A symbolic-numeric algorithm for genus computation

Mădălina Hodorog Supervisor: Prof. Dr. Josef Schicho

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria

May 4, 2009

Table of contents

1 Motivation

- 2 Describing the Problem What?
- Solving the problem How?
- **4** Current results
- **5** Conclusion and future work

1 Motivation

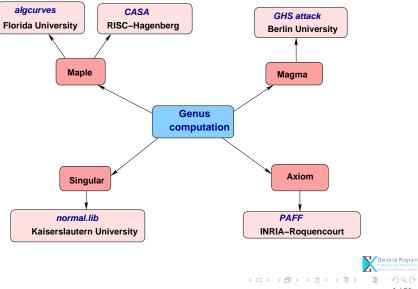
2 Describing the Problem What?

Solving the problem How?

4 Current results

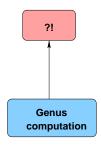
5 Conclusion and future work

Exact Algorithms:



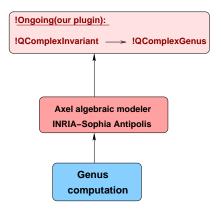
4/26

Numeric Algorithms:



Numeric Algorithms:

DK Project: Symbolic-Numeric techniques for genus computation and parametrization (project leader: Prof. Dr. Josef Schicho).



イロト 不得下 イヨト イヨト 二日

4/26

1 Motivation

2 Describing the Problem What?

3 Solving the problem How?

Ourrent results

5 Conclusion and future work

What?

• Input:

- C field of complex numbers;
- $F \in \mathbb{C}[z, w]$ irreducible with coefficients of limited accuracy ¹;
- $C = \{(z, w) \in \mathbb{C}^2 | F(z, w) = 0\} =$ = $\{(x, y, u, v) \in \mathbb{R}^4 | F(x + iy, u + iv) = 0\}$ complex algebraic curve (d is the degree, Sing(C) is the set of singularities);

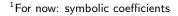
• Output:

• approximate genus(C) s.t.

$$genus(C) = \frac{1}{2}(d-1)(d-2) - \sum_{P \in Sing(C)} \delta\text{-invariant}(P);$$

イロト 不得 とくき とくきとう き

6/26



1 Motivation

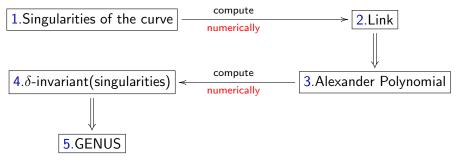
2 Describing the Problem What?

Solving the problem How?

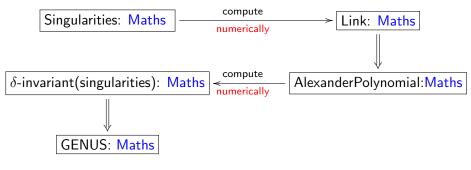
Ourrent results

(3) Conclusion and future work

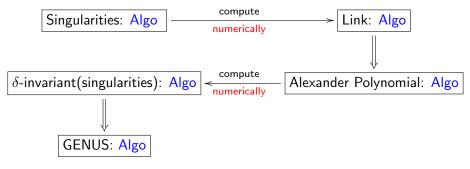
• Strategy for computing the genus



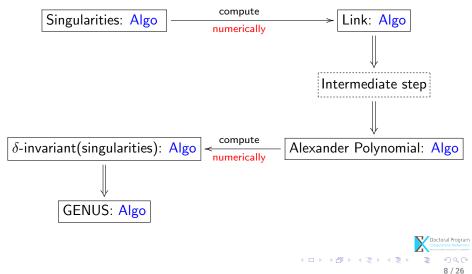
• Method for computing the genus



• Algorithm for the method



• Algorithm for the method



Implementation of the algorithm

- (*Mathematica* computer algebra system)
- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

Implementation of the algorithm

- (*Mathematica* computer algebra system)
- Axel algebraic geometric modeler ^a
 - developed by *Galaad* team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

Implementation of the algorithm

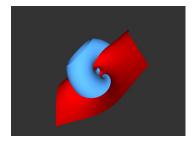
- (*Mathematica* computer algebra system)
- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

Implementation of the algorithm

- (*Mathematica* computer algebra system)
- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.

Implementation of the algorithm

- (*Mathematica* computer algebra system)
- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - topology of implicit curves;
 - intersections of implicit surfaces.



1 Motivation

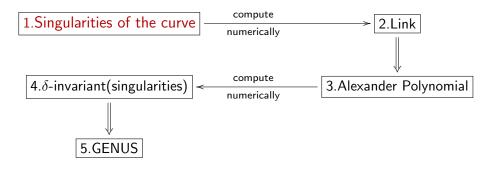
2 Describing the Problem What?

