
The genus computation problem: symbolic-numeric
solutions and beyond

Mădălina Hodorog1

Supervisor: Josef Schicho1

Joint work with Bernard Mourrain2

1Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences,

Doctoral Program ”Computational Mathematics”
Johannes Kepler University Linz, Austria

2INRIA Sophia-Antipolis, France

SAGA Winter School Auron, France
March 17, 2010

1 / 37

Table of contents

1 Motivation

2 A library for solving the genus computation problem
Describing the problem
Solving the problem
Summary

3 Towards the numerical genus computation problem
Approximate algebraic computation
How can we use the library to handle numerical computation?

4 Conclusion and future work

2 / 37

1 Motivation

2 A library for solving the genus computation problem
Describing the problem
Solving the problem
Summary

3 Towards the numerical genus computation problem
Approximate algebraic computation
How can we use the library to handle numerical computation?

4 Conclusion and future work

3 / 37

Symbolic Algorithms:

Maple

RISC−Hagenberg Berlin University

Magma

Singular Axiom

INRIA−Roquencourt

algcurves CASA

PAFFnormal.lib

GHS attack

Package by F. Hess

Genus

computation

Kaiserslautern University

Florida University

4 / 37

Numeric Algorithms:

Genus

 computation

 ?!

4 / 37

A proposal for a symbolic-numeric algorithm: DK9 Project: Symbolic-Numeric
techniques for genus computation and parametrization (initiated by Prof. Josef Schicho).

INRIA−Sophia Antipolis

Axel algebraic modeler

Genus computation

Ongoing: Complex Invariants Plugin

(Goal: The plugin available as a library in Axel)

Another proposal: Recently, another numeric method different from ours for genus
computation was reported (in the group of R. Sendra).

4 / 37

What?

• Input:

• F ∈ C[x, y] squarefree with coefficients of limited accuracy:

• either exact data, i.e. integers or rational numbers: 1,−2,
1

2
.

• or inexact data, i.e. real numbers. For 1.001 we associate a tolerance
of 10−3, i.e. the last digit is uncertain.

• C = {(x, y) ∈ C2|F (x, y) = 0} complex algebraic curve of degree m.
• ε ∈ R∗

+ a non-zero positive real number, the input parameter.

• Output:

• ”approximate” genus(C), i.e.
the lowest possible genus of a curve defined by a ”nearby” polynomial, s.t.

genus(C) =
1

2
(m− 1)(m− 2)−

X
P∈Sing(C)

δ-invariant(P),

where Sing(C) is the set of singularities of the curve C.

5 / 37

What?

• Input:

• F ∈ C[x, y] squarefree with coefficients of limited accuracy:

• either exact data, i.e. integers or rational numbers: 1,−2,
1

2
.

• or inexact data, i.e. real numbers. For 1.001 we associate a tolerance
of 10−3, i.e. the last digit is uncertain.

• C = {(x, y) ∈ C2|F (x, y) = 0} complex algebraic curve of degree m.
• ε ∈ R∗

+ a non-zero positive real number, the input parameter.

• Output:

• ”approximate” genus(C), i.e.
the lowest possible genus of a curve defined by a ”nearby” polynomial, s.t.

genus(C) =
1

2
(m− 1)(m− 2)−

X
P∈Sing(C)

δ-invariant(P),

where Sing(C) is the set of singularities of the curve C.

5 / 37

How?

• Strategy for computing the genus

Plane complex algebraic curve

numericallycompute

��
Singularities

compute

numerically
// Link (ε needed)

symbolicallynumerically
���
�
�

δ-invariant(singularities)

symbolicallycompute

��

Alexander Polynomial
symbolically

computeks

GENUS

6 / 37

How?

