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Numeric Algorithms:
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What?

• Input:
• C field of complex numbers;
• F ∈ C[z, w] irreducible with coefficients of limited accuracy 1;
• C = {(z, w) ∈ C2|F (z, w) = 0} =

= {(x, y, u, v) ∈ R4|F (x+ iy, u+ iv) = 0} complex algebraic curve
(d is the degree, Sing(C) is the set of singularities);

• Output:
• approximate genus(C) s.t.

genus(C) =
1

2
(d− 1)(d− 2)−

X
P∈Sing(C)

δ-invariant(P );

1For now: symbolic coefficients
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How?

• Strategy for computing the genus

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS
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How?

•• Method for computing the genus

Singularities: Maths
compute

numerically
// Link: Maths

��

δ-invariant(singularities): Maths

��

AlexanderPolynomial:Maths
numerically

computeoo

GENUS: Maths
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How?

•• Algorithm for the method

Singularities: Algo
compute

numerically
// Link: Algo

��

Intermediate step

��

δ-invariant(singularities): Algo

��

Alexander Polynomial: Algo
numerically

computeoo

GENUS: Algo
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Solving the problem

Implementation of the algorithm

•• (Mathematica computer algebra system)

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in Qt scripting language;

• topology of implicit curves;
• intersections of implicit surfaces.

aAcknowledgements: B. Mourrain, J. Wintz
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First

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS
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Computing the singularities of the curve

• Input:
• F ∈ C[z, w]
• C = {(z, w) ∈ C2|F (z, w) = 0}

• Output:

• S = {(z0, w0) ∈ C2|F (z0, w0) = 0,
δF

δz
(z0, w0) = 0,

δF

δw
(z0, w0) = 0}

Method: ⇒ solve overdeterminate system of polynomial equations in C2:8>>>>>><>>>>>>:

F (z0, w0) = 0

δF

δz
(z0, w0) = 0

δF

δw
(z0, w0) = 0

, (1)
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Computing the singularities of the curve

or in R4 : F (z, w) = F (x+ iy, u+ iv) = s(x, y, u, v) + it(x, y, u, v)8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

s(x0, y0, u0, v0) = 0
t(x0, y0, u0, v0) = 0

δs

δx
(x0, y0, u0, v0) = 0

δt

δx
(x0, y0, u0, v0) = 0

δs

δu
(x0, y0, u0, v0) = 0

δt

δu
(x0, y0, u0, v0) = 0

, (2)
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Computing the singularities of the curve

Using numeric input polynomials

Compute
solutions

Mathematica
(Groebner Bases, Resultants)

CoCoA
(Groebner Bases)
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Computing the singularities of the curve

Using numeric input polynomials

Compute
solutions

Mathematica
(Groebner Bases, Resultants)

CoCoA
(Groebner Bases)

Mathemagix
(subdivision method)

Bertini
(homotopy continuation)

Other suggestions
(more than welcomed)

....

  

Note: so far an open problem.
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Next

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS
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Computing the link of the singularity

• Why the link of a singularity?
• helps in understanding the topology of a complex curve

near a singularity;

• How do we compute the link?
• use stereographic projection;

•
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Computing the link of the singularity

Method (based on Milnor’s results)
1. Let C = {(x, y, u, v) ∈ R4|F (x + iy, u + iv) = 0} ⊂ C2 ∼= R4, with(

F (0, 0), δFδz (0, 0), δFδw (0, 0)
)

= (0, 0, 0) , where

z = x+ iy, w = u+ iv.

2. Consider S3 = {(x, y, u, v) ∈ R4|x2 + y2 + u2 + w2 = ε2} ⊂ R4 and
X = C

⋂
S3 = {(x, y, u, v) ∈ R4|F (x, y, u, v) = 0, x2+y2+u2+w2 = ε2}.