Solving the problem How?

Ourrent results

5 Conclusion and future work

First



- Input:
 - $\begin{array}{l} \bullet \ F\in \mathbb{C}[z,w]\\ \bullet \ C=\{(z,w)\in \mathbb{C}^2|F(z,w)=0\} \end{array}$
- Output:

•
$$S = \{(z_0, w_0) \in \mathbb{C}^2 | F(z_0, w_0) = 0, \frac{\delta F}{\delta z}(z_0, w_0) = 0, \frac{\delta F}{\delta w}(z_0, w_0) = 0\}$$

Method: \Rightarrow solve overdeterminate system of polynomial equations in \mathbb{C}^2 :

$$\begin{cases}
F(z_0, w_0) = 0 \\
\frac{\delta F}{\delta z}(z_0, w_0) = 0 \\
\frac{\delta F}{\delta w}(z_0, w_0) = 0
\end{cases}$$
(1)

12/26

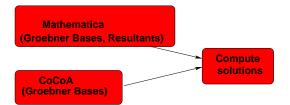
or in
$$\mathbb{R}^4$$
: $F(z, w) = F(x + iy, u + iv) = s(x, y, u, v) + it(x, y, u, v)$

$$\begin{cases}
s(x_0, y_0, u_0, v_0) = 0 \\
t(x_0, y_0, u_0, v_0) = 0 \\
\frac{\delta s}{\delta x}(x_0, y_0, u_0, v_0) = 0 \\
\frac{\delta t}{\delta u}(x_0, y_0, u_0, v_0) = 0 \\
\frac{\delta t}{\delta u}(x_0, y_0, u_0, v_0) = 0
\end{cases}$$

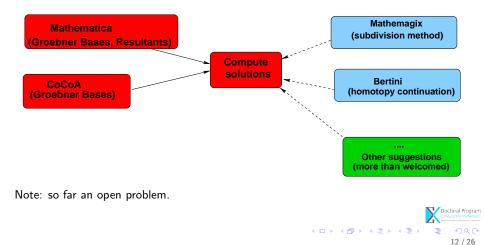
Control Program
 Control Program

(2)

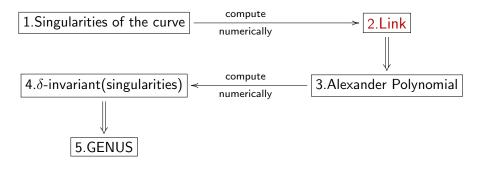
Using numeric input polynomials



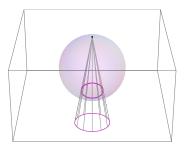
Using numeric input polynomials



Next



- Why the link of a singularity?
 - helps in understanding the topology of a complex curve near a singularity;
- How do we compute the link?
 - use stereographic projection;



Method (based on Milnor's results) 1. Let $C = \{(x, y, u, v) \in \mathbb{R}^4 | F(x + iy, u + iv) = 0\} \subset \mathbb{C}^2 \cong \mathbb{R}^4$, with $(F(0, 0), \frac{\delta F}{\delta z}(0, 0), \frac{\delta F}{\delta w}(0, 0)) = (0, 0, 0)$, where z = x + iy, w = u + iv.

2. Consider $S^3 = \{(x, y, u, v) \in \mathbb{R}^4 | x^2 + y^2 + u^2 + w^2 = \epsilon^2\} \subset \mathbb{R}^4$ and $X = C \bigcap S^3 = \{(x, y, u, v) \in \mathbb{R}^4 | F(x, y, u, v) = 0, x^2 + y^2 + u^2 + w^2 = \epsilon^2\}.$

3. For $P(0, 0, 0, \epsilon) \in S^3 \setminus C$, construct $f: S^3 \setminus \{P\} \subset \mathbb{R}^4 \to \mathbb{R}^3, (x, y, u, v) \to (a, b, c) = (\frac{x}{\epsilon - v}, \frac{y}{\epsilon - v}, \frac{u}{\epsilon - v})$ $f(X) = \{(a, b, c) \in \mathbb{R}^3 | \exists (x, y, u, v) \in C \bigcap S^3 : (a, b, c) = f(x, y, u, v)\}$ f(X) is a link.

