A symbolic-numeric algorithm for genus computation

Mădălina Hodorog
Supervisor: Prof. Dr. Josef Schicho
Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria

May 4, 2009

Table of contents

(1) Motivation
(2) Describing the Problem

What?
(3) Solving the problem

How?
(4) Current results
(5) Conclusion and future work

(1) Motivation

(2) Describing the Problem What?
(3) Solving the problem How?
(4) Current results
(5) Conclusion and future work

Exact Algorithms:

Numeric Algorithms:

Numeric Algorithms:
DK Project: Symbolic-Numeric techniques for genus computation and parametrization (project leader: Prof. Dr. Josef Schicho).

(1) Motivation

(2) Describing the Problem What?
(3) Solving the problem How?

(4) Current results

(5) Conclusion and future work

What?

- Input:
- \mathbb{C} field of complex numbers;
- $F \in \mathbb{C}[z, w]$ irreducible with coefficients of limited accuracy ${ }^{1}$;
- $C=\left\{(z, w) \in \mathbb{C}^{2} \mid F(z, w)=0\right\}=$ $=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid F(x+i y, u+i v)=0\right\}$ complex algebraic curve (d is the degree, $\operatorname{Sing}(C)$ is the set of singularities);
- Output:
- approximate $\operatorname{genus}(C)$ s.t.

$$
\operatorname{genus}(C)=\frac{1}{2}(d-1)(d-2)-\sum_{P \in \operatorname{Sing}(C)} \delta \text {-invariant }(P) ;
$$

(1) Motivation
(2) Describing the Problem What?
(3) Solving the problem

How?

(4) Current results

(5) Conclusion and future work

How?

- Strategy for computing the genus

How?

- Method for computing the genus

How?

- Algorithm for the method

How?

- Algorithm for the method

Solving the problem

Implementation of the algorithm

- (Mathematica computer algebra system)
- Axel algebraic geometric modeler ${ }^{a}$

Solving the problem

Implementation of the algorithm

- (Mathematica computer algebra system)
- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team
(INRIA Sophia-Antipolis);
- written in Qt scripting language;
- topology of implicit curves;
- intersections of implicit surfaces.
${ }^{\text {a }}$ Acknowledgements: B. Mourrain, J. Wintz

Solving the problem

Implementation of the algorithm

- (Mathematica computer algebra system)
- Axel algebraic geometric modeler ${ }^{\text {a }}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- topology of implicit curves; - intersections of implicit surfaces.

[^0]
Solving the problem

Implementation of the algorithm

- (Mathematica computer algebra system)
- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- topology of implicit curves;
- intersections of implicit surfaces.
${ }^{a}$ Acknowledgements: B. Mourrain, J. Wintz

Solving the problem

Implementation of the algorithm

- (Mathematica computer algebra system)
- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- topology of implicit curves;
- intersections of implicit surfaces.

[^1](1) Motivation
(2) Describing the Problem What?
(3) Solving the problem How?
(4) Current results
(5) Conclusion and future work

First

Computing the singularities of the curve

- Input:
- $F \in \mathbb{C}[z, w]$
- $C=\left\{(z, w) \in \mathbb{C}^{2} \mid F(z, w)=0\right\}$
- Output:
- $S=\left\{\left(z_{0}, w_{0}\right) \in \mathbb{C}^{2} \mid F\left(z_{0}, w_{0}\right)=0, \frac{\delta F}{\delta z}\left(z_{0}, w_{0}\right)=0, \frac{\delta F}{\delta w}\left(z_{0}, w_{0}\right)=0\right\}$

Method: \Rightarrow solve overdeterminate system of polynomial equations in \mathbb{C}^{2} :

$$
\left\{\begin{array}{l}
F\left(z_{0}, w_{0}\right)=0 \tag{1}\\
\frac{\delta F}{\delta z}\left(z_{0}, w_{0}\right)=0 \\
\frac{\delta F}{\delta w}\left(z_{0}, w_{0}\right)=0
\end{array}\right.
$$

Computing the singularities of the curve

or in $\mathbb{R}^{4}: F(z, w)=F(x+i y, u+i v)=s(x, y, u, v)+i t(x, y, u, v)$

$$
\left\{\begin{array}{l}
s\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \tag{2}\\
t\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \\
\frac{\delta s}{\delta x}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \\
\frac{\delta t}{\delta x}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \\
\frac{\delta s}{\delta u}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \\
\frac{\delta t}{\delta u}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0
\end{array}\right.
$$

Computing the singularities of the curve

Using numeric input polynomials

Computing the singularities of the curve

Using numeric input polynomials

Note: so far an open problem.

