
Symbolic-Numeric Algorithms for Invariants of Plane
Curve Singularities

Mădălina Hodorog1, Bernard Mourrain2, Josef Schicho1

1Johann Radon Institute for Computational and Applied Mathematics,
Doctoral Program ”Computational Mathematics”

Johannes Kepler University Linz, Austria
Research Institute for Symbolic Computation

2INRIA Sophia-Antipolis, France

Doctoral Program ”Computational Mathematics” Status Seminar,
Strobl-Austria

October 6-8, 2010

1 / 36

Table of contents

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

2 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

3 / 36

Motivation

We investigate the topology (i.e. roughly speaking the shape) of plane complex
algebraic curves. These curves can be identified with objects in R4 we cannot visualize!
We sketch the equivalent objects in R2 for a rough ”idea”!

4 / 36

Motivation

For instance,
We visualize the topology of the algebraic curve C = {(x, y)| − x3 − xy+ y2 = 0} in R2!
We notice an ”involved” topology around the point (0, 0), which is called singularity!

4 / 36

Motivation

Roughly, if we consider C = {(x, y)| − x3 − xy + y2 = 0} then

For topology

of (0, 0) of C

wwooooooooooo

((RRRRRRRRRRRR

In R2

��

In R4

��
we visualize

the solutions of

−x3 − xy + y2 = 0

we study invariants

of (0, 0)(i.e. algebraic link)

(Alexander polynomial, etc)

4 / 36

Motivation

Our goal is to compute and
Roughly, if we consider C = {(x, y)| − x3 − xy + y2 = 0} then

For topology

of (0, 0) of C

wwooooooooooo

((QQQQQQQQQQQQ

In R2

��

In R4

��

we visualize

the solutions of

−x3 − xy + y2 = 0

to study invariants

of (0, 0) of C (algebraic link)

(Alexander polynomial, etc)

and invariants of C
(genus, etc)

4 / 36

Motivation

Our goal is also to design for:

Rationals and

floating point

numbers

//

Symbolic-numeric

algorithms

(in GENOM3CK)

(in Axel)

//

to compute

Alexander

polynomial,

genus, etc

Because at present (from our knowledge) there exists only for:

Rationals //
Symbolic algorithm

(in Singular)
//

to compute

the Alexander

polynomial

Rationals //
Symbolic algorithm

(in Maple with algcurves)
// to compute

the genus

Other numerical algorithms for genus: C. Wampler’s group (Bertini system), R. Sendra’s
group.

4 / 36

Motivation
For instance:

Error, (in content/polynom) general case of floats not handled

4 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

5 / 36

Problem specifications

Input:

I f(x, y) ∈ C[x, y] squarefree with exact and inexact coefficients;
I C = {(x, y) ∈ C2|f(x, y) = 0} ⊆ C2 ' R4 of degree m;
I ε ∈ R∗

+ input parameter.

Output:

I The set of numerical singularities of C;
IF C ∩ Sε (with Sε the sphere of radius epsilon centered in the
singularity (0, 0) of C) has no singularities, THEN :

I A set of invariants for each numerical singularity:
F ε-algebraic link;
F ε-Alexander polynomial;
F ε-Milnor number, ε-delta-invariant;

I A set of invariants from knot theory for each ε-algebraic link:
F ε-diagram, ε-crossings, ε-arcs, ε-genus, ε-determinant;
F ε-unknotting number, ε-linking number, ε-colorability.

I A set of invariants for C:
F ε-genus, ε-Euler characteristic.

ELSE ”false”, i.e. C ∩ Sε has singularities.

6 / 36

Ill-posedness of the problem

The problem is ill-posed! Small changes in input produce huge changes in the output!
Example. Let s1 = (0, 0) of C = {(x, y) ∈ R2| − x3 − xy + y2 = 0} and
s2 = (0, 0) of D = {(x, y) ∈ R2| − x3 − xy + y2 − 0.01 = 0}!
The topology of (0, 0) is not stable under small changes in input!

