A symbolic-numeric algorithm for genus computation

Mădălina Hodorog
Supervisor: Prof. Dr. Josef Schicho
Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Research Institute for Symbolic Computation, Johannes Kepler University Linz, Austria

July 9, 2009

Table of contents

(1) Motivation
(2) Describing the problem

What?
(3) Solving the problem

How?
(4) Current results
(5) Conclusion and future work

(1) Motivation

(2) Describing the problem What?
(3) Solving the problem How?
(4) Current results
(5) Conclusion and future work

Symbolic Algorithms:

Numeric Algorithms:

Symbolic-Numeric Algorithms:

DK Project: Symbolic-Numeric techniques for genus computation and parametrization (project leader: Prof. Dr. Josef Schicho).

(1) Motivation

(2) Describing the problem What?
(3) Solving the problem How?

(4) Current results

(5) Conclusion and future work

What?

- Input:
- \mathbb{C} field of complex numbers;
- $F \in \mathbb{C}[z, w]$ irreducible with coefficients of limited accuracy ${ }^{1}$;
- $C=\left\{(z, w) \in \mathbb{C}^{2} \mid F(z, w)=0\right\}=$ $=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid F(x+i y, u+i v)=0\right\}$ complex algebraic curve (d is the degree, $\operatorname{Sing}(C)$ is the set of singularities);
- Output:
- approximate $\operatorname{genus}(C)$ s.t.

$$
\operatorname{genus}(C)=\frac{1}{2}(d-1)(d-2)-\sum_{P \in \operatorname{Sing}(C)} \delta \text {-invariant }(P) ;
$$

(1) Motivation
(2) Describing the problem What?
(3) Solving the problem

How?

(4) Current results

(5) Conclusion and future work

How?

- Strategy for computing the genus

How?

- Method for computing the genus

How?

- Algorithm for the method

How?

- Algorithm for the method

Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language; - provides algebraic tools for:

[^0]三 \equiv の

Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- provides algebraic tools for:

[^1]
Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- provides algebraic tools for:
- implicit curves;
${ }^{\text {a }}$ Acknowledgements: B. Mourrain, J. Wintz

Solving the problem

Implementation of the algorithm

- Axel algebraic geometric modeler ${ }^{a}$
- developed by Galaad team (INRIA Sophia-Antipolis);
- written in Qt scripting language;
- provides algebraic tools for:
- implicit curves;
- implicit surfaces.

[^2](1) Motivation
(2) Describing the problem What?
(3) Solving the problem How?
(4) Current results
(5) Conclusion and future work

First

Computing the singularities of the curve

- Input:
- $F \in \mathbb{C}[z, w]$
- $C=\left\{(z, w) \in \mathbb{C}^{2} \mid F(z, w)=0\right\}$
- Output:
- $\operatorname{Sing}(C)=\left\{\left(z_{0}, w_{0}\right) \in \mathbb{C}^{2} \mid F\left(z_{0}, w_{0}\right)=0, \frac{\delta F}{\delta z}\left(z_{0}, w_{0}\right)=0, \frac{\delta F}{\delta w}\left(z_{0}, w_{0}\right)=0\right\}$

Method: \Rightarrow solve overdeterminate system of polynomial equations in \mathbb{C}^{2} :

$$
\left\{\begin{array}{l}
F\left(z_{0}, w_{0}\right)=0 \tag{1}\\
\frac{\delta F}{\delta z}\left(z_{0}, w_{0}\right)=0 \\
\frac{\delta F}{\delta w}\left(z_{0}, w_{0}\right)=0
\end{array}\right.
$$

Computing the singularities of the curve

or in $\mathbb{R}^{4}: F(z, w)=F(x+i y, u+i v)=s(x, y, u, v)+i t(x, y, u, v)$

$$
\left\{\begin{array}{l}
s\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \tag{2}\\
t\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \\
\frac{\delta s}{\delta x}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \\
\frac{\delta t}{\delta x}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \\
\frac{\delta s}{\delta u}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0 \\
\frac{\delta t}{\delta u}\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=0
\end{array}\right.
$$

Computing the singularities of the curve

Using numeric input polynomials

Note: so far an open problem.

Next

Computing the link of the singularity

- Why the link of a singularity?
- helps in understanding the topology of a complex curve near a singularity;
- How do we compute the link?
- use stereographic projection;

Computing the link of the singularity

Method (based on Milnor's results)