Next

Computing the link of the singularity

- Why the link of a singularity?
- helps in understanding the topology of a complex curve near a singularity;
- How do we compute the link?
- use stereographic projection;

Computing the link of the singularity

Method (based on Milnor's results)

1. Let $C=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid F(x+i y, u+i v)=0\right\} \subset \mathbb{C}^{2} \cong \mathbb{R}^{4}$, with $\left(F(0,0), \frac{\delta F}{\delta z}(0,0), \frac{\delta F}{\delta w}(0,0)\right)=(0,0,0)$, where $z=x+i y, w=u+i v$.
2. Consider $S^{3}=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+u^{2}+w^{2}=\epsilon^{2}\right\} \subset \mathbb{R}^{4}$ and $X=C \bigcap S^{3}=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid F(x, y, u, v)=0, x^{2}+y^{2}+u^{2}+w^{2}=\epsilon^{2}\right\}$.
3. For $P(0,0,0, \epsilon) \in S^{3} \backslash C$, construct
$f: S^{3} \backslash\{P\} \subset \mathbb{R}^{4} \rightarrow \mathbb{R}^{3},(x, y, u, v) \rightarrow(a, b, c)=\left(\frac{x}{\epsilon-v}, \frac{y}{\epsilon-v}, \frac{u}{\epsilon-v}\right)$
$f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v) \in C \bigcap S^{3}:(a, b, c)=f(x, y, u, v)\right\}$
$f(X)$ is a link.

Computing the link of the singularity

Method (next)
3. $\quad f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v) \in C \bigcap S^{3}:(a, b, c)=f(x, y, u, v)\right\}$

$$
f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v)=f^{-1}(a, b, c) \in C \bigcap S^{3}\right\}
$$

4. Compute $f^{-1}: \mathbb{R}^{3} \rightarrow S^{3} \backslash\{P\}$
$(a, b, c) \rightarrow(x, y, u, v)=\left(\frac{2 a \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 b \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 c \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{\epsilon\left(a^{2}+b^{2}+c^{2}-1\right)}{1+a^{2}+b^{2}+c^{2}}\right)$
5. Get $f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid\right.$

$$
f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\}
$$

Computing the link of the singularity

Method (next)
3. $\quad f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v) \in C \bigcap S^{3}:(a, b, c)=f(x, y, u, v)\right\}$

$$
f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \exists(x, y, u, v)=f^{-1}(a, b, c) \in C \bigcap S^{3}\right\}
$$

4. Compute $f^{-1}: \mathbb{R}^{3} \rightarrow S^{3} \backslash\{P\}$
$(a, b, c) \rightarrow(x, y, u, v)=\left(\frac{2 a \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 b \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 c \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{\epsilon\left(a^{2}+b^{2}+c^{2}-1\right)}{1+a^{2}+b^{2}+c^{2}}\right)$
5. Get $f(X)=\left\{(a, b, c) \in \mathbb{R}^{3} \mid\right.$

$$
\left.F\left(\frac{2 a \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 b \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 c \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{\epsilon\left(a^{2}+b^{2}+c^{2}-1\right)}{1+a^{2}+b^{2}+c^{2}}\right)=0\right\}
$$

Compute B s.t.

$$
f(X)=\left\{(a, b, c) \in B \subset \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\} \text { is a link }
$$

Computing the link of the singularity

Method (next)
6. For $f(X)=\left\{(a, b, c) \in B \subset \mathbb{R}^{3} \mid \operatorname{ReF}(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}$ link
find $B=\max \left\{\|f(p)\|_{\infty}, p \in S^{3} \bigcap C\right\} \leq \max \left\{\|f(p)\|_{2}, p \in S^{3} \bigcap C\right\}$
7. Compute

$$
\begin{aligned}
v_{0}=\max \{v & \left.:(x, y, u, v) \in S^{3} \bigcap C\right\} \text { s.t. } v \text { is solution for } \\
& \left\{\begin{array}{l}
x^{2}+y^{2}+u^{2}+v^{2}-\epsilon^{2}=0 \\
\operatorname{ReF}(x+i y, u+i v)=0 \\
\operatorname{Im} F(x+i y, u+i v)=0
\end{array}\right.
\end{aligned}
$$

