A symbolic-numeric algorithm for genus computation

Mădălina Hodorog Supervisor: Prof. Dr. Josef Schicho

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria

July 9, 2009

Table of contents

1 Motivation

- 2 Describing the problem What?
- Solving the problem How?
- **4** Current results
- **5** Conclusion and future work

1 Motivation

2 Describing the problem What?

• Solving the problem How?

4 Current results

(3) Conclusion and future work

Symbolic Algorithms:

4/28

Numeric Algorithms:

Symbolic-Numeric Algorithms:

DK Project: Symbolic-Numeric techniques for genus computation and parametrization (project leader: Prof. Dr. Josef Schicho).

1 Motivation

2 Describing the problem What?

3 Solving the problem How?

Ourrent results

5 Conclusion and future work

What?

• Input:

- C field of complex numbers;
- $F \in \mathbb{C}[z, w]$ irreducible with coefficients of limited accuracy ¹;
- $C = \{(z, w) \in \mathbb{C}^2 | F(z, w) = 0\} =$ = $\{(x, y, u, v) \in \mathbb{R}^4 | F(x + iy, u + iv) = 0\}$ complex algebraic curve (d is the degree, Sing(C) is the set of singularities);

• Output:

• approximate genus(C) s.t.

$$genus(C) = \frac{1}{2}(d-1)(d-2) - \sum_{P \in Sing(C)} \delta\text{-invariant}(P);$$

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

6/28

1 Motivation

2 Describing the problem What?

Solving the problem How?

Ourrent results

(3) Conclusion and future work

• Strategy for computing the genus

• Method for computing the genus

• Algorithm for the method

• Algorithm for the method

Implementation of the algorithm

• Axel algebraic geometric modeler ^a

- developed by *Galaad* team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- provides algebraic tools for:
 - implicit curves;
 - implicit surfaces.

^aAcknowledgements: B. Mourrain, J. Wintz

Implementation of the algorithm

- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - provides algebraic tools for:
 - implicit curves;implicit surfaces

^aAcknowledgements: B. Mourrain, J. Wintz

Implementation of the algorithm

- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - provides algebraic tools for:
 - implicit curves;
 - implicit surfaces.

イロト イポト イヨト イヨト

9/28

^aAcknowledgements: B. Mourrain, J. Wintz

Implementation of the algorithm

- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - written in Qt scripting language;
 - provides algebraic tools for:
 - implicit curves;
 - implicit surfaces.

^aAcknowledgements: B. Mourrain, J. Wintz

1 Motivation

2 Describing the problem What?

Solving the problem How?

Ourrent results

5 Conclusion and future work

First

Computing the singularities of the curve

- Input:
 - $F \in \mathbb{C}[z, w]$ • $C = \{(z, w) \in \mathbb{C}^2 | F(z, w) = 0\}$
- Output:

•
$$Sing(C) = \{(z_0, w_0) \in \mathbb{C}^2 | F(z_0, w_0) = 0, \frac{\delta F}{\delta z}(z_0, w_0) = 0, \frac{\delta F}{\delta w}(z_0, w_0) = 0\}$$

Method: \Rightarrow solve overdeterminate system of polynomial equations in \mathbb{C}^2 :

$$\begin{cases} F(z_0, w_0) = 0 \\ \frac{\delta F}{\delta z}(z_0, w_0) = 0 \\ \frac{\delta F}{\delta w}(z_0, w_0) = 0 \end{cases}$$

$$(1)$$

Computing the singularities of the curve

or in
$$\mathbb{R}^4$$
: $F(z, w) = F(x + iy, u + iv) = s(x, y, u, v) + it(x, y, u, v)$

$$\begin{cases}
s(x_0, y_0, u_0, v_0) = 0 \\
t(x_0, y_0, u_0, v_0) = 0 \\
\frac{\delta s}{\delta x}(x_0, y_0, u_0, v_0) = 0 \\
\frac{\delta t}{\delta u}(x_0, y_0, u_0, v_0) = 0 \\
\frac{\delta t}{\delta u}(x_0, y_0, u_0, v_0) = 0
\end{cases}$$