The same situation happens in R4, but we cannot visualize it!

7 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

8 / 36

Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of a problem?

We construct numerical methods that approximate solutions to ill-posed problems,
that are stable under small changes of the input! (i.e. regularization method)

Similar methods are subjects of approximate algebraic computation in order to
compute: greatest common divisor of polynomials, root of polynomials, etc.

9 / 36

Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of our problem?

Example. For s1 = (0, 0) of C = {(x, y) ∈ R4| − x3 − xy + y2 = 0} and
s2 = (0, 0) of D = {(x, y) ∈ R4| − x3 − xy + y2 − 0.01 = 0},
we compute their ε-algebraic links denoted Lε(s1), Lε(s2).

Note 1: For sufficiently small ε, Lε are stable under small changes in the input and they
characterize the topology of s1, s2.

Note 2: From Lε we compute the ε-Alexander polynomial. This polynomial is a
complete invariant for Lε! (Yamamoto’s result)

I If the ε-Alexander polynomials of Lε(s1), Lε(s2) are equal, then s1, s2 have the
same topology, else they have different topology!

Note 3: From Lε, ε-Alexander polynomial we compute other invariants.

9 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

10 / 36

Strategy for solving the problem

We split our problem into smaller interdependent subproblems!

11 / 36

plane complex algebraic curve, ε

singularities moved in origin

��

subdivision (B. Mourrain)oo_ _ _ _ _ _

ε-algebraic link(Lε), Milnor fibration

��

our (J. Milnor)oo_ _ _ _ _ _ _

approximation for Lε

��

subdivision (B. Mourrain)oo_ _ _ _ _ _ _ _

diagram of Lε

��

ouroo_ _ _ _ _ _ _ _ _ _ _ _ _

ε-Alexander polynomial, properties of Lε

��

our (C. Livingston)oo_ _ _ _ _

ε-delta-invariant, ε-Milnor number,

ε-number of branches

��
ε-genus

��
ε-Euler characteristic,

decide ε-parametrization

12 / 36

plane complex algebraic curve, ε

singularities moved in origin

��

algebraic geometryoo_ _ _ _ _ _ _

ε-algebraic link(Lε), Milnor fibration

��

topologyoo_ _ _ _ _ _ _ _

approximation for Lε

��

algorithms, data structuresoo_ _ _ _ _ _ _ _

diagram of Lε

��

computational geometryoo_ _ _ _ _ _ _ _ _ _

ε-Alexander polynomial, properties of Lε

��

combinatorial methodsoo_ _ _ _ _

ε-delta-invariant, ε-Milnor number,

ε-number of branches

��
ε-genus

��
ε-Euler characteristic,

decide ε-parametrization

12 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

13 / 36

Algorithms for invariants of plane curve singularities
Plane complex algebraic curve, ε

numericallycompute

��

Singularities moved in origin

symbolically-numericallycompute
��

ε-Algebraic link denoted Lε,

approximation of Lε, diagram of Lε

symbolicallycompute

��

ε-Alexander polynomial, ε-delta-invariant

symbolicallycompute

��
ε-genus

14 / 36

First

Plane complex algebraic curve, ε

numericallycompute

��

Singularities

symbolically-numericallycompute
��

ε-Algebraic link denoted Lε,

approximation of Lε, diagram of Lε

symbolicallycompute

��

ε-Alexander polynomial, ε-delta-invariant

symbolicallycompute

��
ε-genus

15 / 36

Algorithm for the singularities of the curve

Input:

I f(x, y) ∈ C[x, y] squarefree with exact and inexact coefficients
I C = {(x, y) ∈ C2|f(x, y) = 0} complex algebraic curve of degree m.

Output:

I Sing(C) = {(x0, y0) ∈ C2|f(x0, y0) = 0,
∂f

∂x
(x0, y0) = 0,

∂f

∂y
(x0, y0) = 0}

Method: We solve the system in C2 : f(x0, y0) =
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0.

