The genus computation problem: symbolic-numeric solutions and beyond

Mădălina Hodorog¹
Supervisor: Josef Schicho¹
Joint work with Bernard Mourrain²

 1 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Research Institute for Symbolic Computation Johannes Kepler University Linz, Austria 2 INRIA Sophia-Antipolis, France

October 1, 2009

Table of contents

- Motivation
- 2 Describing the problem What?
- 3 Solving the problem How?
- 4 Current results
- **5** Conclusion and future work

- Motivation
- ② Describing the problem What?
- Solving the problem How?
- A Current results
- **5** Conclusion and future work

Symbolic Algorithms:

Numeric Algorithms:

Symbolic-Numeric Algorithms:

DK Project: Symbolic-Numeric techniques for genus computation and parametrization (initiated by Prof. Josef Schicho).

Ongoing(our plugin): Complex Invariants Plugin NOW: the plugin is available as a library in Axel Axel algebraic modeler INRIA-Sophia Antipolis Genus computation

- Motivation
- 2 Describing the problem What?
- Solving the problem How?
- A Current results
- **5** Conclusion and future work

What?

- Input:
 - C field of complex numbers;
 - $F \in \mathbb{C}[z,w]$ irreducible with coefficients of limited accuracy ¹;
 - $C=\{(z,w)\in\mathbb{C}^2|F(z,w)=0\}=$ $=\{(x,y,u,v)\in\mathbb{R}^4|F(x+iy,u+iv)=0\}$ complex algebraic curve (d is the degree);
- Output:
 - approximate genus(C) s.t.

$$genus(C) = \frac{1}{2}(d-1)(d-2) - \sum_{P \in Sing(C)} \delta\text{-invariant}(P),$$

where Sing(C) is the set of singularities of the curve C.

- Motivation
- ② Describing the problem What?
- **3** Solving the problem How?
- 4 Current results
- **5** Conclusion and future work

How?

• Strategy for computing the genus

How?

Strategy for computing the genus

- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - in C++, Qt scripting language;
 - provides algebraic tools for:
 - implicit surfaces;
 - implicit curves.
 - free, available at:

^aAcknowledgements: Julien Wintz

- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - in C++, Qt scripting language;
 - provides algebraic tools for:
 - implicit surfaces;implicit curves.
 - free, available at:

^aAcknowledgements: Julien Wintz

- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - in C++, Qt scripting language;
 - provides algebraic tools for:
 - implicit surfaces;
 - implicit curves.
 - free, available at:

^aAcknowledgements: Julien Wintz

- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - in C++, Qt scripting language;
 - provides algebraic tools for:
 - implicit surfaces;
 - implicit curves.
 - free, available at:

^aAcknowledgements: Julien Wintz

Implementation of the algorithm

- Axel algebraic geometric modeler ^a
 - developed by Galaad team (INRIA Sophia-Antipolis);
 - in C++, Qt scripting language;
 - provides algebraic tools for:
 - implicit surfaces;
 - implicit curves.
 - free, available at:

http://axel.inria.fr/

^aAcknowledgements: Julien Wintz

- Motivation
- ② Describing the problem What?
- Solving the problem How?
- A Current results
- **5** Conclusion and future work

First

Computing the singularities of the curve

- Input:

 - $\begin{array}{l} \bullet \ F \in \mathbb{C}[z,w] \\ \bullet \ C = \{(z,w) \in \mathbb{C}^2 | F(z,w) = 0 \} \end{array}$
- Output:
 - $Sing(C) = \{(z_0, w_0) \in \mathbb{C}^2 | F(z_0, w_0) = 0, \frac{\partial F}{\partial z}(z_0, w_0) = 0, \frac{\partial F}{\partial w}(z_0, w_0)$ 0}

Method: \Rightarrow solve overdeterminate system of polynomial equations in \mathbb{C}^2 :

$$\begin{cases}
F(z_0, w_0) = 0 \\
\frac{\partial F}{\partial z}(z_0, w_0) = 0 \\
\frac{\partial F}{\partial w}(z_0, w_0) = 0
\end{cases} ,$$
(1)

