
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What are hybrid symbolic-numeric methods?
Numerical/approximate polynomial algebra

Basic Notions
symbolic-numeric methods
approximate polynomials

ill-posed problems

Definition. An ill-posed problem is a problem which does not fulfill Hadamard’s
definition of well-posedness:

For all data, a solution exists.

For all data, the solution is unique.

The solution depends continously on the data (∗).
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What are hybrid symbolic-numeric methods?
Numerical/approximate polynomial algebra

Basic Notions
symbolic-numeric methods
approximate polynomials

ill-posed problems

Example 1 (ill-posed problem which does not fulfill (∗)).

For f(x) = x4 − 1, g(x) = x2 + x− 2, get gcd(f, g) = x− 1.

For f̃(x) = x4 − 1− 0.0001, g̃(x) = x2 + x− 2− 0.0001, get gcd(f̃ , g̃) = 1.
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What are hybrid symbolic-numeric methods?
Numerical/approximate polynomial algebra

Basic Notions
symbolic-numeric methods
approximate polynomials

ill-posed problems

Example 2 (ill-posed problem which does not fulfill (∗)).
Let s = (0, 0) singularity of C = {(x, y) ∈ R2| − x3 − xy + y2 = 0}, and
D = {(x, y) ∈ R2| − x3 − xy + y2 − 0.01 = 0}!
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Z. Zeng’s approach

We distinguish between the theoretical part and the practical part.
Theoretical part. Principles.

the set of problem instances with certain solution structure forms a
pejorative manifold.

I For P : D → S, we partition the set of input data D in pejorative
manifolds Mi depending on the structure of the solution. Mi form a
stratification structure for D!

I Tiny arbitrary perturbation pushes a problem instance away from its
residing manifold, losing the structure of the solution.
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Z. Zeng’s approach

Theoretical part. Example.

Let E : C[x]× C[x]→ C[x] an exact algorithm which
Given (f, g) assigns E(f, g) := gcd(f, g)!
This problem is ill-posed!
The stratification structure of C[x]× C[x] consists of:


Pm,nk = {(f, g) ∈ C2[x] : deg(f) = m ≥ deg(g) = n, deg(gcd(f, g)) = k}

codim Pm,nk = k ∈ Z+

Pm,nn ⊂ Pm,nn−1 ⊂ . . . ⊂ P
m,n
0

. (1)

(f, g) ∈ Pm,nk : f = uv, g = uw, gcd(f, g) = u, deg(u) = k, lc(u) = 1.
Each Pm,nk is parametrized as F (u, v,w) = z, where u, v,w, respectively z
coefficients vectors of u, v, w, respectively f, g.
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Z. Zeng’s approach

Theoretical part. Example.

E : C2[x]→ C[x] exact algorithm s.t. (f, g) 7→ E(f, g) := gcd(f, g).

f(x) = x4 − 1, g(x) = x2 + x− 2, gcd(f, g) = x− 1

f̃(x) = x4 − 1.0001, g̃(x) = x2 + x− 2.0001, δ = 10−4, gcd(f̃ , g̃) = 1.

C2[x] has the stratification structure: P4,2
2 ⊂ P4,2

1 ⊂ P4,2
0 , where

P4,2
i = {(f, g) : deg(f) = 4, deg(g) = 2, deg(gcd(f, g)) = i}, i = 0, 1, 2.

gcd(f, g) = x− 1 ∈ P4,2
1 , gcd(f̃ , g̃) = 1 ∈ P4,2

0 .

Problem: Given f̃ , g̃, δ and not knowing f, g, identify P4,2
1 !

Answer (Z. Zeng): P4,2
1 is the highest codimension manifold among all

manifolds that intersect the δ-neighborhood of f̃ , g̃!
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Z. Zeng’s approach

Theoretical part. Principles.
Consider P̃ a perturbation from an exact problem P with sufficiently small error
δ. Formulate an approximate solution to P̃ using the 3-strikes principle:

The approximate solution of P̃ is the exact solution of a problem P̂ within δ.

P̂ is on the highest codimension manifold Π intersecting the NP̃ ,δ.

P̂ is the nearest problem to P̃ on Π.

Remark: This approximate solution satisfy the property: as the error δ approaches

0 the approximate solution converges to the exact solution.

13 / 29



Z. Zeng’s approach

Practical part. A 2-stage approach may help to solve an ill-posed problem:

Stage 1: maximizing the codimension of the manifolds.
(i.e. determine the structure of the solution).
Computation tools: matrix building.

Stage 2: minimizing the distance to the manifold.
Computation tools: nonlinear least-squares, Gauss-Newton iteration.
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Z. Zeng’s approach

Practical part. Example.
Given (f̃ , g̃, δ) ∈ C2[x]×R+, m = deg(f) ≥ n = deg(g) compute the gcd(f̃ , g̃)!

Stage 1: Compute the degree of gcd(f̃ , g̃)!

