A Symbolic-Numeric Algorithm for Computing the Alexander Polynomial of a Plane Curve Singularity

Mădălina Hodorog ${ }^{1}$, Bernard Mourrain ${ }^{2}$, Josef Schicho ${ }^{1}$
${ }^{1}$ Johann Radon Institute for Computational and Applied Mathematics, Doctoral Program "Computational Mathematics"

Johannes Kepler University Linz, Austria
Research Institute for Symbolic Computation
${ }^{2}$ INRIA Sophia-Antipolis, France
$12^{\text {th }}$ International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timișoara-Romania September 23, 2010

Table of contents

(1) Motivation
(2) Describing the problem

- Problem specifications
- III-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Mathematical method and algorithm
- Analysis of the algorithm
- Demo (Test experiments)
(4) Conclusion

(1) Motivation

(2) Describing the problem

- Problem specifications
- III-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Mathematical method and algorithm
- Analysis of the algorithm
- Demo (Test experiments)
(4) Conclusion

Motivation

We investigate the topology (i.e. roughly speaking the shape) of plane complex algebraic curves. These curves can be identified with objects in \mathbb{R}^{4} we cannot visualize! We sketch the equivalent objects in \mathbb{R}^{2} for a rough "idea"!

Motivation

For instance,
We visualize the topology of the algebraic curve $\mathcal{C}=\left\{(x, y) \mid-x^{3}-x y+y^{2}=0\right\}$ in \mathbb{R}^{2} ! We notice an "involved" topology around the point $(0,0)$, which is called singularity!

Motivation

Roughly, if we consider $\mathcal{C}=\left\{(x, y) \mid-x^{3}-x y+y^{2}=0\right\}$ then

Motivation

Our goal is to compute and
Roughly, if we consider $\mathcal{C}=\left\{(x, y) \mid-x^{3}-x y+y^{2}=0\right\}$ then

Motivation

Our goal is also to design for:

Rational and floating point numbers

A symbolic-numeric
algorithm
(in GENOM3CK)
(in Axel)
to compute
the Alexander
polynomial

Because at present (from our knowledge) there exists only for:

Motivation

For instance:

```
                    SINGULAR /
A Computer Algebra System for Polynomial Computations
                                version 3-1-0
    0<
        by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Mar 2009
FB Mathematik der Universitaet, D-67653 Kaiserslautern
> LIB "alexpoly.lib";
// ** loaded /sw/share/Singular/LIB/alexpoly.lib (1.18,2009/04/15)
// ** loaded /sw/share/Singular/LIB/hnoether.lib (1.59,2009/04/15)
// ** loaded /sw/share/Singular/LIB/sing.lib (1.34,2009/04/15)
// ** loaded /sw/share/Singular/LIB/primdec.lib (1.147,2009/04/15)
// ** loaded /sw/share/Singular/LIB/absfact.lib (1.7,2008/07/16)
// ** loaded /sw/share/Singular/LIB/triang.lib (1.14,2009/04/14)
// ** loaded /sw/share/Singular/LIB/matrix.lib (1.48,2009/04/10)
// ** loaded /sw/share/Singular/LIB/nctools.lib (1.54,2009/05/08)
// ** loaded /sw/share/Singular/LIB/ring.lib (1.34,2009/04/15)
// ** loaded /sw/share/Singular/LIB/poly.lib (1.53,2009/04/15)
// ** loaded /sw/share/singular/LIB/elim.lib (1.34,2009/05/05)
// ** loaded /sw/share/Singular/LIB/general.lib (1.62,2009/04/15)
// ** loaded /sw/share/Singular/LIB/random.lib (1.20,2009/04/15)
// ** loaded /sw/share/Singular/LIB/inout.lib (1.34,2009/04/15)
// ** loaded /sw/share/Singular/LIB/primitiv.lib (1.23,2009/04/15)
> ring r=0,(x,y),1s;
> poly f=-x3-x*y+y2;
> list ALEX=alexanderpolynomial(f);
> def alEXring=alEX[1];
> setring ALEXring;
> alexpoly;def precision=10;
1
>
. ring r=(real,precision),(x,y),1s;
// ** redefining r **
> poly f=-x3-x*y+y2-0.01;
> list ALEX=alexanderpolynomial(f);
// ** redefining ALEX **
Singular cannot factorize over 'real' as ground field
```