$\begin{array}{l} \text{Method (next)} \\ \text{3.} \quad f(X) = \{(a,b,c) \in \mathbb{R}^3 | \exists (x,y,u,v) \in C \bigcap S^3 : (a,b,c) = f(x,y,u,v) \} \\ \quad f(X) = \{(a,b,c) \in \mathbb{R}^3 | \exists (x,y,u,v) = f^{-1}(a,b,c) \in C \bigcap S^3 \} \end{array}$

4. Compute
$$f^{-1} : \mathbb{R}^3 \to S^3 \setminus \{P\}$$

 $(a, b, c) \to (x, y, u, v) = (\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2})$

5. Get
$$\begin{aligned} &f(X) = \left\{ (a,b,c) \in \mathbb{R}^3 \right| \\ &F(\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2}) = 0 \right\} \\ &f(X) = \left\{ (a,b,c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0 \right\} \end{aligned}$$

ペロト ペアト ペラト ペラト ペラト ラ ア へので 15/26

$\begin{array}{l} \text{Method (next)} \\ \text{3.} \quad f(X) = \{(a,b,c) \in \mathbb{R}^3 | \exists (x,y,u,v) \in C \bigcap S^3 : (a,b,c) = f(x,y,u,v) \} \\ \quad f(X) = \{(a,b,c) \in \mathbb{R}^3 | \exists (x,y,u,v) = f^{-1}(a,b,c) \in C \bigcap S^3 \} \end{array}$

4. Compute
$$f^{-1} : \mathbb{R}^3 \to S^3 \setminus \{P\}$$

 $(a, b, c) \to (x, y, u, v) = \left(\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2}\right)$

5. Get
$$\begin{array}{l} f(X) = \left\{ (a,b,c) \in \mathbb{R}^3 \right| \\ F(\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2}) = 0 \right\} \end{array}$$

 $\label{eq:compute} \begin{array}{l} \text{Compute B s.t.} \\ f(X) = \{(a,b,c) \in B \subset \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\} \quad \text{is a link} \end{array}$

Control Information Control Informatio Control Information Control Information Co

Method (next) 6. For $f(X) = \{(a, b, c) \in B \subset \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$ link find $B = max\{||f(p)||_{\infty}, p \in S^3 \cap C\} \le max\{||f(p)||_2, p \in S^3 \cap C\}$

7. Compute

. . .

$$\begin{split} v_0 &= max\{v: (x, y, u, v) \in S^3 \bigcap C\} \text{ s.t. } v \text{ is solution for} \\ \left\{ \begin{array}{l} x^2 + y^2 + u^2 + v^2 - \epsilon^2 &= 0 \\ ReF(x + iy, u + iv) &= 0 \\ ImF(x + iy, u + iv) &= 0 \end{array} \right., \end{split}$$

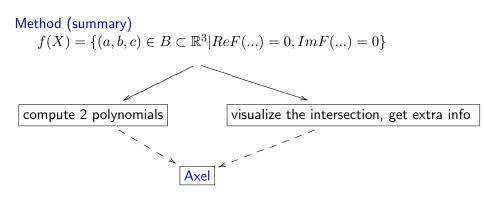
Contract Torget
 Contract Torget
 Contract Torget
 Contract Torget
 Contract Torget
 Contract Torget
 Contract
 Contract

Method (next) 6. For $f(X) = \{(a, b, c) \in B \subset \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$ link find $B = max\{||f(p)||_{\infty}, p \in S^3 \cap C\} \le max\{||f(p)||_2, p \in S^3 \cap C\}$...

7. Compute

$$b = \sqrt{\frac{\epsilon + v_0}{\epsilon - v_0}}$$

Get $B = [-b, b]^3$



Why Axel?

Axel computes the topology of implicit curves in \mathbb{R}^3 .

In our case:

• Input:

•
$$ReF(...), ImF(...) \in \mathbb{R}[a, b, c]$$

• $C = \{(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$
• $B = [-b, b] \times [-b, b] \times [-b, b], \epsilon \ge 0$

• Output:

•
$$Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$$
 with
 $\mathcal{V} = \{ p = (m, n, q) \in \mathbb{R}^3 \}$
 $\mathcal{E} = \{ (i, j) | i, j \in \mathcal{V} \}$

• s.t. $Graph(C) \cong_{isotopic} C$

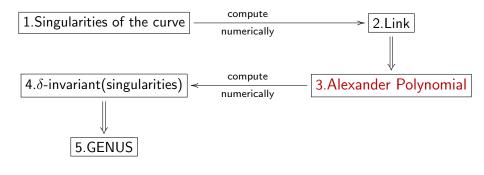
Test experiments (with <u>Axel</u>)

Equation	Tests on ϵ					
	ϵ =0.5		$\epsilon = 1.0$		<i>ϵ</i> =4.3	
	$[-b, b]^3$	link	$[-b, b]^3$	link	$[-b, b]^3$	link
$z^2 - w^2$	2.41421	Hopf link	2.41421	Hopf link	2.41421	Hopf link
$z^2 - w^3$	3.38298	Trefoil knot	2.67567	Trefoil knot	1.84639	Trefoil knot
$z^2 - w^2 - w^3$	2.37636	Hopf link	2.28464	Curve one sin- gularity	2.24247	Trefoil knot

