The genus computation problem: symbolic-numeric
solutions and beyond

M3d3lina Hodorog!
Supervisor: Josef Schicho!

Joint work with Bernard Mourrain?

1 Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences,
Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

2INRIA Sophia-Antipolis, France

October 1, 2009

" Doctoral Program

1/31

Table of contents

©® Motivation

® Describing the problem
What?

© Solving the problem
How?

@ Current results

@ Conclusion and future work

E(Ducmra\ Program
:

2/31

@ Motivation

KDOC[WE‘ fogrem
- =

3/31

Symbolic Algorithms:

algcurves CASA GHS attack
Florida University RISC-Hagenberg Berlin University

Genus
computation

Singular

normal.lib PAFF
Kaiserslautern University INRIA-Roquencourt

" Doctoral Program

4/31

Numeric Algorithms:

E(Doctoral Program
o = =

Dae
4/31

Symbolic-Numeric Algorithms:
DK Project: Symbolic-Numeric techniques for genus computation and parametrization
(initiated by Prof. Josef Schicho).

Ongoing(our plugin): Complex Invariants Plugin

NOW: the plugin is available as a library in Axel

Axel algebraic modeler
INRIA-Sophia Antipolis

Genus computation

" Doctoral Program

4/31

® Describing the problem
What?

E(Dacmra\ Program
ptaion

5/31

What?

e Input:
e C field of complex numbers;
e F € C[z,w] irreducible with coefficients of limited accuracy !;
o C={(z,w) € C}|F(z,w) =0} =
= {(z,y,u,v) € R*F(x +iy,u + iv) = 0} complex algebraic curve
(d is the degree);

e Output:
e approximate genus(C) s.t.

genus(C) = %(d —1)(d-2) - Z d-invariant(P),
PeSing(C)

where Sing(C) is the set of singularities of the curve C.

" Doctoral Program

'For now: symbolic coefficients
6/31

© Solving the problem
How?

E(Dacmra\ Program
e

7/31

How?

e Strategy for computing the genus

‘ Plane complex algebraic curve‘

com putei numerically

. . compute -
Singularities : Link
numerically |
numerically | symbolically

N
| Alexander Polynomial |

compute

‘ d-invariant(singularities) ‘ T

com puteﬂsymbolically

" Doctoral Program

8/31

How?

e Strategy for computing the genus

’ Plane complex algebraic curve‘

com pute\L numerically

‘Singularities moved in origin ‘ compute

numerically
I

numerically | symbolically
A

compute

‘ d-invariant(singularities) ‘ ‘Alexander Polynomial ‘

symbolically

compute\usymbolically

" Doctoral Program

8/31

Solving the problem

Implementation of the algorithm

o Axel algebraic geometric modeler @

?Acknowledgements: Julien Wintz

Solving the problem

Implementation of the algorithm

o Axel algebraic geometric modeler ¢

e developed by Galaad team
(INRIA Sophia-Antipolis);
e in C++, Qt scripting language;

?Acknowledgements: Julien Wintz P et

9/31

Solving the problem

Implementation of the algorithm

o Axel algebraic geometric modeler ¢

e developed by Galaad team
(INRIA Sophia-Antipolis);
e in C++, Qt scripting language;
e provides algebraic tools for:
e implicit surfaces;

2Acknowledgements: Julien Wintz E(,D‘"““’a‘ e

9/31

Solving the problem

Implementation of the algorithm

o Axel algebraic geometric modeler ¢
e developed by Galaad team
(INRIA Sophia-Antipolis);
e in C++, Qt scripting language;
e provides algebraic tools for:
e implicit surfaces;
e implicit curves.

?Acknowledgements: Julien Wintz E(,D"c“m‘ e

9/31

Solving the problem

Implementation of the algorithm

o Axel algebraic geometric modeler ¢

e developed by Galaad team
(INRIA Sophia-Antipolis);
e in C++, Qt scripting language;
e provides algebraic tools for:
e implicit surfaces;
e implicit curves.

e free, available at:

http://axel.inria.fr/

?Acknowledgements: Julien Wintz

" Doctoral Program

9/31

@ Current results

E(Docmra\ Program

First

‘ Plane complex algebraic curve‘

com putei numerically

‘ 1.Singularities ‘ compute

numerically
|

numerically | symbolically
Y

‘ 3.Alexander Polynomial ‘

compute

‘ 4.5-invariant(singularities) ‘ Smbolcaly

com puteﬂsymbolically

P\/ boctoral Program

11/31

Computing the singularities of the curve

e Input:

o FeClz,uw]

o C={(z,w) € C}|F(z,w) =0}
e Qutput:

. oF oF
J g}mg(c) = {(20,w0) € C*|F (20, wo) =0, a(zoywo) =05

Method: = solve overdeterminate system of polynomial equations in C?:

(20, wo) =

F(Zo,’wo) =0

oF

5, (Fo,wo) =0 (1)
F

%(ZO,wo) =0

P\/ boctoral Program

12/31

Computing the singularities of the curve

orin R*: F(z,w) = F(z + iy, u + i) = s(x,y,u,v) + it(z,y,u,v)

5(0, Yo, u0,v0) = 0
t(zo, Yo, uo,v0) =0

0s
*($07y0,U0,’UO) =0

ox

ot

%(xoay()?u()vvo) =0) (2)
0

a*Z(xo,yo,umvo) =0

ot
~— (0,90, u0,v0) =0

ou

P\/ boctoral Program

12/31

Computing the singularities of the curve

For input polynomials with numeric coefficients

Singular
(Resultants method)
—x—values, y—values for solutions|

Mathematica
(Groebner Bases,Resultants)

CoCoA
(Groebner Bases) Bertini
(Homotopy continuation)

—randomized solutions

Compute
singularities

Singular
(Groebner Bases)

Mathemagix - library of Axel
(Subdivision method)
—real solutions
But, complex solutions with LinAlg
will be soon available!

" Doctoral Program

Note: so far this is an open problem.

12/31

Next

’ Plane complex algebraic curve‘

computelnumerically
. - . .. compute -
’1.S|ngu|ar|t|es moved in orlgm‘ 2.Link

numerically
I

numerically | symbolically
A

’ 3.Alexander Polynomial ‘

compute

’4.5—invariant(singuIarities)‘ bolicall
symbpolically

computeﬂsymbolically

" Doctoral Program

13/31

Knot theory - preliminaries

e A knot is a simple closed curve in R3.
® A link is a finite union of disjoint knots.

® Links resulted from the intersection of a given curve
with the sphere are called algebraic links.
Note: Alexander polynomial is a complete invariant
for the algebraic links (Yamamoto 1984).

Trefoil Knot

P\/ boctoral Program

14/31

Computing the link of the singularity

e Why the link of a singularity?

e helps to study the topology of a complex curve near a singularity;
e How do we compute the link?

e use stereographic projection;

P\/ boctoral Program

15/31

Computing the link of the singularity

Method (based on Milnor's results)
1. Let C = {(x,y,u,v) € RYF(x,y,u,v) = 0} s.t. (0,0,0,0) € Sing(C)

2. Consider S(g) := S = {(z,y,u,v) € R*2? + 3 + u? + w? = ¢},
X = CﬂS(o,e) CcR*

3. For P € S\ C take f: S\ {P} = R? f(z,y,u,v) = (%, 2: &%)
FUIRS — S\ {P)

f_l(a b C) — (2ae 2be 2ce e(a2+b2+6271))
U 14+a24+b24c27 14+a2+b2+c2° 1+a2+b2+c2° 14+a2+b2+c2

4. Compute f(X) = {(a,b,c,) e R}|F(..) =0} &
f(X)={(a,b,c,) € R}|ReF(...) = 0,ImF(...) = 0}
For small ¢, f(X) is a link.

" Doctoral Program

16/31

Computing the link of the singularity

Why Axel?
It computes numerically the topology of smooth implicit curves in R?

e For C* = {(z,w) € C*|2® —w® =0} C R* get

E(Ducmra\ Program
v

17/31

Computing the link of the singularity

Why Axel?
It computes numerically the topology of smooth implicit curves in R3

e For C* = {(z,w) € C?2® —w? =0} C R* get

o f(C*NS):=C=
={(a,b,c) € R®|ReF(...) = 0,ImF(...) = 0}

E(Ducmra\ Program
:

17/31

Computing the link of the singularity

Why Axel?
It computes numerically the topology of smooth implicit curves in R3

e For C* = {(z,w) € C*|2® —w? =0} C R* get
o f(C'NS):=C=

={(a,b,c) € R}|ReF(...) = 0,ImF(...) = 0}
e compute Graph(C) = (V,E) with

V={p=(mn,q) € R’}

& =A{(5)li,j eV}

E(Ducmra\ Program

17/31

Computing the link of the singularity

Why Axel?
It computes numerically the topology of smooth implicit curves in R3

For C* = {(z,w) € C?2® — w? = 0} C R* get
fctns):=cC =

={(a,b,c) € R*|ReF(...) = 0,ImF(...) = 0}
compute Graph(C) = (V,E) with

V= {p=(m,n,q) € R’}

E=A(i,4)li,j €V}

s.t. Graph(C) ;sotopic C

E(Ducmra\ Program

17/31

Next

‘ Plane complex algebraic curve‘

com putel numerically

1.Singularities compure

numerically
|

numerically | symbolically
\i

‘3.A|exander Polynomial‘

compute

‘4.5—invariant(singuIarities)‘ bolicall
symbolically

computeﬂsymbolically

" Doctoral Program

18/31

Knot theory - preliminaries

Diagram and arcs

A diagram is the image under regular projection, together
with the information on each crossing telling which branch

goes over and which under.