We use subdivision methods from Axel.

We get the numerical singularities, i.e. a list of points P in the plane s.t.:

I the value of f(x, y) and its derivatives in the points from P are small;
I every singularity from Sing(C) is in the neighborhood of one point from P .

QUESTION: Other method (with implementation) available!?

16 / 36

Next

Plane complex algebraic curve, ε

numericallycompute

��

Singularities moved in origin

symbolically-numericallycompute
��

ε-Algebraic link denoted Lε,

approximation of Lε, diagram of Lε

symbolicallycompute

��

ε-Alexander polynomial, ε-delta-invariant

symbolicallycompute

��
ε-genus

17 / 36

Algorithm for the ε-algebraic link

A knot is a piecewise linear or a differentiable simple
closed curve in R3.

A link is a finite union of disjoint knots.

Links resulted from the intersection of a given curve
with the sphere are called algebraic links.

Trefoil Knot

Hopf Link

18 / 36

Algorithm for the ε-algebraic link

How do we compute the link of a plane curve singularity?
I use the stereographic projection;

x, ξ

y, η

z, ζ

N

P̂

S

P
β

φ

a

19 / 36

Algorithm for the ε-algebraic link

1. Let C = {(a, b, c, d) ∈ R4|f(a, b, c, d) = 0} with (0, 0, 0, 0) ∈ Sing(C).

2. For f(a, b, c, d) = R(a, b, c, d) + iI(a, b, c, d) with R(a, b, c, d), I(a, b, c, d) ∈
R[a, b, c, d], rewrite C = {(a, b, c, d) ∈ R4|R(a, b, c, d) = I(a, b, c, d) = 0}.

3. Intersect C with a sphere Sε = {(a, b, c, d) ∈ R4|a2 + b2 + c2 + d2 = ε2} and
obtain X = C

⋂
Sε ⊂ R4.

4. For N ∈ Sε \ C, consider the stereographic projection
π : Sε \ {N} → R3, (a, b, c, d) 7→ (u = a

ε−d , v = b
ε−d , w = c

ε−d), and compute

π−1 : R3 → Sε \ {N}, π−1(u, v, w) 7→ (a = ..., b = ..., c = ..., d = ...).

20 / 36

Algorithm for the ε-algebraic link

4. For C = {(a, b, c, d) ∈ R4|R(a, b, c, d) = I(a, b, c, d) = 0}, project X = C ∩ Sε
from R4 to R3 with the stereographic projection π and compute
π(X) = {(u, v, w) ∈ R3|∃(a, b, c, d) = π−1(u, v, w,) ∈ X = C ∩ Sε},
π(X) = {(u, v, w) ∈ R3|R(a, b, c, d) = I(a, b, c, d) = 0}.

5. Obtain π(X) = {(u, v, w) ∈ R3|g(u, v, w) = h(u, v, w) = 0} with
g, h ∈ R[u, v, w].

Remark!
π(X) is an implicit algebraic curve in R3 given as the intersection of two surfaces
in R3 with the defining equations g, h.
For small ε, π(X) := Lε is an algebraic link, (based on Milnor’s result),
i.e. C ∩ Sε has no singularities.

20 / 36

Approximation of the ε-algebraic link

We use Axel for implementing the proposed algorithm.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1
we compute with the algorithm in Axel:

π(C ∩ S) = π(X) := Lε =
= {(u, v, w) ∈ R3|g(u, v, w) = 0, h(u, v, w) = 0}
Graph(Lε) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}
s.t. Graph(Lε) ∼=isotopic Lε

Graph(Lε) is a piecewise linear approximation of
Lε

Why Axel? It is the only system to implement a
method which returns such an approximation!
QUESTION: Other method (with
implementation) available!?

