Symbolic-Numeric Algorithms for Invariants of Plane Curve Singularities

Mădălina Hodorog ${ }^{1}$, Bernard Mourrain ${ }^{2}$, Josef Schicho ${ }^{1}$
${ }^{1}$ Johann Radon Institute for Computational and Applied Mathematics, Doctoral Program "Computational Mathematics" Johannes Kepler University Linz, Austria Research Institute for Symbolic Computation
${ }^{2}$ INRIA Sophia-Antipolis, France

Doctoral Program "Computational Mathematics" Status Seminar, Strobl-Austria
October 6-8, 2010

Table of contents

(1) Motivation
(2) Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

(1) Motivation

2 Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

三

Motivation

We investigate the topology (i.e. roughly speaking the shape) of plane complex algebraic curves. These curves can be identified with objects in \mathbb{R}^{4} we cannot visualize! We sketch the equivalent objects in \mathbb{R}^{2} for a rough "idea"!

Motivation

For instance,
We visualize the topology of the algebraic curve $\mathcal{C}=\left\{(x, y) \mid-x^{3}-x y+y^{2}=0\right\}$ in \mathbb{R}^{2} ! We notice an "involved" topology around the point $(0,0)$, which is called singularity!

Motivation

Roughly, if we consider $\mathcal{C}=\left\{(x, y) \mid-x^{3}-x y+y^{2}=0\right\}$ then

> For topology of $(0,0)$ of \mathcal{C}

Motivation

Our goal is to compute and
Roughly, if we consider $\mathcal{C}=\left\{(x, y) \mid-x^{3}-x y+y^{2}=0\right\}$ then

Motivation

Our goal is also to design for:
\(\left.\left.$$
\begin{array}{|c|c|}\hline \text { Rationals and } \\
\text { floating point } \\
\text { numbers }\end{array}
$$\right] \longrightarrow \begin{array}{r}Symbolic-numeric

algorithms

(in GENOM3CK)

(in Axel)\end{array}\right]\)| to compute |
| :---: |
| Alexander |
| polynomial, |
| genus, etc |

Because at present (from our knowledge) there exists only for:

Other numerical algorithms for genus: C. Wampler's group (Bertini system), R. Sendra's group.

Motivation

For instance:
$>$ with(algcurves);
[AbelMap, Siegel, Weierstrassform, algfun_series_sol, differentials, genus, homogeneous, homology, implicitize, integral_basis, is_hyperelliptic, j_invariant, monodromy, parametrization, periodmatrix, plot_knot, plot_real_curve, puiseux, singularities]
$>f:=x^{2} y+y^{4}$

$$
f:=x^{2} y+y^{4}
$$

$>\operatorname{genus}(f, x, y)$

$$
-1
$$

$>g:=1.02 \cdot x^{2} y+1.12 \cdot y^{4}$

$$
g:=1.02 x^{2} y+1.12 y^{4}
$$

$>\operatorname{genus}(g, x, y)$
Error, (in content/polynom) general case of floats not handled >
(1) Motivation
(2) Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

Problem specifications

- Input:
- $f(x, y) \in \mathbb{C}[x, y]$ squarefree with exact and inexact coefficients;
- $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid f(x, y)=0\right\} \subseteq \mathbb{C}^{2} \simeq \mathbb{R}^{4}$ of degree m;
- $\epsilon \in \mathbb{R}_{+}^{*}$ input parameter.
- Output:
- The set of numerical singularities of \mathcal{C};

IF $\mathcal{C} \cap S_{\epsilon}$ (with S_{ϵ} the sphere of radius epsilon centered in the singularity $(0,0)$ of \mathcal{C}) has no singularities, THEN :

- A set of invariants for each numerical singularity:
$\star \epsilon$-algebraic link;
$\star \quad \epsilon$-Alexander polynomial;
$\star \epsilon$-Milnor number, ϵ-delta-invariant;
- A set of invariants from knot theory for each ϵ-algebraic link:
$\star \quad \epsilon$-diagram, ϵ-crossings, ϵ-arcs, ϵ-genus, ϵ-determinant;
$\star \epsilon$-unknotting number, ϵ-linking number, ϵ-colorability.
- A set of invariants for \mathcal{C} :
$\star \epsilon$-genus, ϵ-Euler characteristic.
ELSE "false", i.e. $\mathcal{C} \cap S_{\epsilon}$ has singularities.