Control Program
 Control Program

(2)

Computing the singularities of the curve

Using numeric input polynomials

Next

- Why the link of a singularity?
 - helps in understanding the topology of a complex curve near a singularity;
- How do we compute the link?
 - use stereographic projection;

Method (based on Milnor's results) 1. Let $C = \{(x, y, u, v) \in \mathbb{R}^4 | F(x, y, u, v) = 0\}$ s.t. $(0, 0, 0, 0) \in Sing(C)$

2. Consider
$$S_{(0,\epsilon)} := S = \{(x, y, u, v) \in \mathbb{R}^4 | x^2 + y^2 + u^2 + w^2 = \epsilon^2\}, X = C \bigcap S_{(0,\epsilon)} \subset \mathbb{R}^4$$

$$\begin{aligned} \mathbf{3. For } P \in S \setminus C \text{ take } f: S \setminus \{P\} \to \mathbb{R}^3, f(x, y, u, v) &= \left(\frac{x}{\epsilon - v}, \frac{y}{\epsilon - v}, \frac{u}{\epsilon - v}\right), \\ f^{-1}: \mathbb{R}^3 \to S \setminus \{P\} \\ f^{-1}(a, b, c) &= \left(\frac{2a\epsilon}{1 + a^2 + b^2 + c^2}, \frac{2b\epsilon}{1 + a^2 + b^2 + c^2}, \frac{2c\epsilon}{1 + a^2 + b^2 + c^2}, \frac{\epsilon(a^2 + b^2 + c^2 - 1)}{1 + a^2 + b^2 + c^2}\right) \end{aligned}$$

4. Compute
$$f(X) = \{(a, b, c,) \in \mathbb{R}^3 | F(...) = 0\} \Leftrightarrow$$

 $f(X) = \{(a, b, c,) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$ and
B for $f(X) = \{(a, b, c,) \in B \subset \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$
For small ϵ , $f(X)$ is a link

イロト 不得下 イヨト イヨト

15/28

<u>Note</u>: A link is a closed loop in \mathbb{R}^3 that does not intersect itself.

Why Axel?

It computes numerically the topology of implicit curves in \mathbb{R}^3

- For $C^4=\{(z,w)\in \mathbb{C}^2|z^3-w^2=0\}\subset \mathbb{R}^4$ get
- $f(C^4 \cap S) := C =$ = { $(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0$ }
- compute $Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$ with $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$ $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$
- s.t. $Graph(C) \cong_{isotopic} C$

Why Axel?

It computes numerically the topology of implicit curves in \mathbb{R}^3

- For $C^4=\{(z,w)\in \mathbb{C}^2|z^3-w^2=0\}\subset \mathbb{R}^4$ get
- $f(C^4 \cap S) := C =$ = { $(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0$ }
- compute $Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$ with $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$ $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$
- s.t. $Graph(C) \cong_{isotopic} C$

Why Axel?

It computes numerically the topology of implicit curves in \mathbb{R}^3

• For
$$C^4 = \{(z,w) \in \mathbb{C}^2 | z^3 - w^2 = 0\} \subset \mathbb{R}^4$$
 get

• $f(C^4 \cap S) := C =$ = { $(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0$ }

• compute
$$Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$$
 with
 $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$
 $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$

• s.t. $Graph(C) \cong_{isotopic} C$

Why Axel?

It computes numerically the topology of implicit curves in \mathbb{R}^3

• For
$$C^4=\{(z,w)\in \mathbb{C}^2|z^3-w^2=0\}\subset \mathbb{R}^4$$
 get

• $f(C^4 \cap S) := C =$ = { $(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0$ }

• compute
$$Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$$
 with
 $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$
 $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$

• s.t. $Graph(C) \cong_{isotopic} C$

Next

Preliminaries

Diagram and arcs

A double point of a projection is called a crossing point.