Computing the singularities of the curve

or in
$$\mathbb{R}^4$$
: $F(z, w) = F(x + iy, u + iv) = s(x, y, u, v) + it(x, y, u, v)$

$$\begin{cases}
s(x_0, y_0, u_0, v_0) = 0 \\
t(x_0, y_0, u_0, v_0) = 0
\end{cases}$$

$$\frac{\partial s}{\partial x}(x_0, y_0, u_0, v_0) = 0$$

$$\begin{cases}
\frac{\partial t}{\partial x}(x_0, y_0, u_0, v_0) = 0 \\
\frac{\partial s}{\partial u}(x_0, y_0, u_0, v_0) = 0
\end{cases}$$

$$\frac{\partial t}{\partial u}(x_0, y_0, u_0, v_0) = 0$$

$$\begin{cases}
\frac{\partial t}{\partial u}(x_0, y_0, u_0, v_0) = 0
\end{cases}$$
(2)

Computing the singularities of the curve

For input polynomials with numeric coefficients

Note: so far this is an open problem.

Next

Knot theory - preliminaries

- A **knot** is a simple closed curve in \mathbb{R}^3 .
- A link is a finite union of disjoint knots.
- Links resulted from the intersection of a given curve with the sphere are called algebraic links.
 Note: Alexander polynomial is a complete invariant for the algebraic links (Yamamoto 1984).

Trefoil Knot

Hopf Link

- Why the link of a singularity?
 - helps to study the topology of a complex curve near a singularity;
- How do we compute the link?
 - use stereographic projection;

Method (based on Milnor's results)

- 1. Let $C = \{(x,y,u,v) \in \mathbb{R}^4 | F(x,y,u,v) = 0\}$ s.t. $(0,0,0,0) \in Sing(C)$
- 2. Consider $S_{(0,\epsilon)}:=S=\{(x,y,u,v)\in\mathbb{R}^4|x^2+y^2+u^2+w^2=\epsilon^2\}$, $X=C\bigcap S_{(0,\epsilon)}\subset\mathbb{R}^4$
- 3. For $P \in S \setminus C$ take $f: S \setminus \{P\} \to \mathbb{R}^3$, $f(x,y,u,v) = (\frac{x}{\epsilon-v}, \frac{y}{\epsilon-v}, \frac{u}{\epsilon-v})$, $f^{-1}: \mathbb{R}^3 \to S \setminus \{P\}$ $f^{-1}(a,b,c) = (\frac{2a\epsilon}{1+a^2+b^2+c^2}, \frac{2b\epsilon}{1+a^2+b^2+c^2}, \frac{2c\epsilon}{1+a^2+b^2+c^2}, \frac{\epsilon(a^2+b^2+c^2-1)}{1+a^2+b^2+c^2})$
- 4. Compute $f(X)=\{(a,b,c,)\in\mathbb{R}^3|F(...)=0\}\Leftrightarrow f(X)=\{(a,b,c,)\in\mathbb{R}^3|ReF(...)=0,ImF(...)=0\}$ For small $\epsilon,f(X)$ is a link.

Why Axel?

It computes numerically the topology of smooth implicit curves in $\ensuremath{\mathbb{R}}^3$

- $\bullet \ \ \text{For} \ C^4 = \{(z,w) \in \mathbb{C}^2 | z^3 w^2 = 0\} \subset \mathbb{R}^4 \ \text{get}$
- $f(C^4 \cap S) := C =$ = $\{(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$
- compute $Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$ with $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$ $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$
- s.t. $Graph(C) \cong_{isotopic} C$

Why Axel?

It computes numerically the topology of smooth implicit curves in \mathbb{R}^3

- For $C^4=\{(z,w)\in\mathbb{C}^2|z^3-w^2=0\}\subset\mathbb{R}^4$ get
- $f(C^4 \cap S) := C =$ = $\{(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$
- compute $Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$ with $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$ $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$
- s.t. $Graph(C) \cong_{isotopic} C$

Why Axel?

It computes numerically the topology of smooth implicit curves in \mathbb{R}^3

- For $C^4=\{(z,w)\in\mathbb{C}^2|z^3-w^2=0\}\subset\mathbb{R}^4$ get
- $f(C^4 \cap S) := C =$ = $\{(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$
- compute $Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$ with $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$ $\mathcal{E} = \{(i, j) | i, j \in \mathcal{V}\}$
- s.t. $Graph(C) \cong_{isotopic} C$

Why Axel?

