
A symbolic-numeric algorithm for genus computation

Mădălina Hodorog
Supervisor: Prof. Dr. Josef Schicho

Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences,

Research Institute for Symbolic Computation,
Johannes Kepler University Linz, Austria

July 9, 2009

1 / 28

Table of contents

1 Motivation

2 Describing the problem
What?

3 Solving the problem
How?

4 Current results

5 Conclusion and future work

2 / 28

1 Motivation

2 Describing the problem
What?

3 Solving the problem
How?

4 Current results

5 Conclusion and future work

3 / 28

Symbolic Algorithms:

Maple

Florida University RISC−Hagenberg Berlin University

Magma

Singular Axiom

Kaiserslautern University INRIA−Roquencourt

Genus
computation

algcurves CASA GHS attack

PAFFnormal.lib

4 / 28

Numeric Algorithms:

Genus

 computation

 ?!

4 / 28

Symbolic-Numeric Algorithms:
DK Project: Symbolic-Numeric techniques for genus computation and parametrization
(project leader: Prof. Dr. Josef Schicho).

Genus

computation

Axel algebraic modeler

INRIA−Sophia Antipolis

!QComplexGenus!QComplexInvariant

!Ongoing(our plugin):

4 / 28

1 Motivation

2 Describing the problem
What?

3 Solving the problem
How?

4 Current results

5 Conclusion and future work

5 / 28

What?

• Input:
• C field of complex numbers;
• F ∈ C[z, w] irreducible with coefficients of limited accuracy 1;
• C = {(z, w) ∈ C2|F (z, w) = 0} =

= {(x, y, u, v) ∈ R4|F (x+ iy, u+ iv) = 0} complex algebraic curve
(d is the degree, Sing(C) is the set of singularities);

• Output:
• approximate genus(C) s.t.

genus(C) =
1

2
(d− 1)(d− 2)−

X
P∈Sing(C)

δ-invariant(P);

1For now: symbolic coefficients
6 / 28

1 Motivation

2 Describing the problem
What?

3 Solving the problem
How?

4 Current results

5 Conclusion and future work

7 / 28

How?

• Strategy for computing the genus

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS

8 / 28

How?

•• Method for computing the genus

Singularities: Maths
compute

numerically
// Link: Maths

��

δ-invariant(singularities): Maths

��

AlexanderPolynomial:Maths
numerically

computeoo

GENUS: Maths

8 / 28

How?

•• Algorithm for the method

Singularities: Algo
compute

numerically
// Link: Algo

��

δ-invariant(singularities): Algo

��

Alexander Polynomial: Algo
numerically

computeoo

GENUS: Algo

8 / 28

How?

•• Algorithm for the method

Singularities: Algo
compute

numerically
// Link: Algo

��

Intermediate step

��

δ-invariant(singularities): Algo

��

Alexander Polynomial: Algo
numerically

computeoo

GENUS: Algo

8 / 28

Solving the problem

Implementation of the algorithm

•• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in Qt scripting language;
• provides algebraic tools for:

• implicit curves;
• implicit surfaces.

aAcknowledgements: B. Mourrain, J. Wintz

9 / 28

Solving the problem

Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in Qt scripting language;
• provides algebraic tools for:

• implicit curves;
• implicit surfaces.

aAcknowledgements: B. Mourrain, J. Wintz

9 / 28

Solving the problem

Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in Qt scripting language;
• provides algebraic tools for:

• implicit curves;
• implicit surfaces.

aAcknowledgements: B. Mourrain, J. Wintz

9 / 28

Solving the problem

Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in Qt scripting language;
• provides algebraic tools for:

• implicit curves;
• implicit surfaces.

aAcknowledgements: B. Mourrain, J. Wintz

9 / 28

1 Motivation

2 Describing the problem
What?

3 Solving the problem
How?

4 Current results

5 Conclusion and future work

10 / 28

First

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS

11 / 28

Computing the singularities of the curve

• Input:
• F ∈ C[z, w]
• C = {(z, w) ∈ C2|F (z, w) = 0}

• Output:

• Sing(C) = {(z0, w0) ∈ C2|F (z0, w0) = 0,
δF

δz
(z0, w0) = 0,

δF

δw
(z0, w0) = 0}

Method: ⇒ solve overdeterminate system of polynomial equations in C2:8>>>>>><>>>>>>:

