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Symbolic Algorithms:

algcurves CASA GHS attack
Florida University RISC-Hagenberg Berlin University

Genus
computation

Singular

normal.lib PAFF
Kaiserslautern University INRIA-Roquencourt
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Symbolic-Numeric Algorithms:
DK Project: Symbolic-Numeric techniques for genus computation and parametrization
(project leader: Prof. Dr. Josef Schicho).

!Ongoing(our plugin):

IQComplexinvariant —— !QComplexGenus

Axel algebraic modeler
INRIA-Sophia Antipolis

Genus

computation
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® Describing the problem
What?
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What?

e |nput:
e C field of complex numbers;
e F € C[z,w] irreducible with coefficients of limited accuracy !;
o C={(z,w) € C}|F(z,w) =0} =
= {(z,y,u,v) € R*F(x +iy,u + iv) = 0} complex algebraic curve
(d is the degree, Sing(C) is the set of singularities);
e Output:
e approximate genus(C) s.t.
1

genus(C) = 5(d —1)(d—-2)— Z d-invariant(P);
PeSing(C)
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© Solving the problem
How?
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How?

e Strategy for computing the genus
‘ 1.Singularities of the curve‘ compure

numerically

‘ 3.Alexander Polynomial ‘

compute

‘ 4.4-invariant(singularities) ‘

ﬂ

numerically
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How?

e Method for computing the genus

compute

‘Singularities: Maths ‘

numerically

1 H . .. t
‘5—|nvarlant(smgularltles): Maths | <

ﬂ

| GENUS: Maths |

numerically

Link: Maths

ﬂ

‘ AlexanderPolynomial:Maths ‘
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How?

e Algorithm for the method
N e compute " !
‘Slngularltles. Algo ‘ romerically Link: Algo

ﬂ

‘ Alexander Polynomial: Algo ‘

1 H . .. t
‘5—|nvarlant(smgularltles); Algo compute

ﬂ

GENUS: Algo

numerically
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How?

e Algorithm for the method

Singularities: Algo

‘6—invariant(singuIarities): Algo

ﬂ

GENUS: Algo

compute .
- Link: Algo
numerically

Intermediate step!

compute N
- Alexander Polynomial: Algo
numerically
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Solving the problem

Implementation of the algorithm

e Axel algebraic geometric modeler ?
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e developed by Galaad team
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@ Current results
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First

‘1.Singularities of the curve‘

compute

numerically

compute

’ 4.0-invariant(singularities) ‘

ﬂ

numerically

ﬂ

‘ 3.Alexander Polynomial ‘
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Computing the singularities of the curve

e Input:
o FeClz,uw]
o O ={(z,w) € C?|F(z,w) =0}
e Output:
. OF
o Sing(C) = {(20, wo) € C*|F(z0, wo) = 07 55 (70, wo) =0, = (20, wo) = 0}
Method: = solve overdeterminate system of polynomial equations in C?:
F(z0,w0) =0
oF
55 (70,w0) =0 (1)
oF

(Zo,wo) =0

Jw

P\/ boctoral Program

12/28



Computing the singularities of the curve

orin R*: F(z,w) = F(z + iy, u + iv) = s(x,y,u,v) + it(zx,y,u,v)

s(xo, Yo, uo,vo) =0
t(xo0, Yo, u0,v0) =0

1)

£($07y0,uo,vo) =0

ot

%(mmyo,w),vo) =0 , (2)
S

E(movy(humvo) =0

ot

E(m07y07u0)v0) =0
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Computing the singularities of the curve

Using numeric input polynomials

(subdivision method)

‘ Mathemagix ‘

. Bertini
(homotopy continuation)
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Next

‘ 1.Singularities of the curve‘

‘ 4.0-invariant(singularities) ‘

ﬂ

compute

numerically

compute

numerically

ﬂ

‘ 3.Alexander Polynomial ‘
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Computing the link of the singularity

o Why the link of a singularity?

e helps in understanding the topology of a complex curve
near a singularity;

e How do we compute the link?
e use stereographic projection;
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Computing the link of the singularity