III-posedness of the problem

The problem is ill-posed! Small changes in input produce huge changes in the output! Example. Let $s_{1}=(0,0)$ of $\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid-x^{3}-x y+y^{2}=0\right\}$ and $s_{2}=(0,0)$ of $\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid-x^{3}-x y+y^{2}-0.01=0\right\}$!
The topology of $(0,0)$ is not stable under small changes in input!

The same situation happens in \mathbb{R}^{4}, but we cannot visualize it!
(1) Motivation
(2) Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of a problem?

- We construct numerical methods that approximate solutions to ill-posed problems, that are stable under small changes of the input! (i.e. regularization method)
- Similar methods are subjects of approximate algebraic computation in order to compute: greatest common divisor of polynomials, root of polynomials, etc.

Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of our problem?

- Example. For $s_{1}=(0,0)$ of $\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{4} \mid-x^{3}-x y+y^{2}=0\right\}$ and $s_{2}=(0,0)$ of $\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{4} \mid-x^{3}-x y+y^{2}-0.01=0\right\}$, we compute their ϵ-algebraic links denoted $L_{\epsilon}\left(s_{1}\right), L_{\epsilon}\left(s_{2}\right)$.

Note 1: For sufficiently small ϵ, L_{ϵ} are stable under small changes in the input and they characterize the topology of s_{1}, s_{2}.

Note 2: From L_{ϵ} we compute the ϵ-Alexander polynomial. This polynomial is a complete invariant for L_{ϵ} ! (Yamamoto's result)

If the ϵ-Alexander polynomials of $L_{\epsilon}\left(s_{1}\right), L_{\epsilon}\left(s_{2}\right)$ are equal, then s_{1}, s_{2} have the same topology, else they have different topology!

Note 3: From L_{ϵ}, ϵ-Alexander polynomial we compute other invariants.
(2) Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

Strategy for solving the problem

We split our problem into smaller interdependent subproblems！

(1) Motivation

2 Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

Algorithms for invariants of plane curve singularities

First

Algorithm for the singularities of the curve

- Input:
- $f(x, y) \in \mathbb{C}[x, y]$ squarefree with exact and inexact coefficients
- $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid f(x, y)=0\right\}$ complex algebraic curve of degree m.
- Output:
- $\operatorname{Sing}(\mathcal{C})=\left\{\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2} \mid f\left(x_{0}, y_{0}\right)=0, \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=0, \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0\right\}$
- Method: We solve the system in $\mathbb{C}^{2}: f\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0$.

We use subdivision methods from Axel.
We get the numerical singularities, i.e. a list of points P in the plane s.t.:

- the value of $f(x, y)$ and its derivatives in the points from P are small;
- every singularity from $\operatorname{Sing}(\mathcal{C})$ is in the neighborhood of one point from P. QUESTION: Other method (with implementation) available!?

Next

Plane complex algebraic curve, ϵ

compute \downarrow numerically
Singularities moved in origin

ϵ-Alexander polynomial, ϵ-delta-invariant

ϵ-genus

Algorithm for the ϵ-algebraic link

Trefoil Knot

- A knot is a piecewise linear or a differentiable simple closed curve in \mathbb{R}^{3}.
- A link is a finite union of disjoint knots.
- Links resulted from the intersection of a given curve with the sphere are called algebraic links.

Algorithm for the ϵ-algebraic link

- How do we compute the link of a plane curve singularity?
- use the stereographic projection;

Algorithm for the ϵ-algebraic link

1. Let $\mathcal{C}=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid f(a, b, c, d)=0\right\}$ with $(0,0,0,0) \in \operatorname{Sing}(\mathcal{C})$.
2. For $f(a, b, c, d)=R(a, b, c, d)+i I(a, b, c, d)$ with $R(a, b, c, d), I(a, b, c, d) \in$ $\mathbb{R}[a, b, c, d]$, rewrite $\mathcal{C}=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid R(a, b, c, d)=I(a, b, c, d)=0\right\}$.
3. Intersect \mathcal{C} with a sphere $S_{\epsilon}=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid a^{2}+b^{2}+c^{2}+d^{2}=\epsilon^{2}\right\}$ and obtain $X=\mathcal{C} \bigcap S_{\epsilon} \subset \mathbb{R}^{4}$.
4. For $N \in S_{\epsilon} \backslash \mathcal{C}$, consider the stereographic projection $\pi: S_{\epsilon} \backslash\{N\} \rightarrow \mathbb{R}^{3},(a, b, c, d) \mapsto\left(u=\frac{a}{\epsilon-d}, v=\frac{b}{\epsilon-d}, w=\frac{c}{\epsilon-d}\right)$, and compute $\pi^{-1}: \mathbb{R}^{3} \rightarrow S_{\epsilon} \backslash\{N\}, \pi^{-1}(u, v, w) \mapsto(a=\ldots, b=\ldots, c=\ldots, d=\ldots)$.