•• Strategy for computing the genus

Plane complex algebraic curve

numericallycompute

��
Singularities moved in origin

compute

numerically
// Link (ε needed)

symbolicallynumerically
���
�
�

δ-invariant(singularities)

symbolicallycompute

��

Alexander Polynomial
symbolically

computeks

GENUS

6 / 37

Solving the problem
Implementation of the algorithm

•• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• uses mmx libraries (shape, realroot);
• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz 7 / 37

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• uses mmx libraries (shape, realroot);
• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz 7 / 37

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• uses mmx libraries (shape, realroot);
• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz 7 / 37

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• uses mmx libraries (shape, realroot);

• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz 7 / 37

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• uses mmx libraries (shape, realroot);
• provides algebraic tools for:

• implicit surfaces;

• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz 7 / 37

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• uses mmx libraries (shape, realroot);
• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz 7 / 37

Solving the problem
Implementation of the algorithm

• Axel algebraic geometric modeler a

• developed by Galaad team
(INRIA Sophia-Antipolis);

• written in C++, Qt Script
for Applications (QSA);

• uses mmx libraries (shape, realroot);
• provides algebraic tools for:

• implicit surfaces;
• implicit curves.

• free, available at:

aAcknowledgements: Julien Wintz

http://axel.inria.fr/

7 / 37

1 Motivation

2 A library for solving the genus computation problem
Describing the problem
Solving the problem
Summary

3 Towards the numerical genus computation problem
Approximate algebraic computation
How can we use the library to handle numerical computation?

4 Conclusion and future work

8 / 37

First

Plane complex algebraic curve

numericallycompute

��

1.Singularities
compute

numerically
// 2.Link

symbolicallynumerically
���
�
�

4.δ-invariant(singularities)

symbolicallycompute

��

3.Alexander Polynomial
symbolically

computeks

5.GENUS

9 / 37

Computing the singularities of the curve

• Input:

• F ∈ C[x, y]
• C = {(x, y) ∈ C2|F (x, y) = 0}

• Output:

• Sing(C) = {(x0, y0) ∈ C2|F (x0, y0) = 0,
∂F

∂x
(x0, y0) = 0,

∂F

∂y
(x0, y0) = 0}

Method: ⇒ solve overdeterminate system of polynomial equations in C2:8>>>>>>><>>>>>>>:

F (x0, y0) = 0

∂F

∂x
(x0, y0) = 0

∂F

∂y
(x0, y0) = 0

, (1)

10 / 37

Computing the singularities of the curve

or in R4 : F (x, y) = F (a+ ib, c+ id) = s(a, b, c, d) + it(a, b, c, d)8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

s(a0, b0, c0, d0) = 0
t(a0, b0, c0, d0) = 0

∂s

∂a
(a0, b0, c0, d0) = 0

∂t

∂a
(a0, b0, c0, d0) = 0

∂s

∂c
(a0, b0, c0, d0) = 0

δt

δc
(a0, b0, c0, d0) = 0

, (2)

10 / 37

Computing the singularities of the curve

For input polynomials with coefficients of limited accuracy

CoCoA, Singular, Bertini

We tried Mathematica
Computation FAILURE!

AT PRESENT

Computation singularities

Computation singularities

FIRSTLY

All complex distinct

All real distinct

of the curve

of the curve
Mathemagix, a library of Axel

Axel, which is under construction

using linear algebra methods

 We intend to solve system (1)

subdivision methods from

We solve system (1) using

IN THE FUTURE:

from a new library of

Note: so far this is an open problem.

10 / 37

Next

Plane complex algebraic curve

numericallycompute

��
1.Singularities moved in origin

compute

numerically
// 2.Link

symbolicallynumerically
���
�
�

4.δ-invariant(singularities)

symbolicallycompute

��

3.Alexander Polynomial
symbolically

computeks

5.GENUS

11 / 37

Knot theory - preliminaries

• A knot is a simple closed curve in R3.

• A link is a finite union of disjoint knots.

• Links resulted from the intersection of a given curve
with the sphere are called algebraic links.

Trefoil Knot

Hopf Link

12 / 37

Computing the link of the singularity

• Why the link of a singularity?

• helps to study the topology of a complex curve near a singularity;

• How do we compute the link?

• use stereographic projection;

•

13 / 37

Computing the link of the singularity

Method (based on Milnor’s results)

1. Let C = {(a, b, c, d) ∈ R4|F (a, b, c, d) = 0} s.t. (0, 0, 0, 0) ∈ Sing(C)

2. Consider S(0,ε) := S = {(a, b, c, d) ∈ R4|a2 + b2 + c2 + d2 = ε2},
X = C

⋂
S(0,ε) ⊂ R4

3. For P ∈ S \ C, f : S \ {P} → R3, (a, b, c, d) 7→ (u = a
ε−d , v = b

ε−d , w = c
ε−d),

f−1 : R3 → S \ {P}
(u, v, w) 7→ (a = 2uε

n , b = 2vε
n , c = 2wε

n , d = ε(u2+v2+w2−1)
n), where

n = 1 + u2 + v2 + w2.

