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Mădălina Hodorog1, Bernard Mourrain2, Josef Schicho1

1Johann Radon Institute for Computational and Applied Mathematics,
Doctoral Program ”Computational Mathematics”

Johannes Kepler University Linz, Austria
Research Institute for Symbolic Computation

2INRIA Sophia-Antipolis, France

12th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, Timişoara-Romania
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Motivation

We investigate the topology (i.e. roughly speaking the shape) of plane complex
algebraic curves. These curves can be identified with objects in R4 we cannot visualize!
We sketch the equivalent objects in R2 for a rough ”idea”!

4 / 29



Motivation

For instance,
We visualize the topology of the algebraic curve C = {(x, y)| − x3 − xy+ y2 = 0} in R2!
We notice an ”involved” topology around the point (0, 0), which is called singularity!
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Motivation

Roughly, if we consider C = {(x, y)| − x3 − xy + y2 = 0} then

For topology

of (0, 0) of C
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In R2

��

In R4

��
we visualize

the solutions of

−x3 − xy + y2 = 0

we study the Alexander

polynomial of (0, 0) of C
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Our goal is to compute and
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Motivation

Our goal is also to design for:

Rational and

floating point

numbers

//

A symbolic-numeric

algorithm

(in GENOM3CK)

(in Axel)

//
to compute

the Alexander

polynomial

Because at present (from our knowledge) there exists only for:

Rational numbers //

A symbolic

algorithm

(in Singular)
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to compute
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Problem specifications

Input:
I f(x, y) ∈ C[x, y] squarefree with symbolic and numeric coefficients;
I C = {(x, y) ∈ C2|f(x, y) = 0} ⊆ C2 ' R4 of degree m;
I ε ∈ R∗

+ input parameter.

Output:

I ε-Alexander polynomial of each numerical singularity of C ;

We also compute as output:
I A set of invariants of C (numerical singularities, algebraic link, Milnor

fibration, Milnor number, δ-invariant of each singularity, genus of C,
diagram, crossings, arcs of each algebraic link, etc).
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Ill-posedness of the problem

The problem is ill-posed! Small changes in input produce huge changes in the output!
Example. Let s1 = (0, 0) of C = {(x, y) ∈ R2| − x3 − xy + y2 = 0} and
s2 = (0, 0) of D = {(x, y) ∈ R2| − x3 − xy + y2 − 0.01 = 0}!
The topology of (0, 0) is not stable under small changes in input!

The same situation happens in R4, but we cannot visualize it!
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Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of a problem?

We construct numerical methods that approximate solutions to ill-posed problems,
that are stable under small changes of the input! (i.e. regularization method)

Similar methods are subjects of approximate algebraic computation in order to
compute: greatest common divisor of polynomials, root of polynomials, etc.
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Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of our problem?

Example. For s1 = (0, 0) of C = {(x, y) ∈ R4| − x3 − xy + y2 = 0} and
s2 = (0, 0) of D = {(x, y) ∈ R4| − x3 − xy + y2 − 0.01 = 0},
we compute their ε-algebraic links denoted Lε(s1), Lε(s2) (our research).

For sufficiently small ε, Lε are stable under small changes in the input and they
characterize the topology of s1, s2 (Milnor’s research and our research).

From Lε we compute the ε-Alexander polynomials (our research)
This polynomial is a complete invariant for Lε! (Yamamoto’s research)

I If the Alexander polynomials of Lε(s1), Lε(s2) are equal, then s1, s2 have the same
topology, else they have different topology!

Next we compute Lε and ε-Alexander polynomial.
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Mathematical method and algorithm
Plane complex algebraic curve

numericallycompute

��

Singularities moved in origin

numerically-symbolicallycompute

��

Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial

symbolicallycompute

���
�
�

δ-invariant, genus, Milnor number, etc
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First

Plane complex algebraic curve

numericallycompute

��

Singularities
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Computing the singularities of the curve

Input:

I f(x, y) ∈ C[x, y] squarefree with symbolic and numeric coefficients
I C = {(x, y) ∈ C2|f(x, y) = 0} complex algebraic curve of degree m.

Output:

I Sing(C) = {(x0, y0) ∈ C2|f(x0, y0) = 0,
∂f

∂x
(x0, y0) = 0,

∂f

∂y
(x0, y0) = 0}

Method: We solve the overderminate system in C2 :8>>>>>>><>>>>>>>:

f(x0, y0) = 0

∂f

∂x
(x0, y0) = 0

∂f

∂y
(x0, y0) = 0

, (1)

using subdivision methods from Axel.
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Next

Plane complex algebraic curve

numericallycompute

��

Singularities moved in the origin

numerically-symbolicallycompute

��

Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial

symbolicallycompute

���
�
�

δ-invariant, genus, Milnor number, etc
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Defining the algebraic link of the singularity

A knot is a piecewise linear or a differentiable simple
closed curve in R3.