3. For P (0, 0, 0, ε) ∈ S3 \ C, construct
f : S3 \ {P} ⊂ R4 → R3, (x, y, u, v)→ (a, b, c) = ( x

ε−v ,
y
ε−v ,

u
ε−v )

f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) ∈ C⋂S3 : (a, b, c) = f(x, y, u, v)}
f(X) is a link.
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Computing the link of the singularity

Method (next)
3. f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) ∈ C⋂S3 : (a, b, c) = f(x, y, u, v)}

f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) = f−1(a, b, c) ∈ C⋂S3}

4. Compute f−1 : R3 → S3 \ {P}
(a, b, c)→ (x, y, u, v) = ( 2aε

1+a2+b2+c2
, 2bε

1+a2+b2+c2
, 2cε

1+a2+b2+c2
, ε(a

2+b2+c2−1)
1+a2+b2+c2

)

5. Get
f(X) =

{
(a, b, c) ∈ R3|

F ( 2aε
1+a2+b2+c2

, 2bε
1+a2+b2+c2

, 2cε
1+a2+b2+c2

, ε(a
2+b2+c2−1)

1+a2+b2+c2
) = 0

} ⇔
f(X) = {(a, b, c) ∈ R3|ReF (...) = 0, ImF (...) = 0}
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Computing the link of the singularity

Method (next)
3. f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) ∈ C⋂S3 : (a, b, c) = f(x, y, u, v)}

f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) = f−1(a, b, c) ∈ C⋂S3}
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(a, b, c)→ (x, y, u, v) = ( 2aε

1+a2+b2+c2
, 2bε

1+a2+b2+c2
, 2cε

1+a2+b2+c2
, ε(a

2+b2+c2−1)
1+a2+b2+c2

)

5. Get
f(X) =

{
(a, b, c) ∈ R3|

F ( 2aε
1+a2+b2+c2

, 2bε
1+a2+b2+c2

, 2cε
1+a2+b2+c2

, ε(a
2+b2+c2−1)

1+a2+b2+c2
) = 0

}
Compute B s.t.

f(X) = {(a, b, c) ∈ B ⊂ R3|ReF (...) = 0, ImF (...) = 0} is a link
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Computing the link of the singularity

Method (next)
6. For f(X) =

{
(a, b, c) ∈ B ⊂ R3|ReF (...) = 0, ImF (...) = 0

}
link

find B = max
{||f(p)||∞, p ∈ S3

⋂
C
} ≤ max{||f(p)||2, p ∈ S3

⋂
C}

...

7. Compute

v0 = max{v : (x, y, u, v) ∈ S3
\
C} s.t. v is solution for8<:

x2 + y2 + u2 + v2 − ε2 = 0
ReF (x+ iy, u+ iv) = 0
ImF (x+ iy, u+ iv) = 0

,
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Computing the link of the singularity

Method (next)
6. For f(X) =

{
(a, b, c) ∈ B ⊂ R3|ReF (...) = 0, ImF (...) = 0

}
link

find B = max
{||f(p)||∞, p ∈ S3

⋂
C
} ≤ max{||f(p)||2, p ∈ S3

⋂
C}

...

7. Compute

b =
√
ε+ v0
ε− v0

Get B = [−b, b]3
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Computing the link of the singularity

Method (summary)
f(X) = {(a, b, c) ∈ B ⊂ R3|ReF (...) = 0, ImF (...) = 0}

wwoooooooooooo

**UUUUUUUUUUUUUUUUU

compute 2 polynomials

&&L
L

L
L

L
visualize the intersection, get extra info

uuk k k k k k k k

Axel
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Computing the link of the singularity

Why Axel?
Axel computes the topology of implicit curves in R3.