Stage 2: Compute the coefficients of gcd(f̃ , g̃)!
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Z. Zeng’s approach

Practical part. Example.
Stage 1. Compute the degree of gcd(f̃ , g̃)! by using a low rank

approximation of the Sylvester matrix of (f̃ , g̃), i.e. S := S(f̃ , g̃)!

Theorem 1: deg(gcd(f̃ , g̃)) = m+ n− rank(S(f̃ , g̃)).

How to compute rank(S(f̃ , g̃)) in the presence of data perturbations?

Intuition: If S is rank deficient, then small perturbations of the matrix values
can yield a matrix of full rank! We approximate S by a low rank matrix S̃,
by Singular Value Decomposition (SVD) of S.

Theorem 2: Let A ∈Mm×n(C) with m ≥ n. Then there exists
U ∈Mm×m, V ∈Mn×n orthogonal, and a unique Σ(A) ∈Mm×n with
Σ(A) = diag(σ1 ≥ ... ≥ σr) s.t. A = UΣV t.

Remark: rank(A) = r and r ≤ min(m,n) = n.

16 / 29



Z. Zeng’s approach

Practical part. Example.
Stage 1. Compute the degree of gcd(f̃ , g̃)! by using a low rank

approximation of the Sylvester matrix of (f̃ , g̃), i.e. S := S(f̃ , g̃)!

Theorem 1: deg(gcd(f̃ , g̃)) = m+ n− rank(S(f̃ , g̃)).

How to compute rank(S(f̃ , g̃)) in the presence of data perturbations?

Intuition: If S is rank deficient, then small perturbations of the matrix values
can yield a matrix of full rank! We approximate S by a low rank matrix S̃,
by Singular Value Decomposition (SVD) of S.

Theorem 2: Let A ∈Mm×n(C) with m ≥ n. Then there exists
U ∈Mm×m, V ∈Mn×n orthogonal, and a unique Σ(A) ∈Mm×n with
Σ(A) = diag(σ1 ≥ ... ≥ σr) s.t. A = UΣV t.

Remark: rank(A) = r and r ≤ min(m,n) = n.

16 / 29



Z. Zeng’s approach

Practical part. Example.
Stage 1. Compute the degree of gcd(f̃ , g̃)! by using a low rank

approximation of the Sylvester matrix of (f̃ , g̃), i.e. S := S(f̃ , g̃)!

Theorem 1: deg(gcd(f̃ , g̃)) = m+ n− rank(S(f̃ , g̃)).

How to compute rank(S(f̃ , g̃)) in the presence of data perturbations?

Intuition: If S is rank deficient, then small perturbations of the matrix values
can yield a matrix of full rank! We approximate S by a low rank matrix S̃,
by Singular Value Decomposition (SVD) of S.

Theorem 2: Let A ∈Mm×n(C) with m ≥ n. Then there exists
U ∈Mm×m, V ∈Mn×n orthogonal, and a unique Σ(A) ∈Mm×n with
Σ(A) = diag(σ1 ≥ ... ≥ σr) s.t. A = UΣV t.

Remark: rank(A) = r and r ≤ min(m,n) = n.

16 / 29



Z. Zeng’s approach

Practical part. Example.
Stage 1. Compute the degree of gcd(f̃ , g̃)! by using a low rank

approximation of the Sylvester matrix of (f̃ , g̃), i.e. S := S(f̃ , g̃)!

Theorem 1: deg(gcd(f̃ , g̃)) = m+ n− rank(S(f̃ , g̃)).

How to compute rank(S(f̃ , g̃)) in the presence of data perturbations?

Intuition: If S is rank deficient, then small perturbations of the matrix values
can yield a matrix of full rank! We approximate S by a low rank matrix S̃,
by Singular Value Decomposition (SVD) of S.

Theorem 2: Let A ∈Mm×n(C) with m ≥ n. Then there exists
U ∈Mm×m, V ∈Mn×n orthogonal, and a unique Σ(A) ∈Mm×n with
Σ(A) = diag(σ1 ≥ ... ≥ σr) s.t. A = UΣV t.

Remark: rank(A) = r and r ≤ min(m,n) = n.

16 / 29



Z. Zeng’s approach

Practical part. Example.
Stage 1. Compute the degree of gcd(f̃ , g̃)!

Theorem 3: Let S ∈Mm×n with Σ(S) = diag(σ1, σ2, ..., σn) as in
Theorem 2. Assume σ1 ≥ σ2 ≥ ... ≥ σk > θ ≥ σk+1 ≥ ... ≥ σn for
θ ∈ R+. Then there exists S̃, with Σ(S̃) = diag(σ1, σ2, ..., σk), i.e.
rank(S̃) = k and

min
rank(B)=k

||S −B|| = ||S − S̃|| ≤ θ.

Remark: By dropping insignificant singular values of S (i.e. all
σi ≤ θ) we obtain S̃ with rank(S̃) < rank(S) and ||S − S̃|| ≤ θ!
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Z. Zeng’s approach

Practical part. Example.
Stage 2. Compute the coefficients of gcd(f̃ , g̃) with deg = k!