4. Compute f(X) = {(u, v, w) ∈ R3|F (
2uε
n
,
2vε
n
, ...) = 0} ⇔

f(X) = {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}
For small ε, f(X) is a link.

14 / 37

Computing the link of the singularity

Why Axel?
It computes numerically the certified topology of smooth implicit curves in R3

• For C4 = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

• also compute (for visualization reasons only)

S
′

= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}
S

′′
= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}

• C is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

15 / 37

Computing the link of the singularity

Why Axel?
It computes numerically the certified topology of smooth implicit curves in R3

• For C4 = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

• also compute (for visualization reasons only)

S
′

= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}
S

′′
= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}

• C is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

15 / 37

Computing the link of the singularity

Why Axel?
It computes numerically the certified topology of smooth implicit curves in R3

• For C4 = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

• also compute (for visualization reasons only)

S
′

= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}
S

′′
= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}

• C is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

15 / 37

Computing the link of the singularity

Why Axel?
It computes numerically the certified topology of smooth implicit curves in R3

• For C4 = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

• also compute (for visualization reasons only)

S
′

= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}
S

′′
= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}

• C is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

15 / 37

Computing the link of the singularity

Why Axel?
It computes numerically the certified topology of smooth implicit curves in R3

• For C4 = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

• also compute (for visualization reasons only)

S
′

= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}
S

′′
= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}

• C is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

15 / 37

Computing the link of the singularity

Why Axel?
It computes numerically the certified topology of smooth implicit curves in R3

• For C4 = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4 get

• f(C4 ∩ S) := C =
= {(u, v, w) ∈ R3|ReF (...) = 0, ImF (...) = 0}

• compute Graph(C) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

• s.t. Graph(C) ∼=isotopic C

• also compute (for visualization reasons only)

S
′

= {(u, v, w) ∈ R3|ReF (...) + ImF (...) = 0}
S

′′
= {(u, v, w) ∈ R3|Re(F)− ImF (...) = 0}

• C is the intersection of any 2 of the surfaces:
ReF (...), ImF (...)
ReF (...) + ImF (...), ReF (...)− ImF (...)

15 / 37

Next

Plane complex algebraic curve

numericallycompute

��
1.Singularities

compute

numerically
// 2.Link

symbolicallynumerically
���
�
�

4.δ-invariant(singularities)

symbolicallycompute

��

3.Alexander Polynomial
symbolically

computeks

5.GENUS

16 / 37

Knot theory - preliminaries

The Alexander polynomial (1928) depends on the funda-
mental group of the complement of the knot in R3.

Definition. Let L be a link with n components. The
multivariate Alexander polynomial is a Laurent polynomial
∆L ∈ Z[t0, ..., tn, t

−1
0 , ..., t−1

n], which is defined up to a
factor of ±tk00 ...tkn

n , ki ∈ Z, ∀i ∈ {0, ..., n}.

Note. The Alexander polynomial is a complete invariant for
the algebraic links (Yamamoto 1984).

17 / 37

Knot theory - preliminaries

A knot projection is a regular projection if no three points
on the knot project to the same point, and no vertex
projects to the same point as any other point on the knot.

A diagram is the image under regular projection, together
with the information on each crossing telling which branch
goes over and which under.
An arc is the part of a diagram between two undercrossings.

A crossing is:
-righthanded if the underpass traffic goes from right to left.
-lefthanded if the underpass traffic goes from left to right.