In our case:

• Input:
• ReF (...), ImF (...) ∈ R[a, b, c]
• C = {(a, b, c) ∈ R3|ReF (...) = 0, ImF (...) = 0}
• B = [−b, b]× [−b, b]× [−b, b], ε ≥ 0

• Output:
• Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

15 / 26



Computing the link of the singularity

Test experiments (with Axel)

Equation Tests on ε

ε=0.5 ε=1.0 ε=4.3

[−b, b]3 link [−b, b]3 link [−b, b]3 link

z2 − w2 2.41421 Hopf
link

2.41421 Hopf
link

2.41421 Hopf
link

z2 − w3 3.38298 Trefoil
knot

2.67567 Trefoil
knot

1.84639 Trefoil
knot

z2−w2−
w3

2.37636 Hopf
link

2.28464 Curve
one sin-
gularity

2.24247 Trefoil
knot

V.I. Arnold’s results: Top(z2 − w2 − w3) ∼= Top(z2 − w2)
Note: solved problem.
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Next

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS
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Computing the Alexander polynomial of the link

Figure 7: The left-trefoil knot with arc- and knot enumeration

3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem

assumed at the beginning and summarizes all the concepts, methods and

algorithms presented in this work. It gives a complete overview how to get

from the given problem specification to the resulting solution - the candidates

type of singularity.

Algorithm 3.3.1 (Analyse of Curve Singularities)

• Input: Algebraic curve F (x, y) = 0 with singularity in the origin.

• Output: Alexander polynomial in one variable ∆F (x,y)(t) standardized

to
∑k

i=0 ait
i where a0 != 0 and ak > 0 in knot case. Multivariable

Alexander polynomial ∆F (x,y)(t1, . . . , tm) standardized to
∑k

i=0 ai1...imti11 ∗
. . . ∗ timm where i =

∑m
j=1 ij in link case.

• Relation between them: See Theorem 3.2.4 and Theorem 3.2.5.

43

M(L) =

0BB@
type labeli labelj labelk

c1 +1 1 2 3

1CCA

P (L) =

0@ 1A

Lefthanded (-1)

Example 3.1.5 The following picture shows what is meant with the previous

definition and the problem solution: picture (c) is the original projection. (a)

and (b) are two possible regular diagrams.

Picture out of ( [3] Figure 2.1.3 p.27)

Definition 3.1.6 The curve between one undercrossing and the next under-

crossing of the oriented knot diagram is called arc.

Now we have a graphical 2-D representation of the knot. But to go on

with computation one needs some discrete information, depending on arcs,

crossing points and which form of crossing points the knot has. This is called

to label the knot.

Definition 3.1.7 One can speak of a labelling of a knot, if every arc and

every crossing point in the knot diagram gets a number. The labelling matrix

then, is a n × 4 Matrix L, where n is the number of crossing points of the

knot. Each row represents the information of one crossing point. The first

value gives the type, which is either a righthand crossing - gives +1 - or

a lefthand crossing - gives −1. The other three values give the numbers of

the arcs which occur at the crossing. The ordering is given by the following

picture, where the left one is the righthand case and the right one the lefthand

case:

k
!!!!!!!!!

k
"""""""""

i

"""""""""""""""""" j

!!!!!!!

j """""""
i

!!!!!!!!!!!!!!!!!!

It has to be mentioned that the labelling of a knot is not uniquely defined.

The same knot can have more than one labelling, because the enumeration

of the crossing points and the arcs can be done in different ways.

From this labelling matrix one can determine the so called Alexander poly-

nomial. How this can be done will be the topic of next section.
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Computing the Alexander polynomial of the link

Figure 7: The left-trefoil knot with arc- and knot enumeration

3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem

assumed at the beginning and summarizes all the concepts, methods and

algorithms presented in this work. It gives a complete overview how to get

from the given problem specification to the resulting solution - the candidates

type of singularity.

Algorithm 3.3.1 (Analyse of Curve Singularities)

• Input: Algebraic curve F (x, y) = 0 with singularity in the origin.
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Computing the Alexander polynomial of the link

Figure 7: The left-trefoil knot with arc- and knot enumeration

3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem

assumed at the beginning and summarizes all the concepts, methods and

algorithms presented in this work. It gives a complete overview how to get

from the given problem specification to the resulting solution - the candidates

type of singularity.