21 / 36

Approximation of the ε-algebraic link

We use Axel for implementing the proposed algorithm.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1
we compute with the algorithm in Axel:

π(C ∩ S) = π(X) := Lε =
= {(u, v, w) ∈ R3|g(u, v, w) = 0, h(u, v, w) = 0}

Graph(Lε) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}
s.t. Graph(Lε) ∼=isotopic Lε

Graph(Lε) is a piecewise linear approximation of
Lε

Why Axel? It is the only system to implement a
method which returns such an approximation!
QUESTION: Other method (with
implementation) available!?

21 / 36

Approximation of the ε-algebraic link

We use Axel for implementing the proposed algorithm.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1
we compute with the algorithm in Axel:

π(C ∩ S) = π(X) := Lε =
= {(u, v, w) ∈ R3|g(u, v, w) = 0, h(u, v, w) = 0}
Graph(Lε) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}

s.t. Graph(Lε) ∼=isotopic Lε

Graph(Lε) is a piecewise linear approximation of
Lε

Why Axel? It is the only system to implement a
method which returns such an approximation!
QUESTION: Other method (with
implementation) available!?

21 / 36

Approximation of the ε-algebraic link

We use Axel for implementing the proposed algorithm.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1
we compute with the algorithm in Axel:

π(C ∩ S) = π(X) := Lε =
= {(u, v, w) ∈ R3|g(u, v, w) = 0, h(u, v, w) = 0}
Graph(Lε) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}
s.t. Graph(Lε) ∼=isotopic Lε

Graph(Lε) is a piecewise linear approximation of
Lε

Why Axel? It is the only system to implement a
method which returns such an approximation!
QUESTION: Other method (with
implementation) available!?

21 / 36

Approximation of the ε-algebraic link

We use Axel for implementing the proposed algorithm.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1
we compute with the algorithm in Axel:

π(C ∩ S) = π(X) := Lε =
= {(u, v, w) ∈ R3|g(u, v, w) = 0, h(u, v, w) = 0}
Graph(Lε) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}
s.t. Graph(Lε) ∼=isotopic Lε

Graph(Lε) is a piecewise linear approximation of
Lε

Why Axel? It is the only system to implement a
method which returns such an approximation!
QUESTION: Other method (with
implementation) available!?

21 / 36

Approximation of the ε-algebraic link

We use Axel for implementing the proposed algorithm.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1

and Lε =
= {(u, v, w) ∈ R3|g(u, v, w) = 0, h(u, v, w) = 0}

we also compute (for visualization reasons)

S
′

= {(u, v, w) ∈ R3|g(u, v, w) + h(u, v, w) = 0}
S

′′
= {(u, v, w) ∈ R3|g(u, v, w)−h(u, v, w) = 0}

Lε is the intersection of any 2 of the surfaces:
g(u, v, w), h(u, v, w)
g(u, v, w) + h(u, v, w), g(u, v, w)− h(u, v, w)

22 / 36

Approximation of the ε-algebraic link

We use Axel for implementing the proposed algorithm.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1

and Lε =
= {(u, v, w) ∈ R3|g(u, v, w) = 0, h(u, v, w) = 0}
we also compute (for visualization reasons)

S
′

= {(u, v, w) ∈ R3|g(u, v, w) + h(u, v, w) = 0}
S

′′
= {(u, v, w) ∈ R3|g(u, v, w)−h(u, v, w) = 0}

Lε is the intersection of any 2 of the surfaces:
g(u, v, w), h(u, v, w)
g(u, v, w) + h(u, v, w), g(u, v, w)− h(u, v, w)

22 / 36

Approximation of the ε-algebraic link

We use Axel for implementing the proposed algorithm.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1

and Lε =
= {(u, v, w) ∈ R3|g(u, v, w) = 0, h(u, v, w) = 0}
we also compute (for visualization reasons)

S
′

= {(u, v, w) ∈ R3|g(u, v, w) + h(u, v, w) = 0}
S

′′
= {(u, v, w) ∈ R3|g(u, v, w)−h(u, v, w) = 0}

Lε is the intersection of any 2 of the surfaces:
g(u, v, w), h(u, v, w)
g(u, v, w) + h(u, v, w), g(u, v, w)− h(u, v, w)

22 / 36

Algorithm for the diagram of the ε-algebraic link

When we work with (algebraic) links, we work with a special projection of them
(diagram), containing the information on each double point (crossing) telling which
branch goes over and which under.