It computes numerically the topology of smooth implicit curves in \mathbb{R}^3

- $\bullet \ \ \text{For} \ C^4=\{(z,w)\in \mathbb{C}^2|z^3-w^2=0\}\subset \mathbb{R}^4 \ \text{get}$
- $f(C^4 \cap S) := C =$ = $\{(a, b, c) \in \mathbb{R}^3 | ReF(...) = 0, ImF(...) = 0\}$
- compute $Graph(C) = \langle \mathcal{V}, \mathcal{E} \rangle$ with $\mathcal{V} = \{p = (m, n, q) \in \mathbb{R}^3\}$ $\mathcal{E} = \{(i, j)|i, j \in \mathcal{V}\}$
- s.t. $Graph(C) \cong_{isotopic} C$

Next

Knot theory - preliminaries

A diagram is the image under regular projection, together with the information on each crossing telling which branch goes over and which under.

A crossing is:

- -righthanded if the underpass traffic goes from right to left.
- -lefthanded if the underpass traffic goes from left to right.

Diagram and arcs

Crossings

$$M(L) = \left(egin{array}{c|ccc} & type & label_i & label_j & label_k \\ \hline c_1 & -1 & 2 & 1 & 3 \\ \hline \end{array}
ight)$$

$$P(L) = \left(\begin{array}{c} \\ \end{array} \right)$$

$$M(L) = \left(egin{array}{c|ccc} & type & label_i & label_j & label_k \\ \hline c_1 & -1 & 2 & 1 & 3 \\ & & 1-t & t & -1 \end{array}
ight)$$

$$P(L) = \left(\begin{array}{ccc} 2 & 1 & 3 \\ 1 - t & t & -1 \end{array} \right)$$

$$M(L) = \begin{pmatrix} & type & label_i & label_j & label_k \\ \hline c_1 & -1 & 2 & 1 & 3 \\ & & 1-t & t & -1 \end{pmatrix}$$

$$P(L) = \left(\begin{array}{ccc} 1 & 2 & 3\\ t & 1-t & -1 \end{array}\right)$$

For a link with K=1 knot:

$$P(L) = \begin{pmatrix} t & 1-t & -1 \\ 1-t & -1 & t \\ -1 & t & 1-t \end{pmatrix}$$

$$D := det(minor(P(L))) = -t^2 + t - 1$$

$$\Delta(L) := \Delta(t) = Normalise(D) = t^2 - t + 1$$

Note: The Alexander polynomial is $\Delta(L)$.

So, the Alexander polynomial is computed in several steps:

In order to compute it, we need D(L)!

Next

Intermediate step

- $G(L) = \langle P, E \rangle$
- p(index,x,y,z)
 - e(pointS, pointD)
 - •

- D(L)
- --- number of arcs, crossings
- --> type of crossings (under, over)
- number of knots in the link(orientation)

Intermediate step

- Input
 - S a set of "short" edges ordered from left to right:

- Output
 - I the set of all intersections among edges of S and
 - for each $p \in I$, the "arranged" pair of edges (e_i, e_j) such that $p = e_i \cap e_i$.

Note: (e_i, e_j) is an "arranged" pair of edges if and only if for $p = e_i \cap e_j$, e_i is below e_i in \mathbb{R}^3 .

• the edges are ordered by criteria (1),(2),(3):

- we consider l a sweep line
- we keep track of two lists: $E = \{e_0, e_1, ..., e_{11}\}$ the list of ordered edges $Sw = \{?\}$ the list of event points
- \bullet while traversing E we insert the edges in Sw in the "right" position
- That is...

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_0, e_1\}$

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_0, e_1\}$

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_0, e_1\}$; compute:

$$det(e_2, e_0) = \begin{pmatrix} a_{11} & a_{12} & 1 \\ b_{11} & b_{12} & 1 \\ a & b & 1 \end{pmatrix} > 0 \Rightarrow e_2 \text{ after } e_0 \text{ in } Sw$$

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_0, e_1\}$

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_0, e_1\}$; compute:

$$det(e_2, e_1) = \begin{pmatrix} a_{11} & a_{12} & 1 \\ b_{11} & b_{12} & 1 \\ a & b & 1 \end{pmatrix} < 0 \Rightarrow e_2 \text{ before } e_1 \text{ in } Sw$$

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_0, e_2, e_1\}$
- Test $e_0 \cap e_2$? No! Test $e_2 \cap e_1$? No!
- $I = \emptyset$ $E_I = \emptyset$