1. Let $C=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid F(x, y, u, v)=0\right\}$ s.t. $(0,0,0,0) \in \operatorname{Sing}(C)$
2. Consider $S_{(0, \epsilon)}:=S=\left\{(x, y, u, v) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+u^{2}+w^{2}=\epsilon^{2}\right\}$,

$$
X=C \bigcap S_{(0, \epsilon)} \subset \mathbb{R}^{4}
$$

3. For $P \in S \backslash C$ take $f: S \backslash\{P\} \rightarrow \mathbb{R}^{3}, f(x, y, u, v)=\left(\frac{x}{\epsilon-v}, \frac{y}{\epsilon-v}, \frac{u}{\epsilon-v}\right)$, $f^{-1}: \mathbb{R}^{3} \rightarrow S \backslash\{P\}$
$f^{-1}(a, b, c)=\left(\frac{2 a \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 b \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{2 c \epsilon}{1+a^{2}+b^{2}+c^{2}}, \frac{\epsilon\left(a^{2}+b^{2}+c^{2}-1\right)}{1+a^{2}+b^{2}+c^{2}}\right)$
4. Compute $f(X)=\left\{(a, b, c,) \in \mathbb{R}^{3} \mid F(\ldots)=0\right\} \Leftrightarrow$

$$
f(X)=\left\{(a, b, c,) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\} \text { and }
$$

$$
B \text { for } f(X)=\left\{(a, b, c,) \in B \subset \mathbb{R}^{3} \mid \operatorname{ReF}(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}
$$ For small $\epsilon, f(X)$ is a link

Note: A link is a closed loop in \mathbb{R}^{3} that does not intersect itself.

Computing the link of the singularity

Why Axel?

It computes numerically the topology of implicit curves in \mathbb{R}^{3}

- For $C^{4}=\left\{(z, w) \in \mathbb{C}^{2} \mid z^{3}-w^{2}=0\right\} \subset \mathbb{R}^{4}$ get

- compute $\operatorname{Graph}(C)=\langle\mathcal{V}, \mathcal{E}\rangle$ with $\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$
- s.t. $\operatorname{Graph}(C) \cong_{\text {isotopic }} C$

Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in \mathbb{R}^{3}

- For $C^{4}=\left\{(z, w) \in \mathbb{C}^{2} \mid z^{3}-w^{2}=0\right\} \subset \mathbb{R}^{4}$ get
- $f\left(C^{4} \cap S\right):=C=$ $=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \operatorname{ReF}(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}$
- compute $\operatorname{Graph}(C)=\langle\mathcal{V}, \mathcal{E}\rangle$ with

- s.t. $G \operatorname{raph}(C) \cong_{i s o t o p i c} C$

Computing the link of the singularity

Why Axel? It computes numerically the topology of implicit curves in \mathbb{R}^{3}

- For $C^{4}=\left\{(z, w) \in \mathbb{C}^{2} \mid z^{3}-w^{2}=0\right\} \subset \mathbb{R}^{4}$ get
- $f\left(C^{4} \cap S\right):=C=$

$$
=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{Im} F(\ldots)=0\right\}
$$

- compute $\operatorname{Graph}(C)=\langle\mathcal{V}, \mathcal{E}\rangle$ with

$$
\begin{aligned}
& \mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\} \\
& \mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}
\end{aligned}
$$

Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in \mathbb{R}^{3}

- For $C^{4}=\left\{(z, w) \in \mathbb{C}^{2} \mid z^{3}-w^{2}=0\right\} \subset \mathbb{R}^{4}$ get
- $f\left(C^{4} \cap S\right):=C=$

$$
=\left\{(a, b, c) \in \mathbb{R}^{3} \mid \operatorname{Re} F(\ldots)=0, \operatorname{ImF}(\ldots)=0\right\}
$$

- compute $\operatorname{Graph}(C)=\langle\mathcal{V}, \mathcal{E}\rangle$ with

$$
\begin{aligned}
& \mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\} \\
& \mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}
\end{aligned}
$$

- s.t. $\operatorname{Graph}(C) \cong_{i \text { sotopic }} C$

Next

Preliminaries

Diagram and arcs

A double point of a projection is called a crossing point.
A diagram is the image under regular projection, together with the information on each crossing telling which branch goes over and which under.

An arc is the part of a diagram between two undercrossings. Crossings
A crossing is:
-righthanded if the underpass traffic goes from right to left. -lefthanded if the underpass traffic goes from left to right.

Doctoral Program
Computa:ore - Larmpuande vatemen三

Computing the Alexander polynomial of the link

$M(L)=\left(\begin{array}{c|cccc} & \text { type }^{\text {label }_{i}} & \text { label }_{j} & \text { label }_{k} \\ \hline c_{1} & -1 & 2 & 1 & 3 \\ & & & & \end{array}\right)$

$$
P(L)=(\quad)
$$

Computing the Alexander polynomial of the link

$$
M(L)=\left(\begin{array}{c|cccc}
& \text { type }^{\prime} & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{1} & -1 & 2 & 1 & 3 \\
& & 1-t & t & -1
\end{array}\right)
$$

$$
P(L)=\left(\begin{array}{ccc}
2 & 1 & 3 \\
1-t & t & -1 \\
& &
\end{array}\right)
$$

X

Computing the Alexander polynomial of the link

$$
M(L)=\left(\begin{array}{c|cccc}
& \text { type }^{\prime} & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{1} & -1 & 2 & 1 & 3 \\
& & 1-t & t & -1
\end{array}\right)
$$

$$
P(L)=\left(\begin{array}{ccc}
1 & 2 & 3 \\
t & 1-t & -1 \\
& &
\end{array}\right)
$$