Diagram and arcs

Crossings

i

j

k i k

j

RH LH

17 / 37

Computing the Alexander polynomial of the link

k=3i=2

j=1

M(L) =

0BB@
type labeli labelj labelk

c1 −1 2 1 3

1CCA

P (L) =

0@ 1A

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

18 / 37

Computing the Alexander polynomial of the link

M(L) =

0BB@
type labeli labelj labelk

c1 −1 2 1 3
1− t t −1

1CCA

P (L) =

0BB@
2 1 3

1− t t −1

1CCA

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

18 / 37

Computing the Alexander polynomial of the link

M(L) =

0BB@
type labeli labelj labelk

c1 −1 2 1 3
1− t t −1

1CCA

P (L) =

0BB@
1 2 3
t 1− t −1

1CCA

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

18 / 37

Computing the Alexander polynomial of the link

For a link with K = 1 knot:

P (L) =

0@ t 1− t −1
1− t −1 t
−1 t 1− t

1A
D := det(minor(P (L))) = −t2 + t− 1

∆(L) := ∆(t) = Normalise(D) = t2 − t+ 1

For a link with K > 1 knots and n crossings ∆(L)
is the gcd of all the (n− 1)× (n− 1) minor
determinants of P (L).

Note: The Alexander polynomial is ∆(L).

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i j k i j k

1−t −1 t 1−t t −1

18 / 37

Computing the Alexander polynomial of the link

So, the Alexander polynomial is computed in several steps:

M(L) P(L)

labelling matrix
compute

preAlexander matrix
compute compute

Alexander polynomial

(L)D(L)

In order to compute it, we need D(L)!

19 / 37

Next

Plane complex algebraic curve

numericallycompute

��
1.Singularities

compute

numerically
// 2.Link

numericallycompute
��

Intermediate step

symbolicallycompute

��
4.δ-invariant(singularities)

symbolicallycompute

��

3.Alexander Polynomial
symbolically

computeks

5.GENUS

20 / 37

Intermediate step

• ?⇒

2

1 3

c1

c2

c3

• G(L) = 〈P,E〉 D(L)

•
p(index,x,y,z)

e(indexS, indexD)

number of arcs, crossings
type of crossings (under, over)
number of knots in the link(orientation)

21 / 37

Intermediate step

D(L)

number of
intersections of edges

numbers of
arcs,crossings

under/over crossingsinformation on each
intersection

(adapted Bentley−Ottman algo)
ALGO1

oriented closed loops
number of number of oriented

knots in the link

G(L) =<P,E>

modified G(L) =<P,E>

ALGO31.split undergoing edges(UE)
2.keep overgoing edges(OE)
3.update closed loops

1. construct the arcs
2. decide crossing(RH/LH)
3. decide belonging of edges to arcs

D(L)

ALGO2
(our)

(our)

21 / 37

Algorithm 1 - Adapted version of Bentley-Ottman

• Input: S a set of ”short” edges ordered from left to right and by (1), (2), (3):

AA�������

//

))SSSS

��****

��****

??�����

EE������

//

��;;;;;;;
��44444

��44444

��44444

AA������

(3)

e0 e1

e0

e1

e0

e1

slopes of edges y’s of destinationx’s of sources

(1) (2)

• Output: I - the set of all intersections among edges of S and

• for each p = ei ∩ ej ∈ I, the ”arranged” pair of edges (ei, ej),
i.e ei is below ej in R3

22 / 37

Algorithm 1 - Adapted version of Bentley-Ottman

• For instance, on this graph:

• •
e1

44iiiiiiiiiiiiiii
e0

%%KKKKKKKKK

e5 00bbbbbbbbbbbbbbb

e4 ..]]]]]]]]]]]]]]]]]]]]]]]

e9

##HHHHHHHHHHHHHHHHHH

e10

77ooooo

e10

88ppppp

e11

FF

e3

33ggggggggggggggg
e2 ,,ZZZZZZZZZZZ

e7

��,,,,,,,,

e6

55jjj e6

55jjjj

e8

??���������

• the adapted Bentley-Ottman algorithm produces the output:
I = {i1 = (x1, y1), i2 = (x2, y2)}
EI = {(e6, e7), (e10, e9)} with

• e6 below e7 in R3 and
• e10 below e9 in R3

22 / 37

Algorithm 2 - Constructing the loops

e7

e0

e1

e2

e3

e4

e5

e6

e8

e9

e10

e11

e7

e0

e4

e10

−e8
−e5

−e1

e2
e11

−e9
−e6

−e3

• E ordered by (1),(2),(3) ⇒ L0 = {e0, e4, e10,−e8,−e5,−e1}
L1 = {e2, e7, e11,−e9,−e6,−e3}