A crossing is: Crossings

-righthanded if the underpass traffic goes from right to left.
-lefthanded if the underpass traffic goes from left to right. "

VN ZaN

X

" Doctoral Program

=~

19/31

Computing the Alexander polynomial of the link

=1
‘type label; label; labely
M(L) _ C1 -1 2 1 3
RH(+1) LH(-1)
K ! i k
P(L) = y y
NS
[k i i b
-t -1t 1-t EE(-

20/31

Computing the Alexander polynomial of the link

‘type label; label; labely

a1 2 1 3
M(L) = 1-1 t -1
2 1 3
Py | 17t 1 1 R e
)X
NS
i j k i j]
1-t -1 t 1-t t -
KDu‘cmra\ Program

20/31

Computing the Alexander polynomial of the link

‘type label; label; labely

a2 1 3
M(L) = 1-1 t -1
1 2 3
Py | t 10t ! R ey
)<
N
i j k i j]
-t -1 t 1-t EE(-
Doctoral Program

20/31

Computing the Alexander polynomial of the link

For a link with K = 1 knot:

to1-t -1
PLy=| 1-¢t -1 ¢
—1 t 11—t

D := det(minor(P(L))) = —t> +t —1
A(L) := A(t) = Normalise(D) =t* —t + 1

For a link with K > 1 knots and n crossings A(L) RHE) LHEY
is the ged of all the (n — 1) x (n — 1) minor 7N

determinants of P(L). V. iyk
Note: The Alexander polynomial is A(L). \j /
vif‘“Ducmra\ Program

20/31

Computing the Alexander polynomial of the link

So, the Alexander polynomial is computed in several steps:

—1 PO | —Aw

v v v

compute compute compute
labelling matrix preAlexander matrix Alexander polynomial

In order to compute it, we need D(L)!

" Doctoral Program

21/31

Next

‘ Plane complex algebraic curve‘

com putel numerically

1 H compute
__1.S|n ularities _
g numerically

com putelnumerically

Intermediate step'

com puteﬂsymbolically

compute

3.Alexander Polynomial

‘4.6—invariant(singuIarities)‘ bolicall
symbolically

computeﬂsymbolically

P\/ boctoral Program

22/31

Intermediate step

? !
® =
e G(L)=(P,E) D(L)
p(index,x.y,2) —~ number of arcs, crossings
° — type of crossings (under, over)

) ! —= number of knots in the link(orientation)
e(pointS, pointD)

E(Ducmra\ Program

23/31

Intermediate step

G(L) =<P,E> oL
‘ .) arcs,crossings
intersections of edges ALGO1

(adapted Bentley—Ottman algo) -
information on each under/over crossings
— :
number of number of oriented
oriented closed loogs——— A(LO%SZ F———— knotsin the link

modified G(L) =<P,E> D(L)
i ; 1. construct the arcs
1.split undergoing edges(UE) ALGO3) i
2.keep overgoing edges(OE (our) 2. dec!de crossmg(RH/LH)
3.update closed loops 3. decide belonging of edges to arc

" Doctoral Program

23/31

Algorithm 1 - Adapted version of Bentley-Ottman

e Input
e S a set of "short” edges ordered from left to right:

NN X

e Output
e [- the set of all intersections among edges of .S and
e for each p € I, the "arranged” pair of edges (e;, e;) such that
p=e;MNe;.

Note: (e;,e;) is an "arranged” pair of edges if and only if for p = e; Nej, e; is
below e; in R?.

" Doctoral Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

e the edges are ordered by criteria (1),(2),(3):

1 ?) o)

X’s of sources slopes of edges y’s of destination

pr L

E(Ducmra\ Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

e we consider [a sweep line

o we keep track of two lists:
E = {eo, €1, ...,e11} the list of ordered edges
Sw = {7} the list of event points

e while traversing F/ we insert the edges in Sw in the "right” position
e That is...