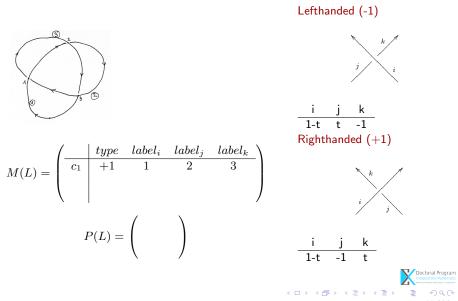
V.I. Arnold's results: $Top(z^2 - w^2 - w^3) \cong Top(z^2 - w^2)$ Note: solved problem.

> Control Program Concerned Statements Concerned

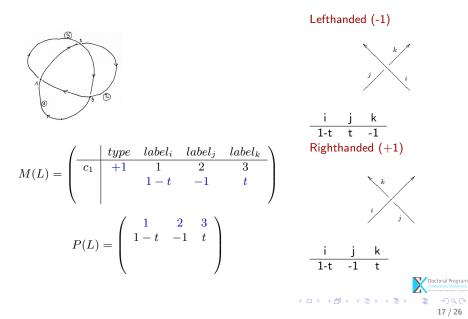
Next

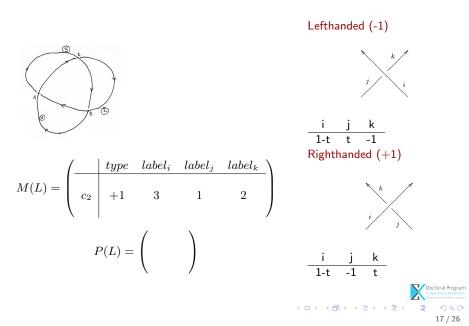


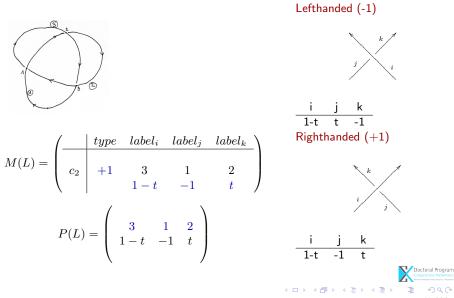
Computing the Alexander polynomial of the link



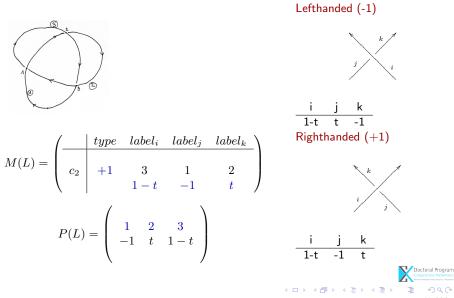
17/26



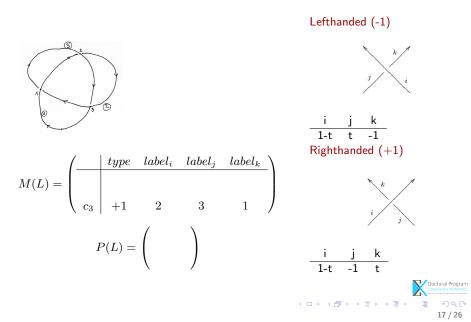


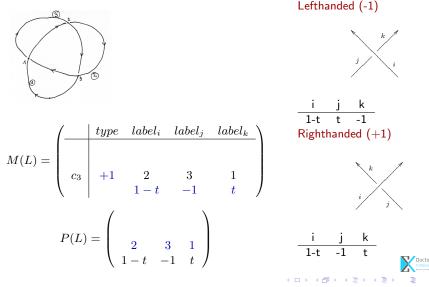


17/26

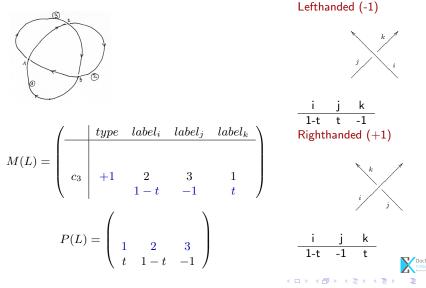


17/26

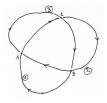




17/26



17/26



$M(L) = \begin{pmatrix} | type \ label_i \ label_j \ label_k \\ \hline c_1 \ +1 \ 1 \ 2 \ 3 \\ c_2 \ +1 \ 3 \ 1 \ 2 \\ c_3 \ +1 \ 2 \ 3 \ 1 \end{pmatrix}$ $P(L) = \begin{pmatrix} 1-t \ -1 \ t \\ -1 \ t \ 1-t \\ t \ 1-t \ -1 \end{pmatrix}$ $\Delta(L) := \Delta(t) = det(P(M)) = t^2 - t + 1$