Computing the link of the singularity

Method (next)
6. For $f(X)=\left\{(a, b, c) \in B \subset \mathbb{R}^{3} \mid \operatorname{ReF}(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\}$ link
find $B=\max \left\{\|f(p)\|_{\infty}, p \in S^{3} \bigcap C\right\} \leq \max \left\{\|f(p)\|_{2}, p \in S^{3} \bigcap C\right\}$
7. Compute

$$
b=\sqrt{\frac{\epsilon+v_{0}}{\epsilon-v_{0}}}
$$

Get $B=[-b, b]^{3}$

Computing the link of the singularity

Method (summary)

$$
f(X)=\left\{(a, b, c) \in B \subset \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\}
$$

Computing the link of the singularity

Why Axel?
Axel computes the topology of implicit curves in \mathbb{R}^{3}.
In our case:

- Input:
- $\operatorname{ReF}(\ldots), \operatorname{ImF}(\ldots) \in \mathbb{R}[a, b, c]$
- $C=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \operatorname{ReF}(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}$
- $B=[-b, b] \times[-b, b] \times[-b, b], \epsilon \geq 0$
- Output:
- $\operatorname{Graph}(C)=\langle\mathcal{V}, \mathcal{E}\rangle$ with

$$
\begin{aligned}
& \mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\} \\
& \mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}
\end{aligned}
$$

- s.t. $\operatorname{Graph}(C) \cong{ }_{i \text { sotopic }} C$

Computing the link of the singularity

Test experiments (with Axel)

Equation	Tests on ϵ					
	$\epsilon=0.5$		$\epsilon=1.0$		$\epsilon=4.3$	
	$[-b, b]^{3}$	link	$[-b, b]^{3}$	link	$[-b, b]^{3}$	link
$z^{2}-w^{2}$	2.41421	Hopf link	2.41421	Hopf link	2.41421	Hopf link
$z^{2}-w^{3}$	3.38298	Trefoil knot	2.67567	Trefoil knot	1.84639	Trefoil knot
$\begin{aligned} & z^{2}-w^{2}- \\ & w^{3} \end{aligned}$	2.37636	Hopf link	2.28464	Curve one singularity	2.24247	Trefoil knot

V.I. Arnold's results: $\operatorname{Top}\left(z^{2}-w^{2}-w^{3}\right) \cong \operatorname{Top}\left(z^{2}-w^{2}\right)$ Note: solved problem.

Next

Computing the Alexander polynomial of the link

Lefthanded（－1）

i	j	k
$1-\mathrm{t}$	t	-1

Righthanded（＋1）

$$
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{1} & +1 & 1 & 2 & 3 \\
& & & &
\end{array}\right)
$$

$$
P(L)=(\quad) \quad \begin{array}{ccc}
& \mathrm{i} & \mathrm{j} \\
\hline 1-\mathrm{t} & -1 & \mathrm{t} \\
\hline
\end{array}
$$

Computing the Alexander polynomial of the link

Lefthanded (-1)

i	j	k
$1-\mathrm{t}$	t	-1

$M(L)=\left(\begin{array}{c|cccc} & \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\ \hline c_{1} & +1 & 1 & 2 & 3 \\ & & 1-t & -1 & t\end{array}\right)$

$$
P(L)=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1-t & -1 & t \\
& &
\end{array}\right)
$$

Righthanded (+1)

i	j	k
$1-\mathrm{t}$	-1	t

Computing the Alexander polynomial of the link

Lefthanded (-1)

i	j	k
$1-\mathrm{t}$	t	-1

Righthanded (+1)

$$
\begin{gathered}
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{2} & +1 & 3 & 1 & 2
\end{array}\right) \\
P(L)=\left(\begin{array}{l}
\\
\end{array}\right)
\end{gathered}
$$