" Doctoral Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

o /= {ep,e1,e2,€3,¢€4,€5, €6, €7, €8, €9, €10, €11 }
o Sw={eg,e1}

E(Ducmra\ Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

o = {60,61,62,63,64,65,66,67,68,69,610,611}
o Sw = {60, 61}

E(Ducmra\ Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

e5 €9

e7

6 e8

DO(b11,b12)

o /= {ep,e1,e2,€3,¢€4,€5,€6,€7, €8, €9, €10, €11 }
e Sw = {eg, e1}; compute:

a;x az 1
det(eg,eg) = | b1 bz 1 | > 0= ey after ¢p in Sw
a b 1

P\/ boctoral Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

e E= {607el:627637€4a€57€67e7768)69’6107611}

o Sw=/{ep,e1}

E(Ducmra\ Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

Sl(all.al2)

o | = {60761762763,64,65a6676776876976107611}

e Sw = {eg, e1}; compute:

aj; ajz 1
det(eg,e1) = | b1 bz 1 | < 0= ey before e; in Sw
a b 1

P\/ boctoral Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

E = {eg, e1,e2, €3, ¢4, €5, €6, €7, €8, €9, €10, €11}
Sw = {ep,e2,€1}

Test eg Nea? Nol

Test es Ne1? Nol

I =

Er=190

E(Ducmra\ Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

o = {eg,e1,e2,€3,€4,€5,€6,¢7,€8,€9,€10, €11 }

o Sw= {64,66,63,65}

E(Ducmra\ Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

E = {eo, e1, €2, €3, €4, €5, €6, €7, €8, €9, €10, €11 }

Sw = {ey, e6,e7,€5}

Test eg Ner =7 Yes!

Test ez Nes =7 No! = I ={(a1,b1)} Er = {(es,e7)}
Sw = {ey,e7,€6,€5}

P\/ boctoral Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

e4

E = {eo,e1,e2,€3,¢€4, €5, €6, €7, €3, €9, €10, €11 }
Sw = {ey, eg, €g, €5}

Test e4 Neg =7No!

Test eg N eg =7No!

Test dest(eyq) = dest(eg)? No!

Test dest(eg) = dest(eg)? Yes! =

Sw = {eq, e5}

P\/ boctoral Program

24 /31

Algorithm 1 - Adapted version of Bentley-Ottman

e4

e Final output

o | = {il = (al,bl),’ig = (ag,bg)}
Er = {(66,67), (610,69)} with

e e below e7 in R? and
e e below eg in R?

E(Ducmra\ Program

24 /31

Specific algorithms

o Algorithm for constructing the loops produces:

e F ordered by (1),(2),(3)

=

ell
2 —e5

e0

el0
e4

Lo = {eo, €4, €10, —€8, —€5, —€1}

L1 = {e2,e7,e11, —e9, —e6, —€3}
P\/ boctoral Program

25/31

Specific algorithms

e Algorithm for constructing the arcs produces:

e Er ={(e2,e1),(es,e11)} = ao = {—e¥, —es, —e1, eo, €4, €10, —€8 }
o o= {eo,..,—el —el, ..., —e1} a1 = {e¥,er,e1l, —eg, —es, —e3, €4}
L1 = {eg, eé‘, €7,y .eey —63}

® An arc contains all the edges between 2 undergoing crossings

" Doctoral Program

25/31

Next

‘ Plane complex algebraic curve‘

computel numerically
B o compute -
1.Singularities

numerically
[

numerically | symbolically
\i

‘ 3.Alexander Polynomial ‘

compute

‘4.6—invariant(singuIarities)‘ —
symbolically

computeﬂsymbolically

" Doctoral Program

26 /31

Computing the d-invariant of the singularity

From the Alexander polynomial, we derive the formulae for the d-invariant:

(based on Milnor's research)

‘ C C C? complex curve, z € Sing(C) ‘

|

‘ A(t1, ..., tp) : 7 — number of variables, u — degree ‘

r=1

6, ==
2#

b = S(ut)

" Doctoral Program

27/31

Summary

Using our library QComplexInvariants in Axel we get the results:

Alt)=16=1,9g=—1

It +1,6=1,9=0

)
t

A(tl,tz) =tito+1,0=2,9g=1

Al)=ti -+t —t1+1,0=2,9=4

A(tl,tz,tg) = —titats + 1,(5 =3,9g=—-2

A(t1,ta,t3) = —titats + 1,0 = 4,9 = 2

Dae
28/31

@® Conclusion and future work

E(Dacmra\ Program
Computatonaiatematic

29/31

Conclusion

Present work:
e all the steps of the algorithm are now completely automatized,;

e together with its main functionality to compute the genus,
e the symbolic-numeric algorithm provides also tools for computation:

e in knot theory (i.e. diagram of links, Alexander polynomial);
e in algebraic geometry (i.e. delta invariant, singularities of plane
complex algebraic curve);

" Doctoral Program

30/31

Conclusion

Future work:
o Analyze the algorithm for numeric input:

e How to control the error in numerical computation?
e How to improve the representation to our problem?

e Need to make investigations at the frontier between symbolic and
numeric computation.

" Doctoral Program

30/31

SRR

i

Thank you for your attention.
Questions?

	Motivation
	Describing the problem
	What?

	Solving the problem
	How?

	Current results
	Conclusion and future work