An arc is the part of a diagram between two undercrossings.

Example. Diagram with 3 crossings and 3 arcs

23 / 36

Algorithm for the diagram of the ε-algebraic link

?⇒

2

1 3

c1

c2

c3

G(Lε) = 〈P,E〉 D(Lε)
We need to transform the graph data structure G(Lε) returned by Axel into the

diagram of the algebraic link D(Lε).

24 / 36

Algorithm for the diagram of the ε-algebraic link

?⇒

2

1 3

c1

c2

c3

We developed several computational geometry and combinatorial algorithms!
 M. Hodorog, J.Schicho. Computational geometry and combinatorial
algorithms for the genus computation problem. DK 10-07 Report.

 M. Hodorog, B. Mourrain, J.Schicho. Topology analysis of complex curves

singularities using knot theory. International Conference on Curves and Surfaces,

Avignon, 2010.

24 / 36

Why do we need the diagram of the ε-algebraic link?

We compute the ε-Alexander polynomial of Lε denoted ∆(Lε) in 3 combinatorial steps:

D(Lε)
compute //

���
�
�

LM(Lε)
compute //

���
�
�

PM(Lε)
compute //

���
�
�

∆(Lε)

�� ��diagram

�

�
	labelling

matrix

�

�
	prealexander

matrix

In order to compute it, we need D(Lε), the diagram of Lε!

 M. Hodorog, B. Mourrain, J. Schicho. A symbolic-numeric algorithm for computing

the Alexander polynomial of a plane curve singularity. International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing. Timişoara, Romania, 2010.

25 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

26 / 36

Implementation

Axel free algebraic geometric modeler

(INRIA Sophia-Antipolis) a

I written in C++;
I Qt Script for Applications (QSA);
I Open Graphics Library (OpenGL).

GENOM3CK-our library in Axel.
Support: http://people.ricam.oeaw.

ac.at/m.hodorog/software.html and
madalina.hodorog@oeaw.ac.at

 M. Hodorog, B. Mourrain, J.
Schicho. GENOM3CK - A library for
GENus cOMputation of plane Complex
algebraiC Curves using Knot theory.
International Symposium on Symbolic
and Algebraic Computation. Münich,
Germany, 2010.

Version 0.2 of GENOM3CK is released!

aAcknowledgements: Julien Wintz

http://axel.inria.fr/

27 / 36

http://people.ricam.oeaw.ac.at/m.hodorog/software.html
http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Implementation

Axel free algebraic geometric modeler

(INRIA Sophia-Antipolis) a

I written in C++;
I Qt Script for Applications (QSA);
I Open Graphics Library (OpenGL).

GENOM3CK-our library in Axel.
Support: http://people.ricam.oeaw.

ac.at/m.hodorog/software.html and
madalina.hodorog@oeaw.ac.at

 M. Hodorog, B. Mourrain, J.
Schicho. GENOM3CK - A library for
GENus cOMputation of plane Complex
algebraiC Curves using Knot theory.
International Symposium on Symbolic
and Algebraic Computation. Münich,
Germany, 2010.

Version 0.2 of GENOM3CK is released!

aAcknowledgements: Julien Wintz
27 / 36

http://people.ricam.oeaw.ac.at/m.hodorog/software.html
http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Implementation

Axel free algebraic geometric modeler

(INRIA Sophia-Antipolis) a

I written in C++;
I Qt Script for Applications (QSA);
I Open Graphics Library (OpenGL).