F (z0, w0) = 0

δF

δz
(z0, w0) = 0

δF

δw
(z0, w0) = 0

, (1)

12 / 28

Computing the singularities of the curve

or in R4 : F (z, w) = F (x+ iy, u+ iv) = s(x, y, u, v) + it(x, y, u, v)8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

s(x0, y0, u0, v0) = 0
t(x0, y0, u0, v0) = 0

δs

δx
(x0, y0, u0, v0) = 0

δt

δx
(x0, y0, u0, v0) = 0

δs

δu
(x0, y0, u0, v0) = 0

δt

δu
(x0, y0, u0, v0) = 0

, (2)

12 / 28

Computing the singularities of the curve

Using numeric input polynomials

Compute
solutions

Mathematica
(Groebner Bases, Resultants)

CoCoA
(Groebner Bases)

Mathemagix
(subdivision method)

Bertini
(homotopy continuation)

Other suggestions
(more than welcomed)

....

Note: so far an open problem.

12 / 28

Next

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS

13 / 28

Computing the link of the singularity

• Why the link of a singularity?
• helps in understanding the topology of a complex curve

near a singularity;

• How do we compute the link?
• use stereographic projection;

•

14 / 28

Computing the link of the singularity

Method (based on Milnor’s results)
1. Let C = {(x, y, u, v) ∈ R4|F (x, y, u, v) = 0} s.t. (0, 0, 0, 0) ∈ Sing(C)

2. Consider S(0,ε) := S = {(x, y, u, v) ∈ R4|x2 + y2 + u2 + w2 = ε2},
X = C

⋂
S(0,ε) ⊂ R4

3. For P ∈ S \ C take f : S \ {P} → R3, f(x, y, u, v) = (x
ε−v ,

y
ε−v ,

u
ε−v),

f−1 : R3 → S \ {P}
f−1(a, b, c) = (2aε

1+a2+b2+c2
, 2bε

1+a2+b2+c2
, 2cε

1+a2+b2+c2
, ε(a

2+b2+c2−1)
1+a2+b2+c2

)

4. Compute f(X) = {(a, b, c,) ∈ R3|F (...) = 0} ⇔
f(X) = {(a, b, c,) ∈ R3|ReF (...) = 0, ImF (...) = 0} and

B for f(X) = {(a, b, c,) ∈ B ⊂ R3|ReF (...) = 0, ImF (...) = 0}
For small ε, f(X) is a link

Note: A link is a closed loop in R3 that does not intersect itself.

15 / 28

Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in R3

• For C4 = {(z, w) ∈ C2|z3 − w2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(a, b, c) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

16 / 28

Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in R3

• For C4 = {(z, w) ∈ C2|z3 − w2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(a, b, c) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

16 / 28

Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in R3

• For C4 = {(z, w) ∈ C2|z3 − w2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(a, b, c) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

16 / 28

Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in R3

• For C4 = {(z, w) ∈ C2|z3 − w2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(a, b, c) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

16 / 28

Next

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS

17 / 28

Preliminaries

A double point of a projection is called a crossing point.

A diagram is the image under regular projection, together
with the information on each crossing telling which branch
goes over and which under.

An arc is the part of a diagram between two undercrossings.

A crossing is:
-righthanded if the underpass traffic goes from right to left.
-lefthanded if the underpass traffic goes from left to right.