23 / 37

Algorithm 3 - Constructing the arcs

last

e
s

n

l
e
u

u

u

d

d

d

e
n

e
l

e
s

−e

0
e

n
e
m

e
k

e
l

t

e
s

e
0

1
1

−e
−e

−e

−e

 e
last

e

• E = {e0, ..., elast} a0 = {eun, ..,−e1, e0, .., ek, .., eds}

• EI = {(−en, em), (el, ek), (es,−et)} ⇒ a1 = {eul , ..,−et, ..,−edn}

• L0 = {e0, ..., es, el, ...,−e1} a2 = {eus , ..., em, ..., edl }
• while constructing the arcs we also decide the type of crossings (RH or LH).

24 / 37

Next

Plane complex algebraic curve

numericallycompute

��
1.Singularities

compute

numerically
// 2.Link

symbolicallynumerically
���
�
�

4.δ-invariant(singularities)

symbolicallycompute

��

3.Alexander Polynomial
symbolically

computeks

5.GENUS

25 / 37

Computing the δ-invariant of the singularity

From the Alexander polynomial, we derive the formulae for the δ-invariant:
(based on Milnor’s research)

C ⊂ C2 complex curve, z ∈ Sing(C)

��
∆(t1, ..., tp) : r − number of variables, µ− degree

r ≥ 2
uujjjjjjjjjjjjjjjjj

r = 1

))SSSSSSSSSSSSSSSSS

δz =
1

2
(µ+ r) δz =

1

2
µ

26 / 37

Summary

At present:

• We have a symbolic-numeric algorithm, i.e. an approximate algorithm, for GENus
cOMputation of plane Complex algebraiC Curves using Knot theory implemented
in the GENOM3CK library (originally QComplexInvariants).

• The algorithm is based on combinatorial techniques from knot theory, that allow
us to analyze the singularities of the input curve and to compute the invariants:
topology of singularities (algebraic link), Alexander polynomial, δ-invariant, genus.
The algorithm depends on the parameter ε ∈ R∗+.

27 / 37

Summary

At present:

• We have a symbolic-numeric algorithm, i.e. an approximate algorithm, for GENus
cOMputation of plane Complex algebraiC Curves using Knot theory implemented
in the GENOM3CK library (originally QComplexInvariantsPlugin).

• Why Axel? (and the mmx libraries)

• Axel is the only system to compute the topology of smooth implicitly defined
curves in R3 and information on the topology. Thus for our purpose, it offers
a major advantage over other systems allowing us to implement the complete
symbolic-numeric method for genus computation.

27 / 37

Summary

At present , using the library in Axel we get:

Equation Link Alex poly, δ-invariant, genus
x2 − y2, ε = 1.0 Hopf link ∆(t1) = 1, δ = 1, g = −1

x2 − y3, ε = 1.0 Trefoil
knot

∆(t1) = t21 − t1 + 1, δ = 1, g = 0

x2 − y4, ε = 1.0 2-knots
link

∆(t1, t2) = t1t2 + 1, δ = 2, g = −1

x2 − y5, ε = 1.0 1-knot
link

∆(t1) = t41 − t31 + t21 − t1 + 1, δ = 2, g = 0

x3 − y3, ε = 1.0 3-knots
link

∆(t1, t2, t3) = −t1t2t3 + 1, δ = 3, g = −2

x4 + x2y + y5, ε = 0.5 3-knots
link

∆(t1, t2, t3) = −t21t22t3 + 1, δ = 4, g = 2

28 / 37

Summary

Next:

• For an arbitrary plane complex algebraic curve C defined by a polynomial with
coefficients of limited accuracy, i.e F (x, y) = −x3 − 1.875xy + y2 − 0.0xy, we
want to compute the approximate genus(C) using GENOM3CK.

Important questions arise:

• What does one mean by approximate genus?
• How does one control the error in numerical computation?

29 / 37

Summary

Next:

• For an arbitrary plane complex algebraic curve C defined by a polynomial with
coefficients of limited accuracy, i.e F (x, y) = −x3 − 1.875xy + y2 − 0.0xy, we
want to compute the approximate genus(C) using GENOM3CK.