A link is a finite union of disjoint knots.

Links resulted from the intersection of a given curve
with the sphere are called algebraic links.

Trefoil Knot

Hopf Link

14 / 29



Computing the link of the singularity

How do we compute the link of a plane curve singularity?
I use the stereographic projection;

x, ξ

y, η

z, ζ

N

P̂

S

P
β

φ

a
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Computing the link of the singularity

1. Let C = {(a, b, c, d) ∈ R4|f(a, b, c, d) = 0} s.t. (0, 0, 0, 0) ∈ Sing(C)

2. Consider S(0,ε) := S = {(a, b, c, d) ∈ R4|a2 + b2 + c2 + d2 = ε2},
X = C

⋂
S ⊂ R4, f(a, b, c, d) = R(a, b, c, d) + iI(a, b, c, d)

3. For N ∈ S \ C, π : S \ {N} → R3, (a, b, c, d) 7→ (u = a
ε−d , v = b

ε−d , w = c
ε−d ),

π−1 : R3 → S \ {N}
(u, v, w) 7→ (a, b, c, d) = (2uε

n , 2vε
n ,

2wε
n , ε(u

2+v2+w2−1)
n ), with n = 1+u2+v2+w2.

4. Denote α = ( 2uε
n , 2vε

n ,
2wε
n , ε(u

2+v2+w2−1)
n ). Thus π−1(u, v, w) = α.

5. Compute π(X) = {(u, v, w) ∈ R3|∃(a, b, c, d) = π−1(u, v, w, ) ∈ X = C∩S} ⇔
π(X) = {(u, v, w) ∈ R3|f(α) = 0} = {(u, v, w) ∈ R3|R(α) = I(α) = 0} with
R, I ∈ R[u, v, w]. π(X) is an implicitly defined algebraic curve!

For small ε, π(X) := Lε is a link (algebraic link) (based on Milnor’s research).
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Computing the link of the singularity

We use Axel for implementation.

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1
we compute with the previous method in Axel:

π(C ∩ S) = π(X) := Lε =
= {(u, v, w) ∈ R3|R(α) = 0, I(α) = 0}
Graph(Lε) = 〈V, E〉 with
V = {p = (m,n, q) ∈ R3}
E = {(i, j)|i, j ∈ V}
s.t. Graph(Lε) ∼=isotopic Lε

Graph(Lε) is a piecewise linear approximation
for Lε

Why Axel? It is the only system to implement a
method which returns such an approximation!
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Computing the link of the singularity

We use Axel for the implementation. Why Axel?

For C = {(x, y) ∈ C2|x3 − y2 = 0} ⊂ R4, ε = 1

and Lε =
= {(u, v, w) ∈ R3|R(α) = 0, I(α) = 0}

we also compute (for visualization reasons)

S
′

= {(u, v, w) ∈ R3|R(α) + I(α) = 0}
S

′′
= {(u, v, w) ∈ R3|R(α)− I(α) = 0}

Lε is the intersection of any 2 of the surfaces:
R(α), I(α)
R(α) + I(α), R(α)− I(α)
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Next

Plane complex algebraic curve

numericallycompute

��

Singularities moved in the origin

numerically-symbolicallycompute

��

Algebraic link and operations on it (ε needed)

symbolicallycompute

���
�
�

Alexander polynomial

symbolicallycompute

���
�
�

δ-invariant, genus, Milnor number, etc
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Computing the Alexander polynomial

We give an example to compute the Alexander polynomial
∆L for a link L with K knots! We need some definitions.

A diagram is the image under projection, together with the
information on each crossing telling which branch goes over
and which under.
An arc is the part of a diagram between two undercrossings.

A crossing is:
-righthanded if the underpass traffic goes from right to left.
-lefthanded if the underpass traffic goes from left to right.

Diagram and arcs

Crossings

i

j

k i k

j

RH LH
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Computing the Alexander polynomial of the link

Example: ∆L for L with K = 1 knot (i.e. trefoil knot).

k=3i=2

j=1

M(L) =

0BB@
type labeli labelj labelk

c1 −1 2 1 3

1CCA

P (L) =

0@ 1A

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i          j           k                                 i             j           k

1−t     −1       t                        1−t       t      −1
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Computing the Alexander polynomial of the link

Example: ∆L for L with K = 1 knot

P (L) =

0@ t 1− t −1
1− t −1 t
−1 t 1− t

1A
D := det(minor(P (L))) = −t2 + t− 1

∆(L) := ∆(t) = Normalise(D) = t2 − t+ 1

For a link L with K > 1 knots and n crossings,
∆(L) is the gcd of all the (n− 1)× (n− 1) minor
determinants of P (L).