Lefthanded (-1) Righthanded (+1)i j k 1-t -1 t

イロト イポト イヨト イヨト

Doctoral Program Computed on Mathematics E ∽ Q ℃ 17 / 26

• Input:

- $L = K_1 \cup ... \cup K_m$ with n crossings
- D(L)- oriented diagram of L

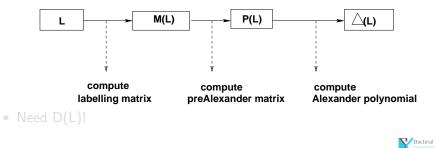
• Output:

• $\Delta_L(t_1, ...t_m) \in \mathbb{Z}[t_1^{\pm 1}, ..., t_m^{\pm 1}]$

• Method: consists of several steps

• Need D(L)!

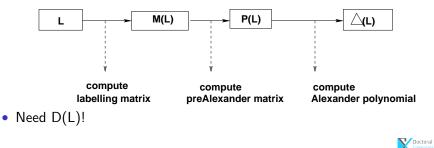
- Input:
 - $L = K_1 \cup ... \cup K_m$ with n crossings
 - D(L)- oriented diagram of L
- Output:
 - $\Delta_L(t_1, ..., t_m) \in \mathbb{Z}[t_1^{\pm 1}, ..., t_m^{\pm 1}]$
- Method: consists of several steps



イロト イポト イヨト イヨト

18/26

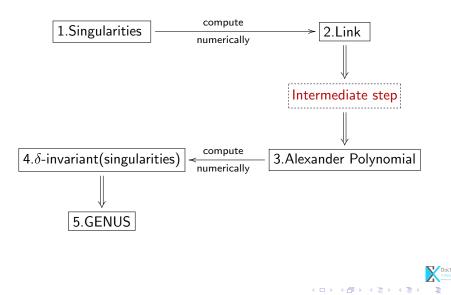
- Input:
 - $L = K_1 \cup ... \cup K_m$ with n crossings
 - D(L)- oriented diagram of L
- Output:
 - $\Delta_L(t_1, ..., t_m) \in \mathbb{Z}[t_1^{\pm 1}, ..., t_m^{\pm 1}]$
- Method: consists of several steps



イロト イポト イヨト イヨト

18/26

Next



• Input:

- $Graph(L) = \langle \mathcal{V}, \mathcal{E} \rangle$ with $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$ $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$
- Output:
 - D(L) s.t.

D(L) is the image under regular projection of L together with the information on each crossing telling which branch goes under and which goes over.

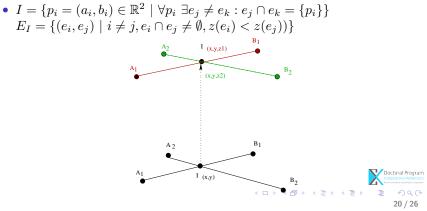
- Input:
 - $Graph^{'}(L) = \langle \mathcal{V}^{'}, \mathcal{E}^{'} \rangle$ with $\mathcal{V}^{'} = \{p = (m, n) \in \mathbb{R}^{2}\}$ $\mathcal{E}^{'} = \{(i, j)|i, j \in \mathcal{V}^{'}\}$
- Output:
 - D(L) s.t. D(L) is the image under regular projection of L

together with the information on each crossing telling which branch goes under and which goes over.

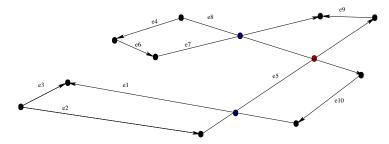
• Method: the Bentley-Ottman algorithm

- Input:
 - $E = \{e_1, e_2, ..., e_n\}$ -set of n edges in the plane with:

• Output:

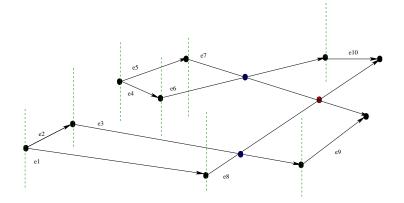


Given:



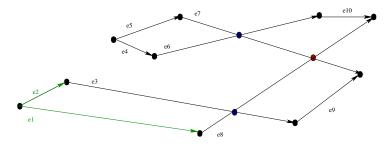
 $E = \{e_2, e_3, e_1, e_6, e_4, e_7, e_8, e_5, e_9, e_{10}\}$

Sorting the edges-necessary condition!