Important questions arise:

• What does one mean by approximate genus?
• How does one control the error in numerical computation?

29 / 37

1 Motivation

2 A library for solving the genus computation problem
Describing the problem
Solving the problem
Summary

3 Towards the numerical genus computation problem
Approximate algebraic computation
How can we use the library to handle numerical computation?

4 Conclusion and future work

30 / 37

Preliminaries-Approximate algebraic computation

Objects of approximate algebraic computation1: polynomials with coefficients of limited
accuracy, i.e. F (x, y) = F (x, y) = −x3 − 1.875xy + y2 − 0.0xy.

Basic questions
What happens when using approximate computation?

Why using approximate computation?
What is (one) of the aims of approximate computation?

1Thanks to the colleagues from the DK for their helpful discussions
31 / 37

Preliminaries-Approximate algebraic computation

Objects of approximate algebraic computation1: polynomials with coefficients of limited
accuracy, i.e. F (x, y) = F (x, y) = −x3 − 1.875xy + y2 − 0.0xy.

Basic questions
What happens when using approximate computation?

Why using approximate computation?
What is (one) of the aims of approximate computation?

Tiny perturbations in data input produce huge error in solution (ill-posed problems). We
get failure of classical algorithms: Euclidean algorithm, root polynomial computation,
genus computation, etc.

Definition (Hadamard). A problem is well posed if: it has a solution, the solu-
tion is unique, and the solution depends continuously on data and parameters.
Remark. If the solution of the problem depends in a discontinuous way on the data, then
small errors can create large deviations, and the problem is called ill-posed.

1Thanks to the colleagues from the DK for their helpful discussions
31 / 37

Preliminaries-Approximate algebraic computation

Objects of approximate algebraic computation1: polynomials with coefficients of limited
accuracy, i.e. F (x, y) = F (x, y) = −x3 − 1.875xy + y2 − 0.0xy.

Basic questions
What happens when using approximate computation?

Why using approximate computation?
What is (one) of the aims of approximate computation?

There is no other choice since the input data are only approximately known!

1Thanks to the colleagues from the DK for their helpful discussions
31 / 37

Preliminaries-Approximate algebraic computation

Objects of approximate algebraic computation1: polynomials with coefficients of limited
accuracy, i.e. F (x, y) = F (x, y) = −x3 − 1.875xy + y2 − 0.0xy.

Basic questions
What happens when using approximate computation?

Why using approximate computation?
What is (one) of the aims of approximate computation?

To deal with ill-posed problems in numerical computation!

What should a numerical algorithm really do?
⇒ Naive answer: Compute solutions.
⇒ Z. Zeng, E. Kaltofen, H. Stetter: A numerical algorithm generates the exact
solution of a nearby problem (related with regularization theory).

1Thanks to the colleagues from the DK for their helpful discussions
31 / 37

Genus computation - Approximate algebraic computation

Approximate algebraic computation to an ill-posed problem

• is based on W. Kahan’s discovery: problems with certain solution structure form a
”pejorative” manifold. The solution is lost when the problem leaves the manifold,
but it is preserved when the problem stays on the manifold.

What is a manifold and its dimension?

• A manifold M is a topological space that is locally euclidean to Rn, n is the
dimension of M . (any object that can be ”charted” is a manifold.)

32 / 37

Genus computation - Approximate algebraic computation

Approximate algebraic computation to an ill-posed problem

• We partition the data input of the problem into pejorative manifolds. For given
input we need to determine the nearby pejorative manifold of the highest
codimension (i.e the smallest nearby pejorative manifold).

What does ”nearby” means?

• ”Nearby” depends on the input parameter ε.

• It is not precise what ”nearby” means.

32 / 37

GENOM3CK and approximate algebraic computation

We consider the exact algorithm for genus computation as the function:

E : C[x, y]→ Z, F (x, y) 7→ E(F (x, y)).

We consider the approximate algorithm from GENOM3CK for genus computation as the
function:

Aε : C[x, y]× R∗+ → Z, F (x, y) 7→ Aε(F (x, y)).

Remark: The output of Aε: the Alexander polynomial (∆), the δ-invariant (δ), and the
genus (g).