Algorithm 3.3.1 (Analyse of Curve Singularities)

• Input: Algebraic curve F (x, y) = 0 with singularity in the origin.

• Output: Alexander polynomial in one variable ∆F (x,y)(t) standardized

to
∑k

i=0 ait
i where a0 != 0 and ak > 0 in knot case. Multivariable

Alexander polynomial ∆F (x,y)(t1, . . . , tm) standardized to
∑k

i=0 ai1...imti11 ∗
. . . ∗ timm where i =

∑m
j=1 ij in link case.

• Relation between them: See Theorem 3.2.4 and Theorem 3.2.5.
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knot. Each row represents the information of one crossing point. The first

value gives the type, which is either a righthand crossing - gives +1 - or
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3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem

assumed at the beginning and summarizes all the concepts, methods and

algorithms presented in this work. It gives a complete overview how to get

from the given problem specification to the resulting solution - the candidates

type of singularity.

Algorithm 3.3.1 (Analyse of Curve Singularities)

• Input: Algebraic curve F (x, y) = 0 with singularity in the origin.

• Output: Alexander polynomial in one variable ∆F (x,y)(t) standardized

to
∑k

i=0 ait
i where a0 != 0 and ak > 0 in knot case. Multivariable

Alexander polynomial ∆F (x,y)(t1, . . . , tm) standardized to
∑k

i=0 ai1...imti11 ∗
. . . ∗ timm where i =

∑m
j=1 ij in link case.

• Relation between them: See Theorem 3.2.4 and Theorem 3.2.5.
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3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem
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3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem

assumed at the beginning and summarizes all the concepts, methods and

algorithms presented in this work. It gives a complete overview how to get

from the given problem specification to the resulting solution - the candidates

type of singularity.

Algorithm 3.3.1 (Analyse of Curve Singularities)
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. . . ∗ timm where i =

∑m
j=1 ij in link case.

• Relation between them: See Theorem 3.2.4 and Theorem 3.2.5.
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The same knot can have more than one labelling, because the enumeration

of the crossing points and the arcs can be done in different ways.
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3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem

assumed at the beginning and summarizes all the concepts, methods and

algorithms presented in this work. It gives a complete overview how to get

from the given problem specification to the resulting solution - the candidates

type of singularity.

Algorithm 3.3.1 (Analyse of Curve Singularities)

• Input: Algebraic curve F (x, y) = 0 with singularity in the origin.

• Output: Alexander polynomial in one variable ∆F (x,y)(t) standardized

to
∑k
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Alexander polynomial ∆F (x,y)(t1, . . . , tm) standardized to
∑k

i=0 ai1...imti11 ∗
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∑m
j=1 ij in link case.

• Relation between them: See Theorem 3.2.4 and Theorem 3.2.5.
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The same knot can have more than one labelling, because the enumeration
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3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem

assumed at the beginning and summarizes all the concepts, methods and

algorithms presented in this work. It gives a complete overview how to get

from the given problem specification to the resulting solution - the candidates

type of singularity.

Algorithm 3.3.1 (Analyse of Curve Singularities)

• Input: Algebraic curve F (x, y) = 0 with singularity in the origin.

• Output: Alexander polynomial in one variable ∆F (x,y)(t) standardized
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∑k
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∑k

i=0 ai1...imti11 ∗
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∑m
j=1 ij in link case.

• Relation between them: See Theorem 3.2.4 and Theorem 3.2.5.
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3.3 Algorithm for Analysing Curve Singularities

The algorithm presented in this subsection is the solution of the problem

assumed at the beginning and summarizes all the concepts, methods and

algorithms presented in this work. It gives a complete overview how to get

from the given problem specification to the resulting solution - the candidates

type of singularity.