GENOM3CK-our library in Axel.
Support: http://people.ricam.oeaw.

ac.at/m.hodorog/software.html and
madalina.hodorog@oeaw.ac.at

 M. Hodorog, B. Mourrain, J.
Schicho. GENOM3CK - A library for
GENus cOMputation of plane Complex
algebraiC Curves using Knot theory.
International Symposium on Symbolic
and Algebraic Computation. Münich,
Germany, 2010.

Version 0.2 of GENOM3CK is released!

aAcknowledgements: Julien Wintz
27 / 36

http://people.ricam.oeaw.ac.at/m.hodorog/software.html
http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Implementation

Axel free algebraic geometric modeler

(INRIA Sophia-Antipolis) a

I written in C++;
I Qt Script for Applications (QSA);
I Open Graphics Library (OpenGL).

GENOM3CK-our library in Axel.
Support: http://people.ricam.oeaw.

ac.at/m.hodorog/software.html and
madalina.hodorog@oeaw.ac.at

 M. Hodorog, B. Mourrain, J.
Schicho. GENOM3CK - A library for
GENus cOMputation of plane Complex
algebraiC Curves using Knot theory.
International Symposium on Symbolic
and Algebraic Computation. Münich,
Germany, 2010.

Version 0.2 of GENOM3CK is released!

aAcknowledgements: Julien Wintz
27 / 36

http://people.ricam.oeaw.ac.at/m.hodorog/software.html
http://people.ricam.oeaw.ac.at/m.hodorog/software.html

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

28 / 36

The algorithms and ”approximate algebraic computation”
We interpret the algorithms in the frame of approximate algebraic computation!

Plane complex algebraic curve, ε

numericallycompute

��
Singularities moved in origin

symbolically-numericallycompute

��
ε-Algebraic link denoted Lε,

approximation of Lε, diagram of Lε

symbolicallycompute

��
ε-Alexander polynomial, ε-delta-invariant

symbolicallycompute

��
ε-genus

29 / 36

The algorithms and ”approximate algebraic computation”

With the notations:

E : I → O the symbolic algorithm s.t.
Given f ∈ I polynomial, compute E(f) the Alexander polynomial (ill-posed)

A : I × R+ → O the symbolic-numeric algorithm s.t.
Given (f, ε) ∈ I × R+, compute the ε-Alexander polynomial

∀f ∈ I ∀δ ∈ R+, f− : R+ → I, δ 7→ fδ : |f − fδ| ≤ δ
and based on:

Milnor’s theorem:

lim
ε→0

A(f, ε) = E(f)(convergence for exact data).

A(fδ, ε) depends continuously on the perturbed input polynomial fδ (continuity);

∃α : R+ → R+ continuous, monotonically and decreasing with limδ→0 α(δ) = 0
s.t. ∀f ∈ I ∀δ ∈ R+ : |f − fδ| ≤ δ

lim
δ→0

A(fδ, α(δ)) = E(f)(convergence for perturbed data).

The algorithm Aε is a regularization.

29 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

30 / 36

Extension of the algorithms
Originally, we developed the algorithms for the following invariants of algebraic curves:

plane complex algebraic curve, ε. Singularities moved in origin

��
ε-algebraic link(Lε)

��
approximation for Lε

��
diagram of Lε

��
ε-Alexander polynomial

��
ε-delta-invariant

��
ε-genus

31 / 36

Extension of the algorithms
We extended the algorithms to compute more invariants of algebraic curves:

plane complex algebraic curve, ε. Singularities moved in origin

��
-algebraic link(Lε), Milnor fibration

��
approximation for Lε

��
diagram of Lε

��
ε-Alexander polynomial, properties of Lε

��
ε-delta-invariant, ε-Milnor number,ε-number of branches

��
ε-genus, ε-Euler characteristic, decide ε-parametrization

31 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

32 / 36

Test experiments

Let us review the first example: Let s1 = (0, 0) of C = {(x, y) ∈ R2|−x3−xy+ y2 = 0}
and s2 = (0, 0) of D = {(x, y) ∈ R2| − x3 − xy + y2 − 0.01 = 0}!
The topology of (0, 0) is not stable under small changes of the input!