2

1 3

c1

c2

c3

i

j

k i k

j

RH(+1) LH(−1)

i          j           k                                 i             j           k

1−t     −1       t                        1−t       t      −1
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Computing the Alexander polynomial of the link

So, the Alexander polynomial is computed in several steps:

M(L) P(L)

labelling matrix
compute

preAlexander matrix
compute compute

Alexander polynomial

(L)D(L)

In order to compute it, we need D(L)!
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Computing the Alexander polynomial of the link

?⇒

2

1 3

c1

c2

c3

G(Lε) = 〈P,E〉 D(Lε)
We need to transform the graph data structure G(Lε) returned by Axel into the

diagram of the algebraic link D(Lε).
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Computing the Alexander polynomial of the link

?⇒

2

1 3

c1

c2

c3

We developed several computational geometry and combinatorial algorithms for

this! (M. Hodorog, J.Schicho. Computational geometry and combinatorial

algorithms for the genus computation problem. DK 10-07 Report).
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Implementation

Axel free algebraic geometric modeler

(INRIA Sophia-Antipolis) a

I written in C++, Qt Script

for Applications (QSA);

GENOM3CK-our library in Axel (GEnus
cOMputation of plane Complex algebraiC
Curves with Knot theory). Support:
http://people.ricam.oeaw.ac.at/m.

hodorog/software.html and
madalina.hodorog@oeaw.ac.at

Version 0.2 of GENOM3CK is released!

aAcknowledgements: Julien Wintz

http://axel.inria.fr/
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Analysis of the algorithm

With the notations:

E the symbolic algorithm to compute the Alexander polynomial, which is ill-posed.

Aε the symbolic-numeric algorithm to compute the ε-Alexander polynomial ∆ε

from the ε-algebraic link Lε.

I For input polynomial f , Aε(f) returns as output ∆ε.
I For perturbed fδ (for any δ : ||f − fδ|| < δ), Aε(fδ) returns as output ∆δ

ε .

and based on:

Milnor’s theorem, i.e. if ε→ 0 then ∆ε tends to the exact solution
(convergence for exact data)

and on general results from regularization theory (adapted to our case).

The algorithm Aε is a regularization, i.e.:

∆δ
ε depends continuously on the perturbed input polynomial fδ (continuity);

If δ → 0 and ε is chosen appropiately, then ∆δ
ε tends to the exact solution

(convergence for perturbed data).

25 / 29



Analysis of the algorithm

With the notations:

E the symbolic algorithm to compute the Alexander polynomial, which is ill-posed.

Aε the symbolic-numeric algorithm to compute the ε-Alexander polynomial ∆ε

from the ε-algebraic link Lε.

I For input polynomial f , Aε(f) returns as output ∆ε.
I For perturbed fδ (for any δ : ||f − fδ|| < δ), Aε(fδ) returns as output ∆δ

ε .

and based on:

Milnor’s theorem, i.e. if ε→ 0 then ∆ε tends to the exact solution
(convergence for exact data)

and on general results from regularization theory (adapted to our case).

The algorithm Aε is a regularization, i.e.:

∆δ
ε depends continuously on the perturbed input polynomial fδ (continuity);

If δ → 0 and ε is chosen appropiately, then ∆δ
ε tends to the exact solution

(convergence for perturbed data).

25 / 29



Demo (Numeric and Symbolic Examples)

Equation in R4 Box
−x3 − xy + y2, ε = 1.00 [−4, 4,−6, 6,−6, 6]

−x3 − xy + y2, ε = 0.25 [−4, 4,−6, 6,−6, 6]

−x3 − xy + y2 − 0.01, ε = 1.00 [−4, 4,−6, 6,−6, 6]

−x3 − xy + y2 − 0.01, ε = 0.25 [−4, 4,−6, 6,−6, 6]
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Conclusion and future work

! DONE:

automatization of
symbolic-numeric algorithms for
plane curves in GENOM3CK (i.e.
algorithm to compute the
Alexander polynomial);

describe algorithms with principles
from regularization theory;

test experiments show that the
algorithm has the continuity and
the convergence for perturbed
data properties;

proofs for continuity and
convergence for perturbed data
properties are constructed.

# TO DO’s:

finalize the proof for
convergence for perturbed
data property of the algorithm;

include other operations, i.e.
from knot theory, algebraic
geometry.
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Thank you for your attention.
Questions?
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