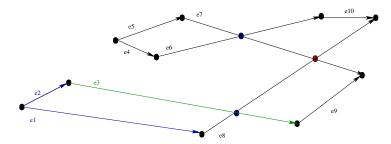
 $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}\$

Initialization:



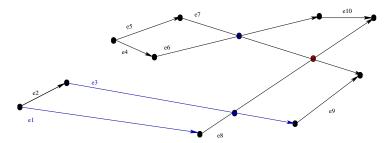
 $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$ $SW_{list} = \{e_1, e_2\}$

Step 1:



 $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$ $SW_{list} = \{e_1, e_2\}$

Step 1:



$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$$

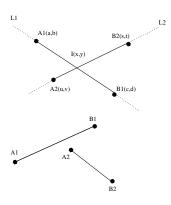
$$SW_{list} = \{e_1, e_3\}$$

Test $e_3 \cap e_1$? No!

$$I = \emptyset$$

$$E_I = \emptyset$$

How do we test intersection of 2 edges?



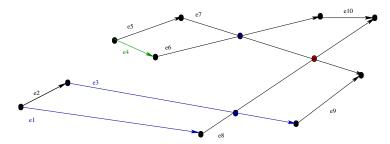
• $L_1(x, y) : y_1 = m_1 \cdot x + b_1$ $m_1 = \frac{d-b}{c-a}, b_1 = \frac{b \cdot c - a \cdot d}{c-a}$ $L_1(x, y) : (b-d)x + (c-a)y + a \cdot d - b \cdot c = 0$ $L_2(x, y) : (v-t)x + (s-u)y + u \cdot t - v \cdot s = 0$ (similarly to L_1)

Note:

- $L_1(A_2) \cdot L_1(B_2) < 0 \Rightarrow e_1 \cap e_2 \neq \emptyset$ $L_2(A_1) \cdot L_2(B_1) < 0 \Rightarrow e_1 \cap e_2 \neq \emptyset$ • $L_1(A_2) \cdot L_1(B_2) > 0 \Rightarrow e_1 \cap e_2 = \emptyset$
 - $L_2(A_1) \cdot L_2(B_1) > 0 \Rightarrow e_1 \cap e_2 = \emptyset$
- $L_1(A_2) \cdot L_1(B_2) = 0 \Rightarrow e_1 \cap e_2 = \{A_2\},$ $L_2(A_1) \cdot L_2(B_1) = 0 \Rightarrow e_1 \cap e_2 = \{A_2\},$ $(A_2 = B_1)$

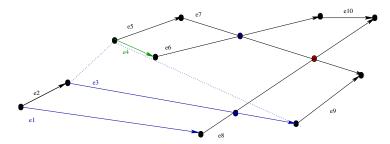
くロト く 合 ト く き ト く き ト き う 気 へ へ 20 / 26

Step 2:



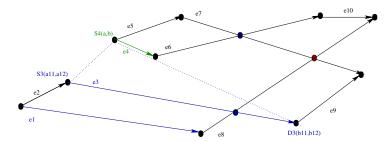
 $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$ $SW_{list} = \{e_1, e_3\}$

Step 2:



 $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$ $SW_{list} = \{e_1, e_3\}$

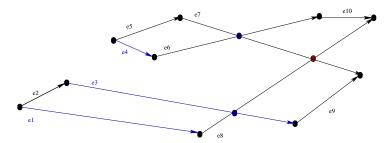
Step 2:



 $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$ $SW_{list} = \{e_1, e_3\}; \text{ compute:}$

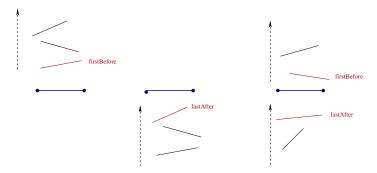
$$det(e_4, e_3) = \begin{pmatrix} a_{11} & a_{12} & 1\\ b_{11} & b_{12} & 1\\ a & b & 1 \end{pmatrix} > 0 \Rightarrow e_4 \text{ after } e_3 \text{ in } SW_{list}$$

Step 2:



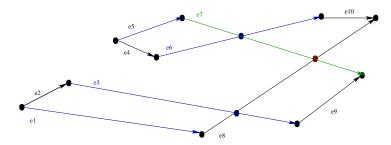
$$\begin{split} E &= \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}\\ SW_{list} &= \{e_1, e_3, e_4\}\\ \mathsf{Test} \ e_4 \cap e_3? \ \mathsf{No}!\\ I &= \emptyset\\ E_I &= \emptyset \end{split}$$

Keeping the sweep events list ordered - necessary condition!