The same situation happens in R4, but we cannot visualize it!

33 / 36

Test experiments

But the ε-algebraic link is stable under small changes of the input for sufficiently small ε!

Equation in C2 Results
−x3 − xy + y2, ε = 1.00 Trefoil, ∆(t1) = t21 − t1 + 1, δ = 1, g = 0

−x3 − xy + y2, ε = 0.25
Hopf link, ∆(t1, t2) = 1, δ = 1, g = 0

−x3 − xy + y2 − 0.01, ε = 1.00 Trefoil, ∆(t1) = t21 − t1 + 1, δ = 1, g = 0

−x3 − xy + y2 − 0.01, ε = 0.25
Hopf link, ∆(t1, t2) = 1, δ = 1, g = 0

33 / 36

1 Motivation

2 Describing the problem
Problem specifications and ill-posedness of the problem
Techniques for dealing with the ill-posedness

3 Solving the problem
Strategy for solving the problem
Mathematical framework for solving the problem

4 Results
Algorithms for invariants of plane curve singularities
Implementation of the algorithms
The algorithms and ”approximate algebraic computation”
Extension of the algorithms
Test experiments

5 Conclusion

34 / 36

Conclusion and future work

! DONE:

automatization of
symbolic-numeric algorithms for
invariants of plane curves
singularities in GENOM3CK;

describe partially algorithms with
principles from regularization
theory;

test experiments show that the
algorithms have the continuity and
the convergence for exact and
perturbed data properties;

proofs of the continuity and the
convergence for exact data
property are constructed.

TO DO’s:

proof of the convergence for
perturbed data property is
needed;

include other operations, i.e.
from knot theory, algebraic
geometry.

35 / 36

Conclusion and future work

! DONE:

automatization of
symbolic-numeric algorithms for
invariants of plane curves
singularities in GENOM3CK;

describe partially algorithms with
principles from regularization
theory;

test experiments show that the
algorithms have the continuity and
the convergence for exact and
perturbed data properties;

proofs of the continuity and the
convergence for exact data
property are constructed.

TO DO’s:

proof of the convergence for
perturbed data property is
needed;

include other operations, i.e.
from knot theory, algebraic
geometry.

35 / 36

Conclusion and future work

! DONE:

automatization of
symbolic-numeric algorithms for
invariants of plane curves
singularities in GENOM3CK;

describe partially algorithms with
principles from regularization
theory;

test experiments show that the
algorithms have the continuity and
the convergence for exact and
perturbed data properties;

proofs of the continuity and the
convergence for exact data
property are constructed.

TO DO’s:

proof of the convergence for
perturbed data property is
needed;

include other operations, i.e.
from knot theory, algebraic
geometry.

35 / 36

Conclusion and future work

! DONE:

automatization of
symbolic-numeric algorithms for
invariants of plane curves
singularities in GENOM3CK;

describe partially algorithms with
principles from regularization
theory;

test experiments show that the
algorithms have the continuity and
the convergence for exact and
perturbed data properties;

proofs of the continuity and the
convergence for exact data
property are constructed.

TO DO’s:

proof of the convergence for
perturbed data property is
needed;

include other operations, i.e.
from knot theory, algebraic
geometry.

35 / 36

Thank you for your attention.

36 / 36

	Motivation
	Describing the problem
	Problem specifications and ill-posedness of the problem
	Techniques for dealing with the ill-posedness

	Solving the problem
	Strategy for solving the problem
	Mathematical framework for solving the problem

	Results
	Algorithms for invariants of plane curve singularities
	Implementation of the algorithms
	The algorithms and "approximate algebraic computation"
	Extension of the algorithms
	Test experiments

	Conclusion