(1) Motivation

(2) Describing the problem

- Problem specifications
- III-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Mathematical method and algorithm
- Analysis of the algorithm
- Demo (Test experiments)

4 Conclusion

Problem specifications

- Input:
- $f(x, y) \in \mathbb{C}[x, y]$ squarefree with symbolic and numeric coefficients;
- $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid f(x, y)=0\right\} \subseteq \mathbb{C}^{2} \simeq \mathbb{R}^{4}$ of degree m;
- $\epsilon \in \mathbb{R}_{+}^{*}$ input parameter.
- Output:
- ϵ-Alexander polynomial of each numerical singularity of \mathcal{C};
- We also compute as output:
- A set of invariants of \mathcal{C} (numerical singularities, algebraic link, Milnor fibration, Milnor number, δ-invariant of each singularity, genus of \mathcal{C}, diagram, crossings, arcs of each algebraic link, etc).

III-posedness of the problem

The problem is ill-posed! Small changes in input produce huge changes in the output! Example. Let $s_{1}=(0,0)$ of $\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid-x^{3}-x y+y^{2}=0\right\}$ and $s_{2}=(0,0)$ of $\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid-x^{3}-x y+y^{2}-0.01=0\right\}$!
The topology of $(0,0)$ is not stable under small changes in input!

The same situation happens in \mathbb{R}^{4}, but we cannot visualize it!

Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of a problem?

- We construct numerical methods that approximate solutions to ill-posed problems, that are stable under small changes of the input! (i.e. regularization method)
- Similar methods are subjects of approximate algebraic computation in order to compute: greatest common divisor of polynomials, root of polynomials, etc.

Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of our problem?

- Example. For $s_{1}=(0,0)$ of $\mathcal{C}=\left\{(x, y) \in \mathbb{R}^{4} \mid-x^{3}-x y+y^{2}=0\right\}$ and $s_{2}=(0,0)$ of $\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{4} \mid-x^{3}-x y+y^{2}-0.01=0\right\}$, we compute their ϵ-algebraic links denoted $L_{\epsilon}\left(s_{1}\right), L_{\epsilon}\left(s_{2}\right)$ (our research).

For sufficiently small ϵ, L_{ϵ} are stable under small changes in the input and they characterize the topology of s_{1}, s_{2} (Milnor's research and our research).

From L_{ϵ} we compute the ϵ-Alexander polynomials (our research) This polynomial is a complete invariant for L_{ϵ} ! (Yamamoto's research)

If the Alexander polynomials of $L_{\epsilon}\left(s_{1}\right), L_{\epsilon}\left(s_{2}\right)$ are equal, then s_{1}, s_{2} have the same topology, else they have different topology!

- Next we compute L_{ϵ} and ϵ-Alexander polynomial.

(1) Motivation

(2) Describing the problem

- Problem specifications
- III-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Mathematical method and algorithm
- Analysis of the algorithm
- Demo (Test experiments)

4) Conclusion

Mathematical method and algorithm

Singularities moved in origin
compute ${ }_{\downarrow}$ numerically-symbolically
Algebraic link and operations on it (ϵ needed)

First

Computing the singularities of the curve

- Input:
- $f(x, y) \in \mathbb{C}[x, y]$ squarefree with symbolic and numeric coefficients
- $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid f(x, y)=0\right\}$ complex algebraic curve of degree m.
- Output:
- $\operatorname{Sing}(\mathcal{C})=\left\{\left(x_{0}, y_{0}\right) \in \mathbb{C}^{2} \mid f\left(x_{0}, y_{0}\right)=0, \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=0, \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0\right\}$
- Method: We solve the overderminate system in \mathbb{C}^{2} :

$$
\left\{\begin{array}{l}
f\left(x_{0}, y_{0}\right)=0 \tag{1}\\
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=0 \\
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

using subdivision methods from Axel.