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_4, e_6, e_3, e_5\}$

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_4, e_6, e_7, e_5\}$
- Test $e_6 \cap e_7 =$? Yes! Test $e_7 \cap e_5 =$? No! $\Rightarrow I = \{(a_1,b_1)\}$ $E_I = \{(e_6,e_7)\}$ $Sw = \{e_4,e_7,e_6,e_5\}$

- $E = \{e_0, e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}\}$
- $Sw = \{e_4, e_8, e_6, e_5\}$
- Test $e_4 \cap e_8 = ?$ No! Test $e_8 \cap e_6 = ?$ No!
- Test $dest(e_4) = dest(e_8)$? No! Test $dest(e_8) = dest(e_6)$? Yes! \Rightarrow $Sw = \{e_4, e_5\}$

- Final output
- $I = \{i_1 = (a_1, b_1), i_2 = (a_2, b_2)\}\$ $E_I = \{(e_6, e_7), (e_{10}, e_9)\}\$ with
 - e_6 below e_7 in \mathbb{R}^3 and
 - e_{10} below e_9 in \mathbb{R}^3

Specific algorithms

Algorithm for constructing the loops produces:

• E ordered by (1),(2),(3) \Rightarrow

$$L_0 = \{e_0, e_4, e_{10}, -e_8, -e_5, -e_1\}$$

$$L_1 = \{e_2, e_7, e_{11}, -e_9, -e_6, -e_3\}$$

Specific algorithms

Algorithm for constructing the arcs produces:

- $E_I = \{(e_2, e_1), (e_8, e_{11})\}$ \Rightarrow
- $\Rightarrow a_0 = \{-e_8^u, -e_5, -e_1, e_0, e_4, e_{10}, -e_8^d\}$
- $L_0 = \{e_0, ..., -e_8^d, -e_8^u, ..., -e_1\}$ $a_1 = \{e_2^u, e_7, e_11, -e_9, -e_6, -e_3, e_2^d\}$ $L_1 = \{e_2^d, e_2^u, e_7, ..., -e_3\}$
- An arc contains all the edges between 2 undergoing crossings

Next

Computing the δ -invariant of the singularity

From the Alexander polynomial, we derive the formulae for the δ -invariant: (based on Milnor's research)

Summary

Using our library **QComplexInvariants** in Axel we get the results:

Equation	Link	Alex poly, δ -invariant, genus
$z^2 - w^2, \epsilon = 1.0$	Hopf link	$\Delta(t_1) = 1, \ \delta = 1, g = -1$
$z^2 - w^3, \epsilon = 1.0$	Trefoil	$\Delta(t_1) = t_1^2 - t_1 + 1, \delta = 1, g = 0$
	knot	
$z^2 - w^4, \epsilon = 1.0$	2-knots	$\Delta(t_1, t_2) = t_1 t_2 + 1, \delta = 2, g = 1$
	link	
$z^2 - w^5, \epsilon = 1.0$	1-knot	$\Delta(t_1) = t_1^4 - t_1^3 + t_1^2 - t_1 + 1, \delta = 2, g = 4$
	link	
$(z-2)^3 - (w-1)^3, \epsilon = 1.0$	3-knots	$\Delta(t_1, t_2, t_3) = -t_1 t_2 t_3 + 1, \delta = 3, g = -2$
	link	
$z^4 + z^2 w + w^5, \epsilon = 0.25$	3-knots	$\Delta(t_1, t_2, t_3) = -t_1^2 t_2^2 t_3 + 1, \delta = 4, g = 2$
	link	

- Motivation
- ② Describing the problem What?
- 3 Solving the problem How?
- 4 Current results
- **5** Conclusion and future work

Conclusion

Present work:

- all the steps of the algorithm are now completely automatized;
- together with its main functionality to compute the genus,
- the symbolic-numeric algorithm provides also tools for computation:
 - in knot theory (i.e. diagram of links, Alexander polynomial);
 - in algebraic geometry (i.e. delta invariant, singularities of plane complex algebraic curve);

Conclusion

Future work:

- Analyze the algorithm for numeric input:
 - How to control the error in numerical computation?
 - How to improve the representation to our problem?
- Need to make investigations at the frontier between symbolic and numeric computation.

Thank you for your attention. Questions?