Algorithm for the ϵ-algebraic link

4. For $\mathcal{C}=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid R(a, b, c, d)=I(a, b, c, d)=0\right\}$, project $X=\mathcal{C} \cap S_{\epsilon}$
from \mathbb{R}^{4} to \mathbb{R}^{3} with the stereographic projection π and compute
$\pi(X)=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \exists(a, b, c, d)=\pi^{-1}(u, v, w,) \in X=\mathcal{C} \cap S_{\epsilon}\right\}$,
$\pi(X)=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(a, b, c, d)=I(a, b, c, d)=0\right\}$.
5. Obtain $\pi(X)=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)=h(u, v, w)=0\right\}$ with
$g, h \in \mathbb{R}[u, v, w]$.

Remark!

$\pi(X)$ is an implicit algebraic curve in \mathbb{R}^{3} given as the intersection of two surfaces in \mathbb{R}^{3} with the defining equations g, h.
For small $\epsilon, \pi(X):=L_{\epsilon}$ is an algebraic link, (based on Milnor's result), i.e. $\mathcal{C} \cap S_{\epsilon}$ has no singularities.

Approximation of the ϵ-algebraic link

We use Axel for implementing the proposed algorithm.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the algorithm in Axel:

Approximation of the ϵ-algebraic link

We use Axel for implementing the proposed algorithm.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the algorithm in Axel:
- $\pi(\mathcal{C} \cap S)=\pi(X):=L_{\epsilon}=$ $=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)=0, h(u, v, w)=0\right\}$

Approximation of the ϵ-algebraic link

We use Axel for implementing the proposed algorithm.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the algorithm in Axel:
- $\pi(\mathcal{C} \cap S)=\pi(X):=L_{\epsilon}=$ $=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)=0, h(u, v, w)=0\right\}$
- $\operatorname{Graph}\left(L_{\epsilon}\right)=\langle\mathcal{V}, \mathcal{E}\rangle$ with

$$
\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}
$$

$$
\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}
$$

Approximation of the ϵ-algebraic link

We use Axel for implementing the proposed algorithm.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the algorithm in Axel:
- $\pi(\mathcal{C} \cap S)=\pi(X):=L_{\epsilon}=$
$=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)=0, h(u, v, w)=0\right\}$
- $\operatorname{Graph}\left(L_{\epsilon}\right)=\langle\mathcal{V}, \mathcal{E}\rangle$ with $\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$ $\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$
- s.t. $\operatorname{Graph}\left(L_{\epsilon}\right) \cong_{i \text { sotopic }} L_{\epsilon}$

Approximation of the ϵ-algebraic link

We use Axel for implementing the proposed algorithm.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the algorithm in Axel:
- $\pi(\mathcal{C} \cap S)=\pi(X):=L_{\epsilon}=$
$=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)=0, h(u, v, w)=0\right\}$
- $\operatorname{Graph}\left(L_{\epsilon}\right)=\langle\mathcal{V}, \mathcal{E}\rangle$ with
$\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$
$\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$
- s.t. $\operatorname{Graph}\left(L_{\epsilon}\right) \cong_{i \text { sotopic }} L_{\epsilon}$
- $\operatorname{Graph}\left(L_{\epsilon}\right)$ is a piecewise linear approximation of L_{ϵ}
- Why Axel? It is the only system to implement a method which returns such an approximation! QUESTION: Other method (with implementation) available!?

Approximation of the ϵ-algebraic link

We use Axel for implementing the proposed algorithm.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$
- and $L_{\epsilon}=$

$$
=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)=0, h(u, v, w)=0\right\}
$$

Approximation of the ϵ-algebraic link

We use Axel for implementing the proposed algorithm.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$
- and $L_{\epsilon}=$

$$
=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)=0, h(u, v, w)=0\right\}
$$

- we also compute (for visualization reasons)

$$
\begin{aligned}
& \mathcal{S}^{\prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)+h(u, v, w)=0\right\} \\
& \mathcal{S}^{\prime \prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)-h(u, v, w)=0\right\}
\end{aligned}
$$

Approximation of the ϵ-algebraic link

We use Axel for implementing the proposed algorithm.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$
- and $L_{\epsilon}=$

$$
=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)=0, h(u, v, w)=0\right\}
$$

- we also compute (for visualization reasons)

$$
\begin{aligned}
& \mathcal{S}^{\prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)+h(u, v, w)=0\right\} \\
& \mathcal{S}^{\prime \prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid g(u, v, w)-h(u, v, w)=0\right\}
\end{aligned}
$$

- L_{ϵ} is the intersection of any 2 of the surfaces:
$g(u, v, w), h(u, v, w)$
$g(u, v, w)+h(u, v, w), g(u, v, w)-h(u, v, w)$

Algorithm for the diagram of the ϵ-algebraic link

When we work with (algebraic) links, we work with a special projection of them (diagram), containing the information on each double point (crossing) telling which branch goes over and which under.