Find (û, v̂, ŵ) with gcd(f̃ , g̃) ∼= û, gcd(v̂, ŵ) = 1, deg(û) = k and{
ûv̂ ∼= f̃
ûŵ ∼= g̃

. (2)

Rewrite (2) as F (u, v,w) ∼= b, where u,v,w, respectively b represents
the coefficients vectors of the polynomials û, v̂, ŵ, respectively f̃ , g̃.

Solve overdeterminate system F (u, v,w) ∼= b. Solve
min

(u,v,w)∈Pm,nk

||F (u, v, w)− b|| = ||F (û, v̂, ŵ)− b|| by Gauss-Newton.

Necessary: the coefficients of the gcd must be real numbers! When
the coefficients are integers, Stage 2 cannot be used (our case)!

18 / 29
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E. Kaltofen’s approach

PROBLEM

Given: f, g ∈ C[x], deg(f) = m, deg(g) = n, k ≤ min(m,n) ∈ Z+

find: f̃ , g̃ ∈ C[x]
s.t. min

deg(gcd(f̃ ,g̃))≥k
||f̃ − f ||2 + ||g̃ − g||2 := N , and

deg(||f̃ − f ||) ≤ m, deg(||g̃ − g|| ≤ n).
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E. Kaltofen’s approach

METHOD

Prove the existence of N .

Compute f̃ , g̃,N by an iterative algorithm denoted IterativeAlgo
given f, g, k, tol ∈ R+, based on:

Theorem 4

Given f(x), g(x) ∈ C[x] with deg(f) = m, deg(g) = n. Let S(f, g) the
Sylvester matrix of f, g and Sk the k-th Sylvester matrix,
1 ≤ k ≤ min(m,n). Then:

deg(gcd(f, g)) ≥ k ⇔ rank(S) ≤ m+ n− k ⇔ dimKer(Sk) ≥ 1

Let Sk = [bkAk], bk is the first column of Sk, Ak the remaining columns.
Then dimKer(Sk) ≥ 1⇔ Akx = bk has a solution.
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E. Kaltofen’s approach

APPLICATION

Algorithm 1 Approximate gcd of univariate polynomials

Input: f, g ∈ C[x], deg(f) = m ≥ n = deg(g), ε ∈ R+

Output: ε-gcd(f, g)

Initialize k = n

Repeat
I Compute f̃ , g̃,N with IterativeAlgo(f, g, k, tol).
I k −−

until N < ε or k < 0
If k ≥ 0 then compute ε-gcd from the matrix Sk(f̃ , g̃), for instance
with an algorithm like Zeng’s algorithm based on SVD.
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C. Yap’s approach (exact geometric computation)

Constructive zero bounds

an expression E is a syntactic object constructed from a set of
operators Ω over R.

evaluating predicates amounts to determining the sign of E.

Definition

b > 0 is a zero bound for E if the following holds: if E is well-defined
(E 6=↑) and E 6= 0 then |E| ≥ b. −log2(b) is a zero bit-bound for E.

Given E determine sign(E) = {↑,+1,−1, 0}!

I If E 6=↑ then compute Ẽ s.t. |Ẽ − E| < b

2
.

I If E =↑ then Ẽ =↑.
I If |Ẽ| ≥ b

2
then sign(E) = sign(Ẽ)

else E = 0.
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C. Yap’s approach (exact geometric computation)

Approximate expression evaluation

Given E and a precision p ∈ R+ compute an approximation of E
within precision p!

all E are ”programs”, rooted, labeled directed acyclic graphs (DAG).

use precision-driven approach.
I propagate precision values down to the leaves.
I approximate the value at the leaf to any desired precision.
I propate the approximations up to the root.

Numerical filters

Numerical filters are an effective technique for speeding up predicate
evaluation.
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Shortly about our approach

Let I the set of coefficient vectors of polynomials of fixed degree, O a discrete set.

Let E : I → O the symbolic algorithm s.t.

Given f ∈ I assigns E(f) the invariants of the curve defined by f .
This problem is ill-posed!

Let A : I × R+ → O the symbolic-numeric algorithm we designed s.t.

Given (f, ε) ∈ I × R+ assigns the δ-invariants of the curve defined by f .

For f ∈ I a perturbation of f is a function
f− : R+ → I, δ 7→ fδ such that |f − fδ| ≤ δ for all δ ∈ R+.
We call f the exact data, fδ the perturbed data, δ the noise level (error, tolerance).

In our problem, we are given fδ and δ but not f !
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Shortly about our approach

We can prove the following properties of A:

A depends continuously on fδ continuity (1).

∃α : R+ → R+ continuous, monotonic, limδ→0 α(δ) = 0 s.t. for any fδ

lim
δ→0

A(fδ, α(δ)) = E(f), i.e. convergence for perturbed data (2).

In this case α is called the ”parameter choice rule”!
The algorithm Aε is called a regularization.

Instead of looking for the exact solution, we look for approximations with (1), (2).
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Thank you for your attention.
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