Algorithm 3.3.1 (Analyse of Curve Singularities)

• Input: Algebraic curve F (x, y) = 0 with singularity in the origin.
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Alexander polynomial ∆F (x,y)(t1, . . . , tm) standardized to
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the arcs which occur at the crossing. The ordering is given by the following

picture, where the left one is the righthand case and the right one the lefthand

case:

k
!!!!!!!!!

k
"""""""""

i

"""""""""""""""""" j

!!!!!!!

j """""""
i

!!!!!!!!!!!!!!!!!!

It has to be mentioned that the labelling of a knot is not uniquely defined.

The same knot can have more than one labelling, because the enumeration

of the crossing points and the arcs can be done in different ways.

From this labelling matrix one can determine the so called Alexander poly-

nomial. How this can be done will be the topic of next section.
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Computing the Alexander polynomial of the link

• Input:
• L = K1 ∪ ... ∪Km with n - crossings
• D(L)- oriented diagram of L

• Output:
• ∆L(t1, ...tm) ∈ Z[t±1

1 , ..., t±1
m ]

• Method: consists of several steps

• Need D(L)!
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Next

1.Singularities
compute

numerically
// 2.Link

��

Intermediate step

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS
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Intermediate step

• Input:
• Graph(L) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• Output:
• D(L) s.t.
D(L) is the image under regular projection of L together with the

information on each crossing telling which branch goes under and which goes

over.
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Intermediate step

• Input:
• Graph

′
(L) = 〈V ′

, E ′〉 with
V ′

= {p = (m,n) ∈ R2}
E ′

= {(i, j)|i, j ∈ V ′}
• Output:

• D(L) s.t. D(L) is the image under regular projection of L

together with the information on each crossing telling which branch goes

under and which goes over.

• Method: the Bentley-Ottman algorithm
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Intermediate step

• Input:
• E = {e1, e2, ...., en}-set of n edges in the plane with:

 

P
i

index
S

index
D

i
e

index
i

• Output:
• I = {pi = (ai, bi) ∈ R2 | ∀pi ∃ej 6= ek : ej ∩ ek = {pi}}
EI = {(ei, ej) | i 6= j, ei ∩ ej 6= ∅, z(ei) < z(ej))}

(x,y,z2)

A1

B1A 2

B
2

I

I

(x,y)

A

B
2

2 (x,y,z1)

A1

B1
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Intermediate step

Given:

e1

e2

e3

e4

e5

e6 e7

e8

e9

e10

E = {e2, e3, e1, e6, e4, e7, e8, e5, e9, e10}
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Intermediate step

Sorting the edges-necessary condition!

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
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Intermediate step

Initialization:

e3

e4

e5

e6

e7

e8

e9

e10

e1

e2

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e2}
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Intermediate step

Step 1:

e3

e4

e5

e6

e7

e8

e9

e10

e1

e2

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e2}
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Intermediate step

Step 1:

e4

e5

e6

e7

e8

e9

e10

e1

e3

e2

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e3}
Test e3 ∩ e1? No!
I = ∅
EI = ∅
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Intermediate step

How do we test intersection of 2 edges?

I(x,y)

A2(u,v)

A1(a,b)
B2(s,t)

B1(c,d)

A1

B1

A2

B2

L1
L2

• L1(x, y) : y1 = m1 · x+ b1

m1 =
d− b
c− a , b1 =

b · c− a · d
c− a

L1(x, y) : (b−d)x+ (c−a)y+a ·d− b · c = 0
L2(x, y) : (v− t)x+ (s−u)y+u · t− v · s = 0
(similarly to L1)

• Note:

• L1(A2) · L1(B2) < 0⇒ e1 ∩ e2 6= ∅
L2(A1) · L2(B1) < 0⇒ e1 ∩ e2 6= ∅

• L1(A2) · L1(B2) > 0⇒ e1 ∩ e2 = ∅
L2(A1) · L2(B1) > 0⇒ e1 ∩ e2 = ∅

• L1(A2) ·L1(B2) = 0⇒ e1 ∩ e2 = {A2},
L2(A1) ·L2(B1) = 0⇒ e1 ∩ e2 = {A2},
(A2 = B1)
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Intermediate step