- An arc is the part of a diagram between two undercrossings.

- Example. Diagram with 3 crossings and 3 arcs

Algorithm for the diagram of the ϵ-algebraic link

- $G\left(L_{\epsilon}\right)=\langle P, E\rangle$

$D\left(L_{\epsilon}\right)$
- We need to transform the graph data structure $G\left(L_{\epsilon}\right)$ returned by Axel into the diagram of the algebraic link $D\left(L_{\epsilon}\right)$.

Algorithm for the diagram of the ϵ-algebraic link

- We developed several computational geometry and combinatorial algorithms! (M. Hodorog, J.Schicho. Computational geometry and combinatorial algorithms for the genus computation problem. DK 10-07 Report.
© M. Hodorog, B. Mourrain, J.Schicho. Topology analysis of complex curves singularities using knot theory. International Conference on Curves and Surfaces, Avignon, 2010.

Why do we need the diagram of the ϵ-algebraic link?

We compute the ϵ-Alexander polynomial of L_{ϵ} denoted $\Delta\left(L_{\epsilon}\right)$ in 3 combinatorial steps:

In order to compute it, we need $\mathrm{D}\left(L_{\epsilon}\right)$, the diagram of L_{ϵ} !
M. Hodorog, B. Mourrain, J. Schicho. A symbolic-numeric algorithm for computing the Alexander polynomial of a plane curve singularity. International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Timișoara, Romania, 2010.
(1) Motivation

2 Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

Implementation

- Axel free algebraic geometric modeler (INRIA Sophia-Antipolis) ${ }^{a}$

http://axel.inria.fr/

Implementation

- Axel free algebraic geometric modeler (INRIA Sophia-Antipolis) ${ }^{a}$
- written in $C++$;
- Qt Script for Applications (QSA);
- Open Graphics Library (OpenGL).

Implementation

- Axel free algebraic geometric modeler (INRIA Sophia-Antipolis) a
- written in $\mathrm{C}++$;
- Qt Script for Applications (QSA);
- Open Graphics Library (OpenGL).
- GENOM3CK-our library in Axel.

Support: http://people.ricam.oeaw. ac.at/m.hodorog/software.html and madalina.hodorog@oeaw.ac.at

- M. Hodorog, B. Mourrain, J. Schicho. GENOM3CK - A library for GENus cOMputation of plane Complex algebraiC Curves using Knot theory. International Symposium on Symbolic and Algebraic Computation. Münich, Germany, 2010.

Implementation

- Axel free algebraic geometric modeler (INRIA Sophia-Antipolis) a
- written in $\mathrm{C}++$;
- Qt Script for Applications (QSA);
- Open Graphics Library (OpenGL).
- GENOM3CK-our library in Axel.

Support: http://people.ricam.oeaw. ac.at/m.hodorog/software.html and madalina.hodorog@oeaw.ac.at

- M. Hodorog, B. Mourrain, J. Schicho. GENOM3CK - A library for GENus cOMputation of plane Complex algebraiC Curves using Knot theory. International Symposium on Symbolic and Algebraic Computation. Münich, Germany, 2010.
- Version 0.2 of GENOM3CK is released!

2 Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(3) Conclusion

The algorithms and "approximate algebraic computation"

We interpret the algorithms in the frame of approximate algebraic computation!

The algorithms and "approximate algebraic computation"

With the notations:

- $E: I \rightarrow O$ the symbolic algorithm s.t.

Given $f \in I$ polynomial, compute $E(f)$ the Alexander polynomial (ill-posed)

- $A: I \times \mathbb{R}_{+} \rightarrow O$ the symbolic-numeric algorithm s.t.