33 / 37

GENOM3CK and approximate algebraic computation

Tests experiments performed with GENOM3CK indicate two important properties of Aε:
Convergency

• we consider F (x, y) with both exact and inexact coefficients; we compute
Aε(F (x, y)) for different values of the parameter ε.

• for −x3 − xy + y2, we know that the exact topology is the Hopf link;

• we notice that the approximate solution computed with Aε converges to the exact

solution as ε tends to 0: ∀
F (x,y)

lim
ε→0

Aε(F (x, y)) = E(F (x, y)).

Equation and ε Link Alexander, δ invariants, genus
−x3 − xy + y2 1.00 Trefoil

knot
∆(t1) = t21 − t1 + 1 δ = 1 g = 0

−x3 − xy + y2 0.5 Trefoil
knot

∆(t1) = t21 − t1 + 1 δ = 1 g = 0

−x3 − xy + y2 0.25 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

−x3 − xy + y2 0.14 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

33 / 37

GENOM3CK and approximate algebraic computation

Tests experiments performed with GENOM3CK indicate two properties of Aε:
Continuity

• we consider p(x, y) a polynomial with exact coefficients;

• for δ ∈ R we consider pδ(x, y) perturbations of p;

• perturbations of type I: pδ(x, y) = p(x, y) + δ, where δ ∈ R∗.
• perturbations of type II: pδ(x, y) = p(x, y) + δq(x, y), where δ ∈ R∗,
q(x, y) ∈ C[x, y] is an arbitrary exact polynomial.

• we consider F (x, y) := pσ(x, y), and several values for ε. For each ε, we compute
Aε(F (x, y)) for different values of δ.

• we observe that small changes on the input data produce small changes on the
output solution:

∀
F (x,y)

∃
η>0

such that ∀
ε<η

∃
η1>0

∀
G(x,y)

G(x, y) ∈ I := (F (x, y)− η1, F (x, y) + η1)

Aε(G(x, y)) is constant in I.

33 / 37

GENOM3CK and approximate algebraic computation

Continuity (next) small changes in the input produce small changes in the output:

Perturbations I and ε σ = 10−e, e ∈ N∗ Link Invariants
−x3−xy+ y2− 10−e 0.5 {10−2, ..., 10−10} Trefoil

knot
∆(t1) = t21−t1+1
δ = 1 g = 0

−x3−xy+ y2− 10−e 0.25 {10−2, ..., 10−10} Hopf
link

∆(t1, t2) = 1 δ =
1 g = 0

p(x, y) = −x3 − xy + y2 q(x, y) = −x3 − 2xy + y2;
F (x, y) := pδ(x, y) = p(x, y)+δq(x, y) = −(1+10−e)x3−(1+2·10−e)xy+(1+10−e)y2

δ = 0.1 : F (x, y) = −1.1x3 − 1.2x2 + 1.1y2

δ = 0.01 : F (x, y) = −1.01x3 − 1.02x2 + 1.01y2, etc .

Perturbations II and ε σ = 10−e, e ∈
N∗

Link Invariants

−(1+10−e)x3− (1+2 ·10−e)xy+
(1 + 10−e)y2

0.15 {10−1, ..., 10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0

−(1+10−e)x3− (1+2 ·10−e)xy+
(1 + 10−e)y2

0.14 {10−1, ..., 10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0

33 / 37

GENOM3CK and approximate algebraic computation

• For an arbitrary plane complex algebraic curve C defined by the polynomial
F (x, y) = −x3 − 1.875xy + y2 − 0.0xy we compute genus(C) using the
approximate algorithm Aε(x, y).

• Aε computes genus(C) = 0. Since Aε is continuous and convergent:

• There is no nearby polynomial with genus less than 0;
• There is a nearby polynomial with genus exactly 0;

• What does nearby means?

34 / 37

GENOM3CK and approximate algebraic computation

• For an arbitrary plane complex algebraic curve C defined by the polynomial
F (x, y) = −x3 − 1.875xy + y2 − 0.0xy we compute genus(C) using the
approximate algorithm Aε(x, y).