Method (based on Milnor's results)
1. Let C = {(x,y,u,v) € R*F(z,y,u,v) = 0} s.t. (0,0,0,0) € Sing(C)

2. Consider Sg¢) := S = {(z,y,u,v) € RY2? + y? + v* + w? = €},
X = 005(076) C R*

3. For P S\ Ctake f: S\ {P} — R3 f(z,y,u,v) = (2, L, ),
SR — S\ {P}

2 2 C2
fﬁl(aﬂ b? C) = (14'_&2_;’_;2_’_027 1+(l2—£b2+62’ 1+a2+1672+02’ (1+:2l)+1>2+621))
4. Compute f(X) = {(a,b,c,) € R}|F(..) =0} &
f(X)={(a,b,c,) € R}|ReF(..) = 0,ImF(...) =0} and
Bfor f(X) = {(a,b,c,) € BC R} ReF(...)=0,ImF(...) =0}
For small ¢, f(X) is a link

Note: A link is a closed loop in R? that does not intersect itself.
P\/ boctoral Program
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Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in R?

e For C* = {(z,w) € C*|2® —w® =0} C R* get
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Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in R?

e For C* = {(z,w) € C?2® —w? =0} C R* get

o f(C*NS):=C=
={(a,b,c) € R®|ReF(...) = 0,ImF(...) = 0}

E(Ducmra\ Program
:

16/28



Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in R®

e For C* = {(z,w) € C?2* —w® =0} C R* get
e f(C'NS):=C=

={(a,b,c) € R}|ReF(...) = 0,ImF(...) = 0}
e compute Graph(C) = (V,E) with

V= {p=(m,n,q) € R’}

E=A{69)i,j eV}
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Computing the link of the singularity

Why Axel?
It computes numerically the topology of implicit curves in R®

For C* = {(z,w) € C?|2® — w? = 0} C R* get
f(C'N8)=C =

= {(a,b,c) € R}|ReF(...) = 0,ImF(...) = 0}
compute Graph(C) = (V, ) with

V= {p=(m,n,q) € R’}

&={@,J)li,j €V}

s.t. Graph(C) Z;sotopic C
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Next

‘ 1.Singularities of the curve‘

‘ 4.0-invariant(singularities) ‘

ﬂ

compute

numerically

compute

numerically

ﬂ

‘3.A|exander Polynomial ‘
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Preliminaries

Diagram and arcs

A double point of a projection is called a crossing point.
A diagram is the image under regular projection, together
with the information on each crossing telling which branch
goes over and which under.

An arc is the part of a diagram between two undercrossings. Crossings

-
X,

" Doctoral Program

A crossing is:
-righthanded if the underpass traffic goes from right to left.
-lefthanded if the underpass traffic goes from left to right.
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Computing the Alexander polynomial of the link

=1
‘type label; label; labely
M(L) _ C1 -1 2 1 3
RH(+1) LH(-1)
K ! i k
P(L) = y y
NS
[ k i i b
-t -1t 1-t EE( -
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Computing the Alexander polynomial of the link

‘type label; label; labely

a1 2 1 3
M(L) = 1-1 t -1
2 1 3
Py | 17t 1 1 R e
)X
NS
i j k i j ]
1-t -1 t 1-t t -
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Computing the Alexander polynomial of the link

‘type label; label; labely

a2 1 3
M(L) = 1-1 t -1
1 2 3
Py | t 10t ! R ey
)<
N
i j k i j ]
-t -1 t 1-t EE( -
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Computing the Alexander polynomial of the link

\ type label;

label; labely

3 2
RH(+1) LHE-1)
kyl i iyk
i /

\ j

i i k i i '

1-t -1 t 1-t t -
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Computing the Alexander polynomial of the link

‘type label; label; labely

MIy=1 | -1 1 3 2
1—t t -1
1 3 2 RH(+1) _
P = 1_y ¢ 2 R
X
NS
i j k i j ]
1-t -1 t 1-t t -
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Computing the Alexander polynomial of the link