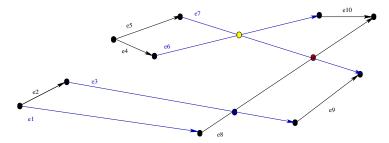
Given e, if $\forall e_i : det(e, e_i) < 0 \Rightarrow e$ before e_i Given e, if $\forall e_i : det(e, e_i) > 0 \Rightarrow e$ after e_i

.... Step 5:



 $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$ $SW_{list} = \{e_1, e_3, e_6, e_5\}$

Step 5:



$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$$

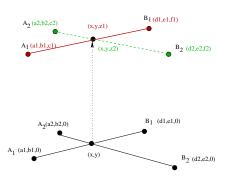
$$SW_{list} = \{e_1, e_3, e_6, e_7\}$$
Test $e_7 \cap e_6$? Yes! \Rightarrow

$$SW_{list} = \{e_1, e_3, e_7, e_6\}$$

$$I = \{(a_1, b_1)\},$$

$$E_I = \{(e_6, e_7)\}$$

Managing the info on each crossing in \mathbb{R}^3 :



For:

$$L_2(A_1) = \begin{pmatrix} a_2 & b_2 & 1 \\ d_2 & e_2 & 1 \\ a_1 & b_1 & 1 \end{pmatrix}$$

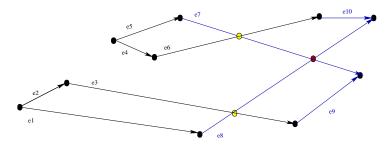
$$L_2(B_1) = \begin{pmatrix} a_2 & b_2 & 1 \\ d_2 & e_2 & 1 \\ d_1 & e_1 & 1 \end{pmatrix}$$

- Compute α_1 from: $\alpha_1 \cdot L_2(A_1) + (1 - \alpha_1) \cdot L_2(B_1) = 0$, Compute z_1 from: $z_1 = \alpha_1 \cdot c_1 + (1 - \alpha_1) \cdot f_1$ (similarly compute z_2)
- Note: compare $z_1?z_2$
 - $z_1 > z_2 \Rightarrow e_1$ over e_2
 - $z_1 < z_2 \Rightarrow e_1$ under e_2

・ロン ・四 と ・ ヨ と ・ ヨ と

୬ ୯.୯ 20 / 26

.... Final step:



Joctoral Program

20 / 26

2

<ロ> (四) (四) (注) (日) (日)

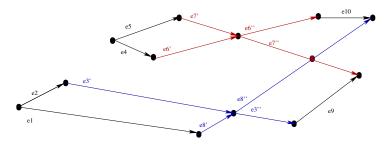
$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}\}$$

$$SW_{list} = \{e_9, e_8, e_7, e_{10}\}$$

$$I = \{(a_1, b_1), (a_2, b_2)\}$$

$$E_I = \{(e_6, e_7), (e_8, e_3)\}$$

Refinements of the algorithm:



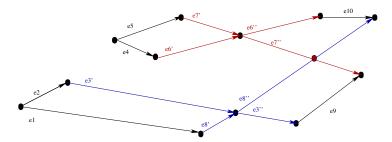
イロト イヨト イヨト イヨト

20/26

Everytime an intersection is detected we update E, SW_{list} as follows:

Detect $e_6 \cap e_7$: $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_7', e_6'', e_9, e_{10}\}$ $SW_{list} = \{e_1, e_3, e_7', e_6'\}$ Detect $e_8 \cap e_3$: $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_3'', e_8'', e_7'', e_6'', e_9, e_{10}\}$ $SW_{list} = \{e_3', e_8', e_7', e_6'\}$

Refinements of the algorithm (next):



$$SW_{list} = \{e_{1}, e_{3}, e_{7}^{'}, e_{6}^{'}\}$$

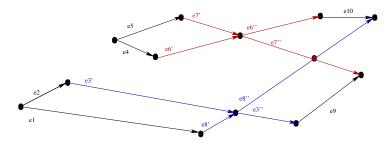
$$E = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{7}^{''}, e_{6}^{''}, e_{9}, e_{10}\}$$

$$SW_{list} = \{e_{8}, e_{3}, e_{7}^{'}, e_{6}^{'}\}$$

$$E = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{3}^{''}, e_{8}^{''}, e_{7}^{''}, e_{6}^{''}, e_{9}, e_{10}\}$$

$$SW_{list} = \{e_{3}^{'}, e_{8}^{'}, e_{7}^{'}, e_{6}^{'}\}$$

Refinements of the algorithm (next):