Diagram and arcs

Crossings

i

j

k i k

j

RH LH

18 / 28

Computing the Alexander polynomial of the link

k=3i=2

j=1

M(L) =

0BB@
type labeli labelj labelk

c1 −1 2 1 3

1CCA

P (L) =

0@ 1A

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

M(L) =

0BB@
type labeli labelj labelk

c1 −1 2 1 3
1− t t −1

1CCA

P (L) =

0BB@
2 1 3

1− t t −1

1CCA

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

M(L) =

0BB@
type labeli labelj labelk

c1 −1 2 1 3
1− t t −1

1CCA

P (L) =

0BB@
1 2 3
t 1− t −1

1CCA

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

j=3
i=1

k=2

M(L) =

0BB@
type labeli labelj labelk

c2 −1 1 3 2

1CCA

P (L) =

0@ 1A

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

M(L) =

0BB@
type labeli labelj labelk

c2 −1 1 3 2
1− t t −1

1CCA

P (L) =

0BB@ 1 3 2
1− t t −1

1CCA

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

M(L) =

0BB@
type labeli labelj labelk

c2 −1 1 3 2
1− t t −1

1CCA

P (L) =

0BB@ 1 2 3
1− t −1 t

1CCA

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

j=2

i=3
k=1

M(L) =

0BB@
type labeli labelj labelk

c3 −1 3 2 1

1CCA

P (L) =

0@ 1A

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

M(L) =

0BBBB@
type labeli labelj labelk

c3 −1 3 2 1
1− t t −1

1CCCCA

P (L) =

0BB@ 3 2 1
1− t t −1

1CCA

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

M(L) =

0BBBB@
type labeli labelj labelk

c3 −1 3 2 1
1− t t −1

1CCCCA

P (L) =

0BB@ 1 2 3
−1 t 1− t

1CCA

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

M(L) =

0BB@
type labeli labelj labelk

c1 −1 2 1 3
c2 −1 1 3 2
c3 −1 3 2 1

1CCA

P (L) =

0@ t 1− t −1
1− t −1 t
−1 t 1− t

1A
det(P (L)) = −t2 + t− 1

∆(L) := ∆(t) = Normalise(det(P (L))) = t2−t+1

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

19 / 28

Computing the Alexander polynomial of the link

• Input:
• L = K1 ∪ ... ∪Km with n - crossings
• D(L)- oriented diagram of L

• Output:
• ∆L(t1, ...tm) ∈ Z[t±1

1 , ..., t±1
m]

• Method: consists of several steps

M(L) P(L)

labelling matrix
compute

preAlexander matrix
compute compute

Alexander polynomial

(L)D(L)

• Need D(L)!

20 / 28

Next

1.Singularities
compute

numerically
// 2.Link

��

Intermediate step

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS

21 / 28

Intermediate step

• ?⇒

2

1 3

c1

c2

c3

• G(L) = 〈P,E〉 D(L)
•

p(index,x,y,z)

e(pointS, pointD)

number of arcs, crossings
type of crossings (under, over)
number of knots in the link(orientation)

22 / 28

Intermediate step

D(L)

number of
intersections of edges

numbers of
arcs,crossings

under/over crossingsinformation on each
intersection

(adapted Bentley−Ottman algo)
ALGO1

oriented closed loops
number of number of oriented

knots in the link

G(L) =<P,E>

modified G(L) =<P,E>

ALGO31.split undergoing edges(UE)
2.keep overgoing edges(OE)
3.update closed loops

1. construct the arcs
2. decide crossing(RH/LH)
3. decide belonging of edges to arcs

D(L)

ALGO2
(our)

(our)

22 / 28

Next

1.Singularities of the curve
compute

numerically
// 2.Link

��

4.δ-invariant(singularities)

��

3.Alexander Polynomial
numerically

computeoo

5.GENUS

23 / 28

Computing the δ-invariant of the singularity

• Input:

• C ⊂ C2 complex algebraic curve;
• z ∈ Singularities(C);
• ∆(t1, .., tp) - Alexander polynomial of z;
• r = number of variables in ∆ (branches of C through z);

• µ = degree of ∆ (multiplicity of z);

• Output:

• δz > 0 s.t. δz measures the number of double points of C at z.

• Method (based on Milnor’s research)

∆(t1, ..., tp) : r, µ

wwooooooooooo

&&MMMMMMMMMMM

r ≥ 2⇒ δ =
1
2

(µ+ r) r = 1⇒ δ =
1
2
µ

24 / 28

Summary

• Present work: for symbolic coefficients

Singularities
compute

numerically
// Link

��

Intermediate step

��

δ-invariant(singularities)

��

Alexander Polynomial !
numerically

computeoo

GENUS

•• Future work: tests for algorithm with numeric coefficients

25 / 28

1 Motivation

2 Describing the problem
What?

3 Solving the problem
How?

4 Current results

5 Conclusion and future work

26 / 28

Conclusion

• first results (methods and algorithms) were presented;

• Future work:
• deeper introspection into some mathematical aspects

(i.e. numeric computation);
• complete implementation of the algorithm;
• correctness proof for the algorithm;
• analysis of the algorithm.

27 / 28

Thank you for your attention.
Questions?

28 / 28

	Motivation
	Describing the problem
	What?

	Solving the problem
	How?

	Current results
	Conclusion and future work