X Doctoral Program

Computing the Alexander polynomial of the link

$$
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{2} & -1 & 1 & 3 & 2
\end{array}\right)
$$

$$
P(L)=(\quad)
$$

Computing the Alexander polynomial of the link

$$
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline & & & & \\
c_{2} & -1 & 1 & 3 & 2 \\
& & 1-t & t & -1
\end{array}\right)
$$

$$
P(L)=\left(\begin{array}{ccc}
1 & 3 & 2 \\
1-t & t & -1
\end{array}\right)
$$

Computing the Alexander polynomial of the link

$$
M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline & & & & \\
c_{2} & -1 & 1 & 3 & 2 \\
& & 1-t & t & -1
\end{array}\right)
$$

$$
P(L)=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1-t & -1 & t
\end{array}\right)
$$

Computing the Alexander polynomial of the link

$M(L)=\left(\begin{array}{c|cccc} & \text { type }^{\prime} & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\ \hline & & & & \\ c_{3} & -1 & 3 & 2 & 1\end{array}\right)$

$$
P(L)=(\quad)
$$

Computing the Alexander polynomial of the link

$M(L)=\left(\begin{array}{c|cccc} & \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\ \hline & & & & \\ c_{3} & -1 & 3 & 2 & 1 \\ & & 1-t & t & -1\end{array}\right)$

$$
P(L)=\left(\begin{array}{ccc}
& & \\
3 & 2 & 1 \\
1-t & t & -1
\end{array}\right)
$$

Computing the Alexander polynomial of the link

$M(L)=\left(\begin{array}{c|cccc} & \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\ \hline & & & & \\ c_{3} & -1 & 3 & 2 & 1 \\ & & 1-t & t & -1\end{array}\right)$

$$
P(L)=\left(\begin{array}{ccc}
& & \\
1 & 2 & 3 \\
-1 & t & 1-t
\end{array}\right)
$$

Computing the Alexander polynomial of the link

$$
\begin{aligned}
& M(L)=\left(\begin{array}{c|cccc}
& \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{1} & -1 & 2 & 1 & 3 \\
c_{2} & -1 & 1 & 3 & 2 \\
c_{3} & -1 & 3 & 2 & 1
\end{array}\right) \\
& P(L)=\left(\begin{array}{ccc}
t & 1-t & -1 \\
1-t & -1 & t \\
-1 & t & 1-t
\end{array}\right) \\
& \operatorname{det}(P(L))=-t^{2}+t-1 \\
& \Delta(L):=\Delta(t)=\operatorname{Normalise}(\operatorname{det}(P(L)))=t^{2}-t+1
\end{aligned}
$$

Computing the Alexander polynomial of the link

- Input:
- $L=K_{1} \cup \ldots \cup K_{m}$ with n - crossings
- $D(L)$ - oriented diagram of L
- Output:
- $\Delta_{L}\left(t_{1}, \ldots t_{m}\right) \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{m}^{ \pm 1}\right]$
- Method: consists of several steps

- Need D(L)!

Next

Intermediate step

- $G(L)=\langle P, E\rangle$

$$
\mathrm{p}(\text { index, } \mathrm{x}, \mathrm{y}, \mathrm{z})
$$

e(pointS, pointD)

$D(L)$
\longrightarrow number of arcs, crossings
\longrightarrow type of crossings (under, over)
\longrightarrow number of knots in the link(orientation)

Intermediate step

Next

Computing the δ-invariant of the singularity

- Input:
- $C \subset \mathbb{C}^{2}$ complex algebraic curve;
- $z \in \operatorname{Singularities(C)\text {;}}$
- $\Delta\left(t_{1}, . ., t_{p}\right)$ - Alexander polynomial of z;
- $r=$ number of variables in Δ (branches of C through z);
- $\mu=$ degree of Δ (multiplicity of z);
- Output:
- $\delta_{z}>0$ s.t. δ_{z} measures the number of double points of C at z.
- Method (based on Milnor's research)

Summary

- Present work: for symbolic coefficients

- Future work: tests for algorithm with numeric coefficients

(1) Motivation

(2) Describing the problem What?
(3) Solving the problem How?

(4) Current results

(5) Conclusion and future work

Conclusion

- first results (methods and algorithms) were presented;
- Future work:
- deeper introspection into some mathematical aspects (i.e. numeric computation);
- complete implementation of the algorithm;
- correctness proof for the algorithm;
- analysis of the algorithm.

Thank you for your attention. Questions?

[^0]: ${ }^{a}$ Acknowledgements: B. Mourrain, J. Wintz

[^1]: ${ }^{a}$ Acknowledgements: B. Mourrain, J. Wintz

[^2]: ${ }^{a}$ Acknowledgements: B. Mourrain, J. Wintz