Step 2:

e5

e6

e7

e8

e9

e10

e1

e3

e2

e4

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e3}
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Intermediate step

Step 2:

e5

e6

e7

e8

e9

e10

e1

e3

e2

e4

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e3}
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Intermediate step

Step 2:

D3(b11,b12)

e5

e6

e7

e8

e9

e10

e1

e3

e2

e4

S4(a,b)

S3(a11,a12)

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e3}; compute:

det(e4, e3) =

 a11 a12 1
b11 b12 1
a b 1

 > 0⇒ e4 after e3 in SWlist
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Intermediate step

Step 2:

e5

e6

e7

e8

e9

e10

e1

e3

e2

e4

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e3, e4}
Test e4 ∩ e3? No!
I = ∅
EI = ∅
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Intermediate step

Keeping the sweep events list ordered - necessary condition!

lastAfter

firstBefore

lastAfter

firstBefore

Given e, if ∀ei : det(e, ei) < 0⇒ e before ei

Given e, if ∀ei : det(e, ei) > 0⇒ e after ei
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Intermediate step
....
Step 5:

e7

e5

e8

e9

e10

e1

e3

e2

e4
e6

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e3, e6, e5}
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Intermediate step

Step 5:

e7

e5

e8

e9

e10

e1

e3

e2

e4
e6

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e1, e3, e6, e7}
Test e7 ∩ e6? Yes! ⇒
SWlist = {e1, e3, e7, e6}
I = {(a1, b1)},
EI = {(e6, e7)}
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Intermediate step

Managing the info on each crossing in R3:

A1

B1

B
2

B

B
2

1 (d1,e1,0)

(d2,e2,0)

A
2
(a2,b2,0)

A
1
(a1,b1,0)

(x,y)

A
2 (x,y,z1)

(x,y,z2)
(a1,b1,c1)

(d1,e1,f1)
(a2,b2,c2)

(d2,e2,f2)

For:

L2(A1) =

0@ a2 b2 1
d2 e2 1
a1 b1 1

1A
L2(B1) =

0@ a2 b2 1
d2 e2 1
d1 e1 1

1A
• Compute α1 from:
α1 · L2(A1) + (1− α1) · L2(B1) = 0,
Compute z1 from:
z1 = α1 · c1 + (1− α1) · f1
(similarly compute z2)

• Note: compare z1?z2

• z1 > z2 ⇒ e1 over e2
• z1 < z2 ⇒ e1 under e2
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Intermediate step
....
Final step:

e10

e5

e2

e4

e7

e1

e3

e6

e8

e9

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
SWlist = {e9, e8, e7, e10}
I = {(a1, b1), (a2, b2)}
EI = {(e6, e7), (e8, e3)}
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Intermediate step

Refinements of the algorithm:

e3’’

e5

e9

e10

e2

e4

e1

e7’

e6’

e6’’

e7’’

e3’

e8’

e8’’

Everytime an intersection is detected we update E,SWlist as follows:
Detect e6 ∩ e7 :
E = {e1, e2, e3, e4, e5, e6, e7, e8, e

′′
7 , e

′′
6 , e9, e10}

SWlist = {e1, e3, e
′
7, e

′
6}

Detect e8 ∩ e3 :
E = {e1, e2, e3, e4, e5, e6, e7, e8, e

′′
3 , e

′′
8 , e

′′
7 , e

′′
6 , e9, e10}

SWlist = {e
′
3, e

′
8, e

′
7, e

′
6}
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Intermediate step

Refinements of the algorithm (next):

e3’’

e5

e9

e10

e2

e4

e1

e7’

e6’

e6’’

e7’’

e3’

e8’

e8’’