Next

Defining the algebraic link of the singularity

Trefoil Knot

- A knot is a piecewise linear or a differentiable simple closed curve in \mathbb{R}^{3}.
- A link is a finite union of disjoint knots.
- Links resulted from the intersection of a given curve with the sphere are called algebraic links.

Computing the link of the singularity

- How do we compute the link of a plane curve singularity?
- use the stereographic projection;

Computing the link of the singularity

1. Let $\mathcal{C}=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid f(a, b, c, d)=0\right\}$ s.t. $(0,0,0,0) \in \operatorname{Sing}(\mathcal{C})$
2. Consider $S_{(0, \epsilon)}:=S=\left\{(a, b, c, d) \in \mathbb{R}^{4} \mid a^{2}+b^{2}+c^{2}+d^{2}=\epsilon^{2}\right\}$,

$$
X=\mathcal{C} \cap S \subset \mathbb{R}^{4}, f(a, b, c, d)=R(a, b, c, d)+i I(a, b, c, d)
$$

3. For $N \in S \backslash \mathcal{C}, \pi: S \backslash\{N\} \rightarrow \mathbb{R}^{3},(a, b, c, d) \mapsto\left(u=\frac{a}{\epsilon-d}, v=\frac{b}{\epsilon-d}, w=\frac{c}{\epsilon-d}\right)$, $\pi^{-1}: \mathbb{R}^{3} \rightarrow S \backslash\{N\}$
$(u, v, w) \mapsto(a, b, c, d)=\left(\frac{2 u \epsilon}{n}, \frac{2 v \epsilon}{n}, \frac{2 w \epsilon}{n}, \frac{\epsilon\left(u^{2}+v^{2}+w^{2}-1\right)}{n}\right)$, with $n=1+u^{2}+v^{2}+w^{2}$.
4. Denote $\alpha=\left(\frac{2 u \epsilon}{n}, \frac{2 v \epsilon}{n}, \frac{2 w \epsilon}{n}, \frac{\epsilon\left(u^{2}+v^{2}+w^{2}-1\right)}{n}\right)$. Thus $\pi^{-1}(u, v, w)=\alpha$.
5. Compute $\pi(X)=\left\{(u, v, w) \in \mathbb{R}^{3} \mid \exists(a, b, c, d)=\pi^{-1}(u, v, w,) \in X=\mathcal{C} \cap S\right\} \Leftrightarrow$ $\pi(X)=\left\{(u, v, w) \in \mathbb{R}^{3} \mid f(\alpha)=0\right\}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)=I(\alpha)=0\right\}$ with $R, I \in \mathbb{R}[u, v, w] . \pi(X)$ is an implicitly defined algebraic curve!

For small $\epsilon, \pi(X):=L_{\epsilon}$ is a link (algebraic link) (based on Milnor's research).

Computing the link of the singularity

We use Axel for implementation.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the previous method in Axel:

Computing the link of the singularity

We use Axel for implementation.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the previous method in Axel:
- $\pi(\mathcal{C} \cap S)=\pi(X):=L_{\epsilon}=$ $=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)=0, I(\alpha)=0\right\}$

Computing the link of the singularity

We use Axel for implementation.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the previous method in Axel:
- $\pi(\mathcal{C} \cap S)=\pi(X):=L_{\epsilon}=$
$=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)=0, I(\alpha)=0\right\}$
- $\operatorname{Graph}\left(L_{\epsilon}\right)=\langle\mathcal{V}, \mathcal{E}\rangle$ with
$\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$
$\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$

Computing the link of the singularity

We use Axel for implementation.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the previous method in Axel:
- $\pi(\mathcal{C} \cap S)=\pi(X):=L_{\epsilon}=$
$=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)=0, I(\alpha)=0\right\}$
- $\operatorname{Graph}\left(L_{\epsilon}\right)=\langle\mathcal{V}, \mathcal{E}\rangle$ with $\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$
$\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$
- s.t. $\operatorname{Graph}\left(L_{\epsilon}\right) \cong_{\text {isotopic }} L_{\epsilon}$

Computing the link of the singularity

We use Axel for implementation.