Computing the Alexander polynomial of the link

Lefthanded (-1)

i	j	k
$1-\mathrm{t}$	t	-1

Righthanded (+1)

$$
P(L)=\left(\begin{array}{ccc}
3 & 1 & 2 \\
1-t & -1 & t
\end{array}\right) \quad \begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\hline 1-\mathrm{t} & -1 & \mathrm{t}
\end{array}
$$

$M(L)=\left(\begin{array}{c|cccc} & \text { type }^{\prime 2} & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\ \hline c_{2} & +1 & 3 & 1 & 2 \\ & & 1-t & -1 & t\end{array}\right)$

Computing the Alexander polynomial of the link

Lefthanded (-1)

$$
P(L)=\left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & t & 1-t
\end{array}\right)
$$

Computing the Alexander polynomial of the link

Lefthanded（－1）

i	j	k
$1-\mathrm{t}$	t	-1

Righthanded（＋1）

$$
\begin{gathered}
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline & & & & \\
c_{3} & +1 & 2 & 3 & 1
\end{array}\right) \\
P(L)=\left(\begin{array}{l}
\\
\end{array}\right)
\end{gathered}
$$

Computing the Alexander polynomial of the link

$$
\begin{gathered}
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{3} & & & & \\
& +1 & 2 & 3 & 1 \\
& 1-t & -1 & t
\end{array}\right) \\
P(L)=\left(\begin{array}{ccc}
\\
2 & 3 & 1 \\
1-t & -1 & t
\end{array}\right)
\end{gathered}
$$

Lefthanded (-1)

$$
\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\hline 1-\mathrm{t} & \mathrm{t} & -1
\end{array}
$$

Righthanded (+1)

i	j	k
$1-\mathrm{t}$	-1	t

Computing the Alexander polynomial of the link

$$
\begin{gathered}
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline & & & & \\
c_{3} & +1 & 2 & 3 & 1 \\
& & 1-t & -1 & t
\end{array}\right) \\
P(L)=\left(\begin{array}{ccc}
\\
1 & 2 & 3 \\
t & 1-t & -1
\end{array}\right)
\end{gathered}
$$

Lefthanded (-1)

$$
\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\hline 1-\mathrm{t} & \mathrm{t} & -1
\end{array}
$$

Righthanded (+1)

i	j	k
$1-\mathrm{t}$	-1	t

Computing the Alexander polynomial of the link

Lefthanded (-1)

$$
\begin{gathered}
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{1} & +1 & 1 & 2 & 3 \\
c_{2} & +1 & 3 & 1 & 2 \\
c_{3} & +1 & 2 & 3 & 1
\end{array}\right) \\
P(L)=\left(\begin{array}{ccc}
1-t & -1 & t \\
-1 & t & 1-t \\
t & 1-t & -1
\end{array}\right)
\end{gathered}
$$

$$
\Delta(L):=\Delta(t)=\operatorname{det}(P(M))=t^{2}-t+1
$$

Computing the Alexander polynomial of the link

- Input:
- $L=K_{1} \cup \ldots \cup K_{m}$ with n - crossings
- $D(L)$ - oriented diagram of L
- Output:
- $\Delta_{L}\left(t_{1}, \ldots t_{m}\right) \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{m}^{ \pm 1}\right]$
- Method: consists of several steps
- Need $D(L)$!

Computing the Alexander polynomial of the link

- Input:
- $L=K_{1} \cup \ldots \cup K_{m}$ with n - crossings
- $D(L)$ - oriented diagram of L
- Output:
- $\Delta_{L}\left(t_{1}, \ldots t_{m}\right) \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{m}^{ \pm 1}\right]$
- Method: consists of several steps

Computing the Alexander polynomial of the link

- Input:
- $L=K_{1} \cup \ldots \cup K_{m}$ with n - crossings
- $D(L)$ - oriented diagram of L
- Output:
- $\Delta_{L}\left(t_{1}, \ldots t_{m}\right) \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{m}^{ \pm 1}\right]$
- Method: consists of several steps

- Need $\mathrm{D}(\mathrm{L})$!

Next

Intermediate step

- Input:
- $\operatorname{Graph}(L)=\langle\mathcal{V}, \mathcal{E}\rangle$ with

$$
\begin{aligned}
& \mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\} \\
& \mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}
\end{aligned}
$$

- Output:
- $D(L)$ s.t.
$D(L)$ is the image under regular projection of L together with the information on each crossing telling which branch goes under and which goes over.

