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Motivation

We investigate the topology (i.e. roughly speaking the shape) of plane complex
algebraic curves. These curves can be identified with objects in R* we cannot visualize!
We sketch the equivalent objects in R? for a rough "idea"!
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Motivation

For instance,

We visualize the topology of the algebraic curve C = {(z,y)| — 2* — 2y +y* = 0} in R?!
We notice an "involved” topology around the point (0,0), which is called singularity!
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Motivation

Roughly, if we consider C = {(z, y)| — 2® — 2y + 3* = 0} then

For topology
of (0,0) of C

/

|

we visualize

the solutions of

—x3—xy+y2:0

T

|

we study the Alexander

polynomial of (0,0) of C
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Motivation

Our goal is to compute and

Roughly, if we consider C = {(z,y)| — 2® — xy +3* = 0} then

For topology
of (0,0) of C
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Motivation

Our goal is also to design for:

A symbolic-numeric

Rational and

. to compute
algorithm P

(in GENOM3CK)
(in Axel)

floating point —_— ———| the Alexander

numbers polynomial

Because at present (from our knowledge) there exists only for:

A symbolic to compute

Rational numbers ‘4> algorithm

——| the Alexander

(in Singular)

polynomial
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Motivation

For instance:

SINGULAR /
A Computer Algebra System for Polynomial Computations / version 3-1-0
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Mar 2009

FB Mathematik der Universitaet, D-67653 Kaiserslautern \
"alexpoly.lib";

> LIB
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

C VRV VVVVYVYSSSSSSSSSSSSSSS
NNSSSSSSNSNNSSNSsS~N

loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded
loaded

/sw/share/Singular/LIB/alexpoly.lib (1.18,2009/04/15)
/sw/share/Singular/LIB/hnoether.lib (1.59,2009/04/15)
/sw/share/Singular/LIB/sing.lib (1.34,2009/04/15)
/sw/share/Singular/LIB/primdec.lib (1.147,2009/04/15)
/sw/share/Singular/LIB/absfact.lib (1.7,2008/07/16)
/sw/share/Singular/LIB/triang.lib (1.14,2009/04/14)
/sw/share/Singular/LIB/matrix.lib (1.48,2009/04/10)
/sw/share/Singular/LIB/nctools.lib (1.54,2009/05/08)
/sw/share/Singular/LIB/ring.lib (1.34,2009/04/15)
/sw/share/Singular/LIB/poly.lib (1.53,2009/04/15)
/sw/share/Singular/LIB/elim.lib (1.34,2009/05/05)
/sw/share/Singular/LIB/general.lib (1.62,2009/04/15)
/sw/share/Singular/LIB/random.lib (1.20,2009/04/15)
/sw/share/Singular/LIB/inout.lib (1.34,2009/04/15)
/sw/share/Singular/LIB/primitiv.lib (1.23,2009/04/15)

ring r=0,(x,y),1s;

poly f=-x3-x*y+y2;

list ALEX=alexanderpolynomial(f);
def ALEXring=ALEX[1];

setring ALEXring;

alexpoly;def precision=10;

ring r=(real,precision),(x,y),1s;

// ** redefining r **
> poly f=-x3-x*y+y2-0.01;
> list ALEX=alexanderpolynomial(f);
// ** redefining ALEX **
Singular cannot factorize over 'real' as ground field
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Problem specifications

o Input:

» f(z,y) € Clz,y] squarefree with symbolic and numeric coefficients;
» C={(z,y) € C¥f(z,y) = 0} C C% ~ R* of degree m;
> ¢ € R input parameter.

o Output:
» e-Alexander polynomial of each numerical singularity of C ;

@ We also compute as output:

> A set of invariants of C (numerical singularities, algebraic link, Milnor
fibration, Milnor number, d-invariant of each singularity, genus of C,
diagram, crossings, arcs of each algebraic link, etc).
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lll-posedness of the problem

The problem is ill-posed! Small changes in input produce huge changes in the output!
Example. Let s1 = (0,0) of C = {(x,y) € R*| — 2® — zy +y* = 0} and

52 =(0,0) of D = {(x,y) € R?*| — 2* — 2y +y* — 0.01 = 0}!

The topology of (0,0) is not stable under small changes in input!

The same situation happens in R*, but we cannot visualize it!
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Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of a problem?

@ We construct numerical methods that approximate solutions to ill-posed problems,
that are stable under small changes of the input! (i.e. regularization method)

@ Similar methods are subjects of approximate algebraic computation in order to
compute: greatest common divisor of polynomials, root of polynomials, etc.

,*‘
&

[

|

|
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Techniques for dealing with the ill-posedness

How to deal with the ill-posedness of our problem?

@ Example. For s1 = (0,0) of C = {(v,y) € R*| — 2® — xy + y*> = 0} and
s2 = (0,0) of D = {(z,y) € R*| — 2® —zy +y* — 0.01 = 0},
we compute their e-algebraic links denoted L.(s1), Lc(s2) (our research).

For sufficiently small €, L. are stable under small changes in the input and they
characterize the topology of s1,s2 (Milnor's research and our research).