• Aε computes genus(C) = 0. Since Aε is continuous and convergent:

• There is no nearby polynomial with genus less than 0;
∀

F (x,y)
∀

G(x,y)
|F (x, y)−G(x, y)| < ε1 ⇒ E(G(x, y)) ≤ Aε1(F (x, y))

• There is a nearby polynomial with genus exactly 0;
∀

F (x,y)
∃

H(x,y)
|F (x, y)−H(x, y)| < ε2 ⇒ E(H(x, y)) = Aε2(F (x, y))

34 / 37

GENOM3CK and approximate algebraic computation

• For an arbitrary plane complex algebraic curve C defined by the polynomial
F (x, y) = −x3 − 1.875xy + y2 − 0.0xy we compute genus(C) using the
approximate algorithm Aε(x, y).

• Aε computes genus(C) = 0. Since Aε is continuous and convergent:

• There is no nearby polynomial with genus less than 0;
∀

F (x,y)
∀

G(x,y)
|F (x, y)−G(x, y)| < d1(ε)⇒ E(G(x, y)) ≤ Aε(F (x, y))

• There is a nearby polynomial with genus exactly 0;
∀

F (x,y)
∃

H(x,y)
|F (x, y)−H(x, y)| < d2(ε)⇒ E(H(x, y)) = Aε(F (x, y))

• d1, d2 : R+ → R+ continuous, bijective and increasing functions.

• the computed genus(C) is in fact approximate genus(C),
i.e. the lowest possible genus of a curve defined by a ”nearby” polynomial

34 / 37

1 Motivation

2 A library for solving the genus computation problem
Describing the problem
Solving the problem
Summary

3 Towards the numerical genus computation problem
Approximate algebraic computation
How can we use the library to handle numerical computation?

4 Conclusion and future work

35 / 37

Conclusion and future work

Achieved goals:

• complete automatization for
the steps of the approximate
algorithm (in GENOM3CK);
invariants as algebraic link,
Alexander polynomial,
delta-invariant, genus, are
computed;

• tests experiments show that
the approximate algorithm has
the continuity and convergency
properties;

• the approximate algorithm
computes discrete information
from continuous data; it can
be described using principles
from regularization theory and
approximate algebraic
computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
continuity, convergency);

• make precise the meaning of
the computed approximate
output with the approximate
algorithm.

36 / 37

Conclusion and future work

Achieved goals:

• complete automatization for
the steps of the approximate
algorithm (in GENOM3CK);
invariants as algebraic link,
Alexander polynomial,
delta-invariant, genus, are
computed;

• tests experiments show that
the approximate algorithm has
the continuity and convergency
properties;

• the approximate algorithm
computes discrete information
from continuous data; it can
be described using principles
from regularization theory and
approximate algebraic
computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
continuity, convergency);

• make precise the meaning of
the computed approximate
output with the approximate
algorithm.

36 / 37

Conclusion and future work

Achieved goals:

• complete automatization for
the steps of the approximate
algorithm (in GENOM3CK);
invariants as algebraic link,
Alexander polynomial,
delta-invariant, genus, are
computed;

• tests experiments show that
the approximate algorithm has
the continuity and convergency
properties;

• the approximate algorithm
computes discrete information
from continuous data; it can
be described using principles
from regularization theory and
approximate algebraic
computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
continuity, convergency);

• make precise the meaning of
the computed approximate
output with the approximate
algorithm.

36 / 37

Conclusion and future work

Achieved goals:

• complete automatization for
the steps of the approximate
algorithm (in GENOM3CK);
invariants as algebraic link,
Alexander polynomial,
delta-invariant, genus, are
computed;

• tests experiments show that
the approximate algorithm has
the continuity and convergency
properties;

• the approximate algorithm
computes discrete information
from continuous data; it can
be described using principles
from regularization theory and
approximate algebraic
computation.

TO DO’s:

• prove the properties of the
approximate algorithm (i.e.
continuity, convergency);

• make precise the meaning of
the computed approximate
output with the approximate
algorithm.

36 / 37

Thank you for your attention.
Questions?

37 / 37

	Motivation
	A library for solving the genus computation problem
	Describing the problem
	Solving the problem
	Summary

	Towards the numerical genus computation problem
	Approximate algebraic computation
	How can we use the library to handle numerical computation?

	Conclusion and future work