Intermediate step

- Input:
- $\operatorname{Graph}^{\prime}(L)=\left\langle\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\right\rangle$ with
$\mathcal{V}^{\prime}=\left\{p=(m, n) \in \mathbb{R}^{2}\right\}$
$\mathcal{E}^{\prime}=\left\{(i, j) \mid i, j \in \mathcal{V}^{\prime}\right\}$
- Output:
- $D(L)$ s.t. $D(L)$ is the image under regular projection of L together with the information on each crossing telling which branch goes under and which goes over.
- Method: the Bentley-Ottman algorithm

Intermediate step

- Input:
- $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$-set of n edges in the plane with:

- Output:
- $I=\left\{p_{i}=\left(a_{i}, b_{i}\right) \in \mathbb{R}^{2} \mid \forall p_{i} \exists e_{j} \neq e_{k}: e_{j} \cap e_{k}=\left\{p_{i}\right\}\right\}$ $\left.E_{I}=\left\{\left(e_{i}, e_{j}\right) \mid i \neq j, e_{i} \cap e_{j} \neq \emptyset, z\left(e_{i}\right)<z\left(e_{j}\right)\right)\right\}$

Intermediate step

Given:

$$
E=\left\{e_{2}, e_{3}, e_{1}, e_{6}, e_{4}, e_{7}, e_{8}, e_{5}, e_{9}, e_{10}\right\}
$$

Intermediate step

Sorting the edges-necessary condition!

$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\}$

Intermediate step

Initialization:

$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\}$
$S W_{\text {list }}=\left\{e_{1}, e_{2}\right\}$

Intermediate step

Step 1:

$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\}$
$S W_{\text {list }}=\left\{e_{1}, e_{2}\right\}$

Intermediate step

Step 1:

$$
\begin{aligned}
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{1}, e_{3}\right\} \\
& \text { Test } e_{3} \cap e_{1} ? \text { No! } \\
& I=\emptyset \\
& E_{I}=\emptyset
\end{aligned}
$$

Intermediate step

How do we test intersection of 2 edges?

- $L_{1}(x, y): y_{1}=m_{1} \cdot x+b_{1}$
$m_{1}=\frac{d-b}{c-a}, b_{1}=\frac{b \cdot c-a \cdot d}{c-a}$
$L_{1}(x, y):(b-d) x+(c-a) y+a \cdot d-b \cdot c=0$
$L_{2}(x, y):(v-t) x+(s-u) y+u \cdot t-v \cdot s=0$ (similarly to L_{1})
- Note:
- $L_{1}\left(A_{2}\right) \cdot L_{1}\left(B_{2}\right)<0 \Rightarrow e_{1} \cap e_{2} \neq \emptyset$ $L_{2}\left(A_{1}\right) \cdot L_{2}\left(B_{1}\right)<0 \Rightarrow e_{1} \cap e_{2} \neq \emptyset$
- $L_{1}\left(A_{2}\right) \cdot L_{1}\left(B_{2}\right)>0 \Rightarrow e_{1} \cap e_{2}=\emptyset$ $L_{2}\left(A_{1}\right) \cdot L_{2}\left(B_{1}\right)>0 \Rightarrow e_{1} \cap e_{2}=\emptyset$
- $L_{1}\left(A_{2}\right) \cdot L_{1}\left(B_{2}\right)=0 \Rightarrow e_{1} \cap e_{2}=\left\{A_{2}\right\}$, $L_{2}\left(A_{1}\right) \cdot L_{2}\left(B_{1}\right)=0 \Rightarrow e_{1} \cap e_{2}=\left\{A_{2}\right\}$, $\left(A_{2}=B_{1}\right)$

Intermediate step

Step 2:

$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\}$
$S W_{\text {list }}=\left\{e_{1}, e_{3}\right\}$

Intermediate step

Step 2:

$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\}$
$S W_{\text {list }}=\left\{e_{1}, e_{3}\right\}$

Intermediate step

Step 2:

$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\}$
$S W_{\text {list }}=\left\{e_{1}, e_{3}\right\} ;$ compute:

$$
\operatorname{det}\left(e_{4}, e_{3}\right)=\left(\begin{array}{ccc}
a_{11} & a_{12} & 1 \\
b_{11} & b_{12} & 1 \\
a & b & 1
\end{array}\right)>0 \Rightarrow e_{4} \text { after } e_{3} \text { in } S W_{\text {list }}
$$

Intermediate step

Step 2:

$$
\begin{aligned}
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{1}, e_{3}, e_{4}\right\} \\
& \text { Test } e_{4} \cap e_{3} ? \text { No! } \\
& I=\emptyset \\
& E_{I}=\emptyset
\end{aligned}
$$

Intermediate step

Keeping the sweep events list ordered - necessary condition!