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$ we compute with the previous method in Axel:
- $\pi(\mathcal{C} \cap S)=\pi(X):=L_{\epsilon}=$ $=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)=0, I(\alpha)=0\right\}$
- $\operatorname{Graph}\left(L_{\epsilon}\right)=\langle\mathcal{V}, \mathcal{E}\rangle$ with $\mathcal{V}=\left\{p=(m, n, q) \in \mathbb{R}^{3}\right\}$
$\mathcal{E}=\{(i, j) \mid i, j \in \mathcal{V}\}$
- s.t. $\operatorname{Graph}\left(L_{\epsilon}\right) \cong_{\text {isotopic }} L_{\epsilon}$
- $\operatorname{Graph}\left(L_{\epsilon}\right)$ is a piecewise linear approximation for L_{ϵ}
- Why Axel? It is the only system to implement a method which returns such an approximation!

Computing the link of the singularity

We use Axel for the implementation. Why Axel?

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$
- and $L_{\epsilon}=$

$$
=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)=0, I(\alpha)=0\right\}
$$

Computing the link of the singularity

We use Axel for the implementation. Why Axel?

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$
- and $L_{\epsilon}=$

$$
=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)=0, I(\alpha)=0\right\}
$$

- we also compute (for visualization reasons)

$$
\begin{aligned}
& \mathcal{S}^{\prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)+I(\alpha)=0\right\} \\
& \mathcal{S}^{\prime \prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)-I(\alpha)=0\right\}
\end{aligned}
$$

Computing the link of the singularity

We use Axel for the implementation. Why Axel?

- For $\mathcal{C}=\left\{(x, y) \in \mathbb{C}^{2} \mid x^{3}-y^{2}=0\right\} \subset \mathbb{R}^{4}, \epsilon=1$
- and $L_{\epsilon}=$

$$
=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)=0, I(\alpha)=0\right\}
$$

- we also compute (for visualization reasons)
$\mathcal{S}^{\prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)+I(\alpha)=0\right\}$
$\mathcal{S}^{\prime \prime}=\left\{(u, v, w) \in \mathbb{R}^{3} \mid R(\alpha)-I(\alpha)=0\right\}$
- L_{ϵ} is the intersection of any 2 of the surfaces:
$R(\alpha), I(\alpha)$

$R(\alpha)+I(\alpha), R(\alpha)-I(\alpha)$

Next

Computing the Alexander polynomial

Diagram and arcs

We give an example to compute the Alexander polynomial Δ_{L} for a link L with K knots! We need some definitions.

A diagram is the image under projection, together with the information on each crossing telling which branch goes over
 and which under.
An arc is the part of a diagram between two undercrossings.
Crossings
A crossing is:
-righthanded if the underpass traffic goes from right to left. -lefthanded if the underpass traffic goes from left to right.

Doctoral Program

Computing the Alexander polynomial of the link

Example: Δ_{L} for L with $K=1$ knot (i.e. trefoil knot).

$M(L)=\left(\begin{array}{c|cccc} & \text { type } & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\ \hline c_{1} & -1 & 2 & 1 & 3 \\ & & & & \end{array}\right)$

$$
P(L)=(\quad)
$$

Computing the Alexander polynomial of the link

Example: Δ_{L} for L with $K=1$ knot.

$$
M(L)=\left(\begin{array}{c|cccc}
& \text { type }^{\prime} & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{1} & -1 & 2 & 1 & 3 \\
& & 1-t & t & -1
\end{array}\right)
$$

$$
P(L)=\left(\begin{array}{ccc}
2 & 1 & 3 \\
1-t & t & -1 \\
& &
\end{array}\right)
$$