Given $(f, \epsilon) \in I \times \mathbb{R}_{+}$, compute the ϵ-Alexander polynomial

- $\forall f \in I \forall \delta \in \mathbb{R}_{+}, f_{-}: \mathbb{R}_{+} \rightarrow I, \delta \mapsto f_{\delta}:\left|f-f_{\delta}\right| \leq \delta$ and based on:
- Milnor's theorem:

$$
\lim _{\epsilon \rightarrow 0} A(f, \epsilon)=E(f)(\text { convergence for exact data })
$$

- $A\left(f_{\delta}, \epsilon\right)$ depends continuously on the perturbed input polynomial f_{δ} (continuity);
- $\exists \alpha: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$continuous, monotonically and decreasing with $\lim _{\delta \rightarrow 0} \alpha(\delta)=0$ s.t. $\forall f \in I \forall \delta \in \mathbb{R}_{+}:\left|f-f_{\delta}\right| \leq \delta$

$$
\lim _{\delta \rightarrow 0} A\left(f_{\delta}, \alpha(\delta)\right)=E(f)(\text { convergence for perturbed data })
$$

The algorithm A_{ϵ} is a regularization.
(1) Motivation

2 Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

Extension of the algorithms

Originally, we developed the algorithms for the following invariants of algebraic curves:
plane complex algebraic curve, ϵ. Singularities moved in origin

Extension of the algorithms

We extended the algorithms to compute more invariants of algebraic curves:
plane complex algebraic curve, ϵ. Singularities moved in origin

$$
\downarrow
$$

$$
\text { -algebraic link }\left(L_{\epsilon}\right), \text { Milnor fibration }
$$

\downarrow

(1) Motivation

2 Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

Test experiments

Let us review the first example: Let $s_{1}=(0,0)$ of $\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid-x^{3}-x y+y^{2}=0\right\}$ and $s_{2}=(0,0)$ of $\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid-x^{3}-x y+y^{2}-0.01=0\right\}$! The topology of $(0,0)$ is not stable under small changes of the input!

The same situation happens in \mathbb{R}^{4}, but we cannot visualize it!

Test experiments

But the ϵ-algebraic link is stable under small changes of the input for sufficiently small ϵ !

Equation in \mathbb{C}^{2}	Results
$-x^{3}-x y+y^{2}, \epsilon=1.00$	Trefoil, $\Delta\left(t_{1}\right)=t_{1}^{2}-t_{1}+1, \delta=1, g=0$
$-x^{3}-x y+y^{2}, \epsilon=0.25$	Hopf link, $\Delta\left(t_{1}, t_{2}\right)=1, \delta=1, g=0$
$-x^{3}-x y+y^{2}-0.01, \epsilon=1.00$	Trefoil, $\Delta\left(t_{1}\right)=t_{1}^{2}-t_{1}+1, \delta=1, g=0$
$-x^{3}-x y+y^{2}-0.01, \epsilon=0.25$	Hopf link, $\Delta\left(t_{1}, t_{2}\right)=1, \delta=1, g=0$

(1) Motivation
2) Describing the problem

- Problem specifications and ill-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Strategy for solving the problem
- Mathematical framework for solving the problem
(4) Results
- Algorithms for invariants of plane curve singularities
- Implementation of the algorithms
- The algorithms and "approximate algebraic computation"
- Extension of the algorithms
- Test experiments
(5) Conclusion

Conclusion and future work

DONE:

- automatization of symbolic-numeric algorithms for invariants of plane curves singularities in GENOM3CK;
- describe partially algorithms with principles from regularization theory;

Conclusion and future work

DONE:

- automatization of symbolic-numeric algorithms for invariants of plane curves singularities in GENOM3CK;
- describe partially algorithms with principles from regularization theory;
- test experiments show that the algorithms have the continuity and the convergence for exact and perturbed data properties;
- proofs of the continuity and the convergence for exact data property are constructed.

X TO DO's:

Conclusion and future work

DONE:

- automatization of symbolic-numeric algorithms for invariants of plane curves singularities in GENOM3CK;
- describe partially algorithms with principles from regularization theory;
- test experiments show that the algorithms have the continuity and the convergence for exact and perturbed data properties;
- proofs of the continuity and the convergence for exact data property are constructed.

X TO DO's:

- proof of the convergence for perturbed data property is needed;

Conclusion and future work

DONE:

- automatization of symbolic-numeric algorithms for invariants of plane curves singularities in GENOM3CK;
- describe partially algorithms with principles from regularization theory;
- test experiments show that the algorithms have the continuity and the convergence for exact and perturbed data properties;
- proofs of the continuity and the convergence for exact data property are constructed.

XTO DO's:

- proof of the convergence for perturbed data property is needed;
- include other operations, i.e. from knot theory, algebraic geometry.

Thank you for your attention.

Doctoral Program