Given e, if $\forall e_{i}: \operatorname{det}\left(e, e_{i}\right)<0 \Rightarrow e$ before e_{i}
Given e, if $\forall e_{i}: \operatorname{det}\left(e, e_{i}\right)>0 \Rightarrow e$ after e_{i}

Intermediate step

Step 5:

$$
\begin{aligned}
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{1}, e_{3}, e_{6}, e_{5}\right\}
\end{aligned}
$$

Intermediate step

Step 5：

$$
\begin{aligned}
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{1}, e_{3}, e_{6}, e_{7}\right\}
\end{aligned}
$$

Test $e_{7} \cap e_{6}$ ？Yes！\Rightarrow
$S W_{\text {list }}=\left\{e_{1}, e_{3}, e_{7}, e_{6}\right\}$
$I=\left\{\left(a_{1}, b_{1}\right)\right\}$ ，
$E_{I}=\left\{\left(e_{6}, e_{7}\right)\right\}$

Intermediate step

Managing the info on each crossing in \mathbb{R}^{3} :

For:

$$
\begin{aligned}
L_{2}\left(A_{1}\right) & =\left(\begin{array}{lll}
a_{2} & b_{2} & 1 \\
d_{2} & e_{2} & 1 \\
a_{1} & b_{1} & 1
\end{array}\right) \\
L_{2}\left(B_{1}\right) & =\left(\begin{array}{lll}
a_{2} & b_{2} & 1 \\
d_{2} & e_{2} & 1 \\
d_{1} & e_{1} & 1
\end{array}\right)
\end{aligned}
$$

- Compute α_{1} from:
$\alpha_{1} \cdot L_{2}\left(A_{1}\right)+\left(1-\alpha_{1}\right) \cdot L_{2}\left(B_{1}\right)=0$,
Compute z_{1} from:
$z_{1}=\alpha_{1} \cdot c_{1}+\left(1-\alpha_{1}\right) \cdot f_{1}$
(similarly compute z_{2})
- Note: compare z_{1} ? z_{2}
- $z_{1}>z_{2} \Rightarrow e_{1}$ over e_{2}
- $z_{1}<z_{2} \Rightarrow e_{1}$ under e_{2}

Intermediate step

Final step:

$$
\begin{aligned}
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{9}, e_{8}, e_{7}, e_{10}\right\} \\
& I=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\} \\
& E_{I}=\left\{\left(e_{6}, e_{7}\right),\left(e_{8}, e_{3}\right)\right\}
\end{aligned}
$$

Intermediate step

Refinements of the algorithm:

Everytime an intersection is detected we update $E, S W_{\text {list }}$ as follows:
Detect $e_{6} \cap e_{7}$:
$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{7}^{\prime \prime}, e_{6}^{\prime \prime}, e_{9}, e_{10}\right\}$
$S W_{\text {list }}=\left\{e_{1}, e_{3}, e_{7}^{\prime}, e_{6}^{\prime}\right\}$
Detect $e_{8} \cap e_{3}$:
$E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{3}^{\prime \prime}, e_{8}^{\prime \prime}, e_{7}^{\prime \prime}, e_{6}^{\prime \prime}, e_{9}, e_{10}\right\}$
$S W_{\text {list }}=\left\{e_{3}^{\prime}, e_{8}^{\prime}, e_{7}^{\prime}, e_{6}^{\prime}\right\}$