SWlist = {e1, e3, e′7, e
′
6}

E = {e1, e2, e3, e4, e5, e6, e7, e8, e′′7 , e
′′
6 , e9, e10}

SWlist = {e8, e3, e′7, e
′
6}

E = {e1, e2, e3, e4, e5, e6, e7, e8, e′′3 , e
′′
8 , e

′′
7 , e

′′
6 , e9, e10}

SWlist = {e′3, e
′
8, e

′
7, e

′
6}
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Intermediate step

Refinements of the algorithm (next):

e3’’

e5

e9

e10

e2

e4

e1

e7’

e6’

e6’’

e7’’

e3’

e8’

e8’’

SWlist = {e′3, e
′
8, e

′
7, e

′
6}

E = {e1, e2, e3, e4, e5, e6, e7, e8, e′′3 , e
′′
8 , e

′′
7 , e

′′
6 , e9, e10}

SWlist = {e′′3 , e
′
8, e

′
7, e

′
6}
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Intermediate step

Refinements of the algorithm (next):

e3’’

e5

e9

e10

e2

e4

e1

e7’

e6’

e6’’

e7’’

e3’

e8’

e8’’

SWlist = {e′′3 , e
′
8, e

′
7, e

′
6}

E = {e1, e2, e3, e4, e5, e6, e7, e8, e′′3 , e
′′
8 , e

′′
7 , e

′′
6 , e9, e10}

SWlist = {e′′3 , , e
′′
8 , e

′
7, e

′
6}

20 / 26



Intermediate step

Refinements of the algorithm (next):

e3’’

e5

e9

e10

e2

e4

e1

e7’

e6’

e6’’

e7’’

e3’

e8’

e8’’

SWlist = {e′′3 , e
′
8, e

′
7, e

′
6}

E = {e1, e2, e3, e4, e5, e6, e7, e8, e′′3 , e
′′
8 , e

′′
7 , e

′′
6 , e9, e10}

SWlist = {e′′3 , , e
′′
8 , e

′′
7 , e

′
6} ⇒

I = {(a1, b1), (a2, b2), (a3, b3)}
EI = {(e6, e7), (e8, e3), (e

′′
8 , e

′′
7)}

20 / 26



Intermediate step

Degenerate cases in the algorithm (unsolved yet!):
Case 1: Find condition s.t. I = e1 ∩ e2 ∩ e3 ∩ e4

e4e1

e2 e3

Case 2: Find ε > 0 s.t. (x1− x2)2 + (y1− y2)2 < ε2

(x2,y2)

e1

e2
e3

e4

e5

e6

e8

e7

(x1,y1)
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Next

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS
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Computing the δ-invariant of the singularity

• Input:
• C ⊂ C2 complex algebraic curve;
• z ∈ Singularities(C);
• ∆(t1, .., tp) - Alexander polynomial of z;
• r = number of variables in ∆ (branches of C through z);
• µ = degree of ∆ (multiplicity of z);

• Output:
• δz > 0 s.t.

δz is an invariant that measures
the number of double points of C at z.

22 / 26



Computing the δ-invariant of the singularity

• Method: based on Milnor’s research on singularities of complex
hypersurfaces.

∆(t1, ..., tp) : r, µ

wwooooooooooo

&&MMMMMMMMMMM

r ≥ 2⇒ δ =
1
2

(µ+ r) r = 1⇒ δ =
1
2
µ
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Summary

• At present: for symbolic coefficients

Singularities
compute

numerically
// Link

��

Intermediate step

��

δ-invariant(singularities)

��

Alexander Polynomial
numerically

computeoo

GENUS

•• Future work: tests for algorithm with numeric coefficients
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1 Motivation

2 Describing the Problem
What?

3 Solving the problem
How?

4 Current results

5 Conclusion and future work
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Conclusion

• first results and test experiments were presented;

• Future work:
• deeper introspection into some mathematical aspects

(i.e. Milnor’s fibration, Alexander polynomial);
• correctness/completeness for the algorithm;
• implementation of the algorithm;
• analysis of the algorithm.
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Thank you for your attention.
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