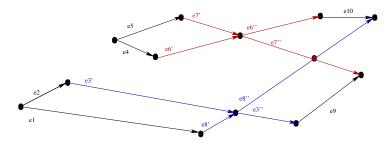
$$SW_{list} = \{e'_{3}, e'_{8}, e'_{7}, e'_{6}\}$$

$$E = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e''_{3}, e''_{8}, e''_{7}, e''_{6}, e_{9}, e_{10}\}$$

$$SW_{list} = \{e''_{3}, e'_{8}, e'_{7}, e'_{6}\}$$

Concernal Program
 Concernal Program
 Concernation Material
 Concernation
 Concernation

Refinements of the algorithm (next):



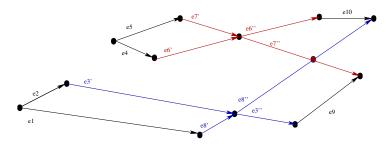
$$SW_{list} = \{e_3'', e_8', e_7', e_6'\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_3'', e_8'', e_7'', e_6'', e_9, e_{10}\}$$

$$SW_{list} = \{e_3'', e_8'', e_7', e_6''\}$$

Concernal Program
 Concernal Program
 Concernal Program
 Concernal Program
 Concernal Program
 Concernation
 Concerna

Refinements of the algorithm (next):



$$SW_{list} = \{e''_{3}, e'_{8}, e'_{7}, e'_{6}\}$$

$$E = \{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e''_{3}, e''_{8}, e''_{7}, e''_{6}, e_{9}, e_{10}\}$$

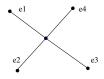
$$SW_{list} = \{e''_{3}, e''_{8}, e''_{7}, e'_{6}\} \Rightarrow$$

$$I = \{(a_{1}, b_{1}), (a_{2}, b_{2}), (a_{3}, b_{3})\}$$

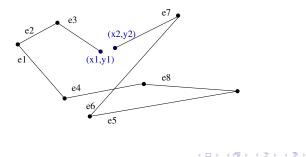
$$E_{I} = \{(e_{6}, e_{7}), (e_{8}, e_{3}), (e''_{8}, e''_{7})\}$$

▲ ロ ト 《 伊 ト イ ミ ト イ ミ ト ミ ト ミ へ つ へ つ 20 / 26

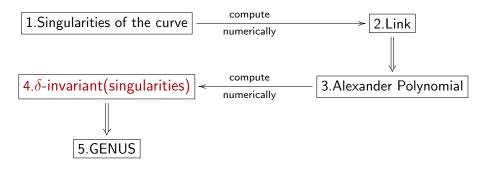
Degenerate cases in the algorithm (unsolved yet!): Case 1: Find condition s.t. $I = e_1 \cap e_2 \cap e_3 \cap e_4$



Case 2: Find $\epsilon > 0$ s.t. $(x1-x2)^2 + (y1-y2)^2 < \epsilon^2$



Next



Computing the δ -invariant of the singularity

• Input:

- C ⊂ C² complex algebraic curve;
- $z \in Singularities(C)$;
- $\Delta(t_1,..,t_p)$ Alexander polynomial of z;
- r = number of variables in Δ (branches of C through z);

イロト イポト イヨト イヨト

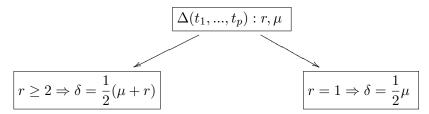
22 / 26

- $\mu = \text{degree of } \Delta \text{ (multiplicity of } z);$
- Output:
 - $\delta_z > 0$ s.t.

 δ_z is an invariant that measures the number of double points of C at z.

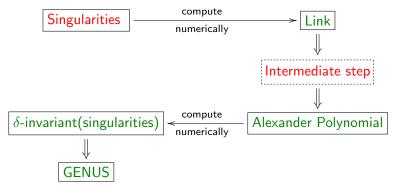
Computing the $\delta\text{-invariant}$ of the singularity

• Method: based on Milnor's research on singularities of complex hypersurfaces.



Summary

• At present: for symbolic coefficients



イロト イポト イヨト イヨト

23 / 26

• Future work: tests for algorithm with numeric coefficients

1 Motivation

2 Describing the Problem What?

Solving the problem How?

4 Current results

5 Conclusion and future work

Conclusion

- first results and test experiments were presented;
- Future work:
 - deeper introspection into some mathematical aspects (i.e. Milnor's fibration, Alexander polynomial);

イロト 不同下 イヨト イヨト

25 / 26

- correctness/completeness for the algorithm;
- implementation of the algorithm;
- analysis of the algorithm.

Thank you for your attention.