A diagram is the image under regular projection, together with the information on each crossing telling which branch goes over and which under.

An arc is the part of a diagram between two undercrossings. Crossings

A crossing is: -righthanded if the underpass traffic goes from right to left. -lefthanded if the underpass traffic goes from left to right.

LH(-1)

-1

19/28

$$M(L) = \begin{pmatrix} \frac{|type||label_i||label_j||label_k}{1-1-2-1} \\ 1-t-t--1 \end{pmatrix}$$

$$P(L) = \begin{pmatrix} 1 & 2 & 3 \\ t & 1-t--1 \end{pmatrix}$$

$$RH(+1)$$

$$K = \frac{1}{1-t} + \frac{1}{1$$

k -1

19/28

$$M(L) = \begin{pmatrix} | type \ label_i \ label_j \ label_k \end{pmatrix}$$
$$M(L) = \begin{pmatrix} | type \ label_i \ label_j \ label_k \end{pmatrix}$$
$$P(L) = \begin{pmatrix} 1 & 3 & 2 \\ 1 - t & t & -1 \end{pmatrix}$$
$$P(L) = \begin{pmatrix} 1 & 3 & 2 \\ 1 - t & t & -1 \end{pmatrix}$$

$$M(L) = \begin{pmatrix} | type \ label_i \ label_j \ label_k \end{pmatrix}$$
$$M(L) = \begin{pmatrix} | type \ label_i \ label_j \ label_k \end{pmatrix}$$
$$P(L) = \begin{pmatrix} 1 & 2 & 3 \\ 1 - t & -1 & t \end{pmatrix}$$

Control Program Control P

$$\begin{split} M(L) &= \begin{pmatrix} \begin{array}{c|c} & type & label_i & label_j & label_k \\ \hline c_1 & -1 & 2 & 1 & 3 \\ c_2 & -1 & 1 & 3 & 2 \\ c_3 & -1 & 3 & 2 & 1 \\ \end{array} \end{pmatrix} \\ P(L) &= \begin{pmatrix} t & 1-t & -1 \\ 1-t & -1 & t \\ -1 & t & 1-t \\ \end{pmatrix} \\ det(P(L)) &= -t^2 + t - 1 \\ \Delta(L) &:= \Delta(t) = Normalise(det(P(L))) = t^2 - t + 1 \end{split}$$

- Input:
 - $L = K_1 \cup ... \cup K_m$ with n crossings
 - D(L)- oriented diagram of L
- Output:
 - $\Delta_L(t_1, ..., t_m) \in \mathbb{Z}[t_1^{\pm 1}, ..., t_m^{\pm 1}]$
- Method: consists of several steps

イロト イポト イヨト イヨト

20 / 28

Next

Intermediate step

•
$$G(L) = \langle P, E \rangle$$

p(index,x,y,z)

٠

e(pointS, pointD)

- ---> number of arcs, crossings
- --> number of knots in the link(orientation)

Intermediate step

Next

Computing the δ -invariant of the singularity

• Input:

- C ⊂ C² complex algebraic curve;
- $z \in Singularities(C);$
- $\Delta(t_1, .., t_p)$ Alexander polynomial of z;
- r = number of variables in Δ (branches of C through z);
- $\mu = \text{degree of } \Delta \text{ (multiplicity of } z);$
- Output:
 - δ_z > 0 s.t. δ_z measures the number of double points of C at z.
- Method (based on Milnor's research)

Summary

• Present work: for symbolic coefficients

• Future work: tests for algorithm with numeric coefficients

1 Motivation

2 Describing the problem What?

Solving the problem How?

4 Current results

5 Conclusion and future work

Conclusion

- first results (methods and algorithms) were presented;
- Future work:
 - deeper introspection into some mathematical aspects (i.e. numeric computation);

イロト 不得 とくき とくきとう き

27 / 28

- complete implementation of the algorithm;
- correctness proof for the algorithm;
- analysis of the algorithm.

Thank you for your attention. Questions?