‘type label; label; labely

MIy=1 | -1 1 3 2
1—t t -1
1 2 3 RH(+1) _
P = 1 _y 1y R
X
NS
i j k i j ]
1-t -1 t 1-t t -
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Computing the Alexander polynomial of the link

k=1 i=3
‘type label; label; labely
M(L) =
C3 —1 3 2 1 RH(+1) LH(-1)
P(L) _ ( ) kyll iyk
NS
i j k i j ]
-t -1t 1-t EE( -
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Computing the Alexander polynomial of the link

type label; label; labely

M(L) =
cs | —1 3 2 1
1—t t —1
RH(+1) LHED)
P(L) = 3 2 1
1—t ¢t -1 ky ' iyk
NS
i j k i j ]
1-t -1 t 1-t Et( =
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Computing the Alexander polynomial of the link

type label; label; labely

M(L) =
cs | —1 3 2 1
1—t t —1
RH(+1) LHED)
PLy=| 1 o 3
-1t 1-t ky ' iyk
NS
i j k i j ]
1-t -1 t 1-t Et( =
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Computing the Alexander polynomial of the link

‘type label; label; labely

- c1 —1 2 1 3
M(L) - C2 -1 1 3 2
c3 —1 3 2 1
t 1—1t -1
PL)=| 1-¢t -1 ¢
—1 t 1-—t RH(+1) LH(-1)
7N

det(P(L)) = —t* +t —1

A(L) := A(t) = Normalise(det(P(L))) = ¢ ~1+1 Y\ X
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Computing the Alexander polynomial of the link

e Input:
e L =K;U..UK,, with n - crossings
e D(L)- oriented diagram of L

e Qutput:
o Ap(ty,..ty) € Z[tEY, .. tE]]

e Method: consists of several steps
O e e LI — A

v v v

compute compute compute
labelling matrix preAlexander matrix Alexander polynomial

e Need D(L)!
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Next

compute

| 1.Singularities

‘ 4.0-invariant(singularities) ‘

ﬂ

numerically

compute

numerically

Intermed

iate step

3.Alexander Polynomial

" Doctoral Program

21/28



Intermediate step

cl o3

? 1
® =
e G(L)=(P,E) D(L)
p(index,x.y,2) —~ number of arcs, crossings
° — type of crossings (under, over)

) ! —= number of knots in the link(orientation)
e(pointS, pointD)
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Intermediate step

G(L) =<P,E> oL
‘ . ) arcs,crossings
intersections of edges ALGO1

(adapted Bentley—Ottman algo) -
information on each under/over crossings
— :
number of number of oriented
oriented closed loogs——— A(LO%SZ F———— knotsin the link

modified G(L) =<P,E> D(L)
i ; 1. construct the arcs
1.split undergoing edges(UE) ALGO3 ) i
2.keep overgoing edges(OE (our) 2. dec!de crossmg(RH/LH)
3.update closed loops 3. decide belonging of edges to arc
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Next

1.Singularities of the curve‘

compute

4.0-invariant(singularities)

numerically

compute

ﬂ

numerically

H

| 3.Alexander Polynomial |
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Computing the d-invariant of the singularity

® |nput:
e C C C? complex algebraic curve;
e z € Singularities(C);
e A(t1,..,tp) - Alexander polynomial of z;
e 7 = number of variables in A (branches of C through z);
e u = degree of A (multiplicity of z);
e Output:

® §. > 0s.t. 6. measures the number of double points of C at z

® Method (based on Milnor's research)

Aty ... tp) i, p

N

1
7“22:>5:§(,u+r) r=1=0=—-u
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Summary

® Present work: for symbolic coefficients

B . compute -
Singularities , Link
numerically M/

Intermediate step§

I

Alexander Polynomial !

— . — t
‘ d-invariant(singularities) ‘ compre

J

® Future work: tests for algorithm with numeric coefficients

numerically
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@® Conclusion and future work
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Conclusion

o first results (methods and algorithms) were presented;
e Future work:

e deeper introspection into some mathematical aspects
(i.e. numeric computation);

e complete implementation of the algorithm;

e correctness proof for the algorithm;

e analysis of the algorithm.
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Thank you for your attention.
Questions?
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