Doctoral Program

Computing the Alexander polynomial of the link

Example: Δ_{L} for L with $K=1$ knot.

$$
M(L)=\left(\begin{array}{c|cccc}
& \text { type }^{\prime} & \text { label }_{i} & \text { label }_{j} & \text { label }_{k} \\
\hline c_{1} & -1 & 2 & 1 & 3 \\
& & 1-t & t & -1
\end{array}\right)
$$

$$
P(L)=\left(\begin{array}{ccc}
1 & 2 & 3 \\
t & 1-t & -1 \\
& &
\end{array}\right)
$$

Doctoral Program

Computing the Alexander polynomial of the link

Example: Δ_{L} for L with $K=1$ knot

$$
\begin{gathered}
P(L)=\left(\begin{array}{ccc}
t & 1-t & -1 \\
1-t & -1 & t \\
-1 & t & 1-t
\end{array}\right) \\
D:=\operatorname{det}(\operatorname{minor}(P(L)))=-t^{2}+t-1 \\
\Delta(L):=\Delta(t)=N o r m a l i s e \\
(D)=t^{2}-t+1
\end{gathered}
$$

For a link L with $K>1$ knots and n crossings, $\Delta(L)$ is the $g c d$ of all the $(n-1) \times(n-1)$ minor determinants of $P(L)$.

Computing the Alexander polynomial of the link

So, the Alexander polynomial is computed in several steps:

In order to compute it, we need $D(L)$!

Computing the Alexander polynomial of the link

- $G\left(L_{\epsilon}\right)=\langle P, E\rangle$
- We need to transform the graph data structure $G\left(L_{\epsilon}\right)$ returned by Axel into the diagram of the algebraic link $D\left(L_{\epsilon}\right)$.

Computing the Alexander polynomial of the link

- We developed several computational geometry and combinatorial algorithms for this! (M. Hodorog, J.Schicho. Computational geometry and combinatorial algorithms for the genus computation problem. DK 10-07 Report).

Implementation

- Axel free algebraic geometric modeler (INRIA Sophia-Antipolis) a

http://axel.inria.fr/
${ }^{a}$ Acknowledgements: Julien Wintz

Implementation

- Axel free algebraic geometric modeler (INRIA Sophia-Antipolis) ${ }^{a}$
- written in $C++$, Qt Script for Applications (QSA);

${ }^{a}$ Acknowledgements: Julien Wintz

Implementation

- Axel free algebraic geometric modeler (INRIA Sophia-Antipolis) ${ }^{a}$
- written in $C++$, Qt Script for Applications (QSA);
- GENOM3CK-our library in Axel (GEnus cOMputation of plane Complex algebraiC Curves with Knot theory). Support: http://people.ricam.oeaw.ac.at/m. hodorog/software.html and madalina.hodorog@oeaw.ac.at
${ }^{\text {a }}$ Acknowledgements: Julien Wintz

Implementation

- Axel free algebraic geometric modeler (INRIA Sophia-Antipolis) ${ }^{a}$
- written in $C++$, Qt Script for Applications (QSA);
- GENOM3CK-our library in Axel (GEnus cOMputation of plane Complex algebraiC Curves with Knot theory). Support: http://people.ricam.oeaw.ac.at/m. hodorog/software.html and madalina.hodorog@oeaw.ac.at
- Version 0.2 of GENOM3CK is released!

${ }^{a}$ Acknowledgements: Julien Wintz

Analysis of the algorithm

With the notations:

- E the symbolic algorithm to compute the Alexander polynomial, which is ill-posed.
- A_{ϵ} the symbolic-numeric algorithm to compute the ϵ-Alexander polynomial Δ_{ϵ} from the ϵ-algebraic link L_{ϵ}.
- For input polynomial $f, A_{\epsilon}(f)$ returns as output Δ_{ϵ}.
- For perturbed f_{δ} (for any $\delta:\left\|f-f_{\delta}\right\|<\delta$), $A_{\epsilon}\left(f_{\delta}\right)$ returns as output $\Delta_{\epsilon}^{\delta}$.
and based on:
- Milnor's theorem, i.e. if $\epsilon \rightarrow 0$ then Δ_{ϵ} tends to the exact solution (convergence for exact data)
- and on general results from regularization theory (adapted to our case).