Intermediate step

Refinements of the algorithm (next):

$$
\begin{aligned}
& S W_{\text {list }}=\left\{e_{1}, e_{3}, e_{7}^{\prime}, e_{6}^{\prime}\right\} \\
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{7}^{\prime \prime}, e_{6}^{\prime \prime}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{8}, e_{3}, e_{7}^{\prime}, e_{6}^{\prime}\right\} \\
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{3}^{\prime \prime}, e_{8}^{\prime \prime}, e_{7}^{\prime \prime}, e_{6}^{\prime \prime}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{3}^{\prime}, e_{8}^{\prime}, e_{7}^{\prime}, e_{6}^{\prime}\right\}
\end{aligned}
$$

Intermediate step

Refinements of the algorithm (next):

$$
\begin{aligned}
& S W_{\text {list }}=\left\{e_{3}^{\prime}, e_{8}^{\prime}, e_{7}^{\prime}, e_{6}^{\prime}\right\} \\
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{3}^{\prime \prime}, e_{8}^{\prime \prime}, e_{7}^{\prime \prime}, e_{6}^{\prime \prime}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{3}^{\prime \prime}, e_{8}^{\prime}, e_{7}^{\prime}, e_{6}^{\prime}\right\}
\end{aligned}
$$

Intermediate step

Refinements of the algorithm (next):

$$
\begin{aligned}
& S W_{\text {list }}=\left\{e_{3}^{\prime \prime}, e_{8}^{\prime}, e_{7}^{\prime}, e_{6}^{\prime}\right\} \\
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{3}^{\prime \prime}, e_{8}^{\prime \prime}, e_{7}^{\prime \prime}, e_{6}^{\prime \prime}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{3}^{\prime \prime},, e_{8}^{\prime \prime}, e_{7}^{\prime}, e_{6}^{\prime}\right\}
\end{aligned}
$$

Intermediate step

Refinements of the algorithm (next):

$$
\begin{aligned}
& S W_{\text {list }}=\left\{e_{3}^{\prime \prime}, e_{8}^{\prime}, e_{7}^{\prime}, e_{6}^{\prime}\right\} \\
& E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{3}^{\prime \prime}, e_{8}^{\prime \prime}, e_{7}^{\prime \prime}, e_{6}^{\prime \prime}, e_{9}, e_{10}\right\} \\
& S W_{\text {list }}=\left\{e_{3}^{\prime \prime}, e_{8}^{\prime \prime}, e_{7}^{\prime \prime}, e_{6}^{\prime}\right\} \Rightarrow \\
& I=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right\} \\
& E_{I}=\left\{\left(e_{6}, e_{7}\right),\left(e_{8}, e_{3}\right),\left(e_{8}^{\prime \prime}, e_{7}^{\prime \prime}\right)\right\}
\end{aligned}
$$

Intermediate step

Degenerate cases in the algorithm (unsolved yet!):
Case 1: Find condition s.t. $I=e_{1} \cap e_{2} \cap e_{3} \cap e 4$

Case 2: Find $\epsilon>0$ s.t. $(x 1-x 2)^{2}+(y 1-y 2)^{2}<\epsilon^{2}$

Next

Computing the δ-invariant of the singularity

- Input:
- $C \subset \mathbb{C}^{2}$ complex algebraic curve;
- $z \in$ Singularities (C);
- $\Delta\left(t_{1}, . ., t_{p}\right)$ - Alexander polynomial of z;
- $r=$ number of variables in Δ (branches of C through z);
- $\mu=$ degree of Δ (multiplicity of z);
- Output:
- $\delta_{z}>0$ s.t.
δ_{z} is an invariant that measures
the number of double points of C at z.

Computing the δ-invariant of the singularity

- Method: based on Milnor's research on singularities of complex hypersurfaces.

Summary

- At present: for symbolic coefficients

- Future work: tests for algorithm with numeric coefficients

(1) Motivation

(2) Describing the Problem What?
(3) Solving the problem How?

(4) Current results

(5) Conclusion and future work

Conclusion

- first results and test experiments were presented;
- Future work:
- deeper introspection into some mathematical aspects (i.e. Milnor's fibration, Alexander polynomial);
- correctness/completeness for the algorithm;
- implementation of the algorithm;
- analysis of the algorithm.

Thank you for your attention.

[^0]: ${ }^{a}$ Acknowledgements: B. Mourrain, J. Wintz

[^1]: ${ }^{\text {a }}$ Acknowledgements: B. Mourrain, J. Wintz