The algorithm A_{ϵ} is a regularization, i.e.:

Analysis of the algorithm

With the notations:

- E the symbolic algorithm to compute the Alexander polynomial, which is ill-posed.
- A_{ϵ} the symbolic-numeric algorithm to compute the ϵ-Alexander polynomial Δ_{ϵ} from the ϵ-algebraic link L_{ϵ}.
- For input polynomial $f, A_{\epsilon}(f)$ returns as output Δ_{ϵ}.
- For perturbed f_{δ} (for any $\delta:\left\|f-f_{\delta}\right\|<\delta$), $A_{\epsilon}\left(f_{\delta}\right)$ returns as output $\Delta_{\epsilon}^{\delta}$.
and based on:
- Milnor's theorem, i.e. if $\epsilon \rightarrow 0$ then Δ_{ϵ} tends to the exact solution (convergence for exact data)
- and on general results from regularization theory (adapted to our case).

The algorithm A_{ϵ} is a regularization, i.e.:

- $\Delta_{\epsilon}^{\delta}$ depends continuously on the perturbed input polynomial f_{δ} (continuity);
- If $\delta \rightarrow 0$ and ϵ is chosen appropiately, then $\Delta_{\epsilon}^{\delta}$ tends to the exact solution (convergence for perturbed data).

Demo (Numeric and Symbolic Examples)

Equation in \mathbb{R}^{4}	Box
$-x^{3}-x y+y^{2}, \epsilon=1.00$	$[-4,4,-6,6,-6,6]$
$-x^{3}-x y+y^{2}, \epsilon=0.25$	$[-4,4,-6,6,-6,6]$
$-x^{3}-x y+y^{2}-0.01, \epsilon=1.00$	$[-4,4,-6,6,-6,6]$
$-x^{3}-x y+y^{2}-0.01, \epsilon=0.25$	$[-4,4,-6,6,-6,6]$

(1) Motivation

(2) Describing the problem

- Problem specifications
- III-posedness of the problem
- Techniques for dealing with the ill-posedness
(3) Solving the problem
- Mathematical method and algorithm
- Analysis of the algorithm
- Demo (Test experiments)

(4) Conclusion

Conclusion and future work

DONE:

- automatization of symbolic-numeric algorithms for plane curves in GENOM3CK (i.e. algorithm to compute the Alexander polynomial);
- describe algorithms with principles from regularization theory;

X TO DO's:

Conclusion and future work

DONE:

- automatization of symbolic-numeric algorithms for plane curves in GENOM3CK (i.e. algorithm to compute the Alexander polynomial);
- describe algorithms with principles from regularization theory;
- test experiments show that the algorithm has the continuity and the convergence for perturbed data properties;
- proofs for continuity and convergence for perturbed data properties are constructed.

X TO DO's:

Conclusion and future work

DONE:

- automatization of symbolic-numeric algorithms for plane curves in GENOM3CK (i.e. algorithm to compute the Alexander polynomial);
- describe algorithms with principles from regularization theory;
- test experiments show that the algorithm has the continuity and the convergence for perturbed data properties;
- proofs for continuity and convergence for perturbed data properties are constructed.

X TO DO's:

- finalize the proof for convergence for perturbed data property of the algorithm;

Conclusion and future work

DONE:

- automatization of symbolic-numeric algorithms for plane curves in GENOM3CK (i.e. algorithm to compute the Alexander polynomial);
- describe algorithms with principles from regularization theory;
- test experiments show that the algorithm has the continuity and the convergence for perturbed

X TO DO's:

- finalize the proof for convergence for perturbed data property of the algorithm;
- include other operations, i.e. from knot theory, algebraic geometry.

Thank you for your attention. Questions?

Doctoral Program
シ $\bar{\equiv}$