From L. we compute the e-Alexander polynomials (our research)
This polynomial is a complete invariant for L.! (Yamamoto's research)

If the Alexander polynomials of L.(s1), Le(s2) are equal, then s1, s2 have the same

topology, else they have different topology!

v

@ Next we compute L. and e-Alexander polynomial.
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© Solving the problem
@ Mathematical method and algorithm
@ Analysis of the algorithm
@ Demo (Test experiments)
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Mathematical method and algorithm

‘ Plane complex algebraic curve‘

computelnumerically

‘Singularities moved in origin‘

compute \L numerically-symbolically

’Algebraic link and operations on it (e needed)‘

|
compute | symbolically

v
’ Alexander polynomial ‘

|
compute | symbolically
\

’5—invariant, genus, Milnor number, etc‘
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First

‘ Plane complex algebraic curve‘

computelnumerically

Singularities

compute \L numerically-symbolically

Algebraic link and operations on it (e needed)‘

I
compute | symbolically

y
’ Alexander polynomial ‘

I
compute | symbolically

y
’5—invariant, genus, Milnor number, etc‘
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Computing the singularities of the curve

> f(z,y) € Clz,y] squarefree with symbolic and numeric coefficients
» C={(z,y) € C?|f(x,y) = 0} complex algebraic curve of degree m.

> Sing(C) = {(av. ) € €| (w0, 0) = 0. 5 (z0,0) = 0, T (wo.0) = 0}

@ Method: We solve the overderminate system in C? :

f(@o,y0) =0
of .
%(xoayo) =0 (1)
0
85 (IB(), yO) =0
using subdivision methods from Axel.

" Doctoral Program

12/29



Next

‘ Plane complex algebraic curve‘

computelnumerically

‘Singularities moved in the origin‘

compute \L numerically-symbolically

’Algebraic link and operations on it (e needed)‘

I
compute | symbolically

y
’ Alexander polynomial ‘

I
compute | symbolically

y
’5—invariant, genus, Milnor number, etc‘
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Defining the algebraic link of the singularity

Trefoil Knot

@ A knot is a piecewise linear or a differentiable simple
closed curve in R3.

@ A link is a finite union of disjoint knots.

@ Links resulted from the intersection of a given curve
with the sphere are called algebraic links.
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Computing the link of the singularity

@ How do we compute the link of a plane curve singularity?
> use the stereographic projection;
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Computing the link of the singularity

1. Let C = {(a,b,c,d) € R*f(a,b,c,d) = 0} s.t. (0,0,0,0) € Sing(C)

2. Consider S(g ) := S = {(a,b,c,d) € R*a® + b* + ¢ + d* = €*},
X =CNS CR* f(a,b,c,d) = R(a,b,c,d) +il(a,b,c,d)

3. FOFNGS\C,WZS\{N}HRB,(a,b’C,d)H(u: gd7U: Edaw: cd)7
1R — S\ {N}

2 2 2
(u,v,w) — (a,b,c,d) = (Buc, 2ue 2uwc W) with n = 1+u2+v2+w?.

2ue 2ve 2we e(u2+v2+w271)
n’®n’' n’ n

4. Denote o = ( ). Thus 71 (u,v,w) = a.

5. Compute 7(X) = {(u,v,w) € R3|3(a,b,c,d) = 7~ (u,v,w,) € X =CNS} &
m(X) = {(u,v,w) € R3|f(a) =0} = {(u,v,w) € R}|R(a) = I(a) = 0} with
R, I € Ru,v,w]. w(X) is an implicitly defined algebraic curve!

For small ¢, (X)) := L. is a link (algebraic link) (based on Milnor's research).

" Doctoral Program

16/29



Computing the link of the singularity

We use Axel for implementation.

® For C = {(x,y) €C?|lz® —y* =0} CR* e =1
we compute with the previous method in Axel:

.
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Computing the link of the singularity

We use Axel for implementation.
® For C = {(x,y) €C?|lz® —y* =0} CR* e =1
we compute with the previous method in Axel:
@ 7(CNS)=n(X):=L =
= {(u,v,w) € R*|R(a) = 0,1(a) = 0}

Kboctora
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Computing the link of the singularity

We use Axel for implementation.
® For C = {(x,y) €C?|lz® —y* =0} CR* e =1
we compute with the previous method in Axel:

@ 71(CNS)=n(X):=Le =
= {(u,v,w) € R}|R(a)) = 0,I(a) = 0}

@ Graph(Le) = (V, &) with
V= {p=(m,n,q) €R’}
& =A{(,4)li,j €V}
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Computing the link of the singularity

We use Axel for implementation.
® For C = {(x,y) €C?|lz® —y* =0} CR* e =1
we compute with the previous method in Axel:

@ 71(CNS)=n(X):=Le =
= {(u,v,w) € R}|R(a)) = 0,I(a) = 0}

@ Graph(Le) = (V, &) with
V = {p=(m,n,q) € R’}
&={(,j)li,j €V}

@ s.t. Graph(Le) isotopic Le
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Computing the link of the singularity

use Axel for implementation.

For C = {(z,y) € C?|2® —¢y* =0} CR* e =1
we compute with the previous method in Axel:
m(CNS)=n(X):=Le =

— {(w,v,w) € R¥R(a) = 0,I(a) = 0}
Graph(Le) = (V, E) with

V= {p=(m,n,q) € R*}

E={(,5)i,j €V}

@ s.t. GTaph(Le) %isotopie Le

@ Graph(Le) is a piecewise linear approximation

for L.

Why Axel? It is the only system to implement a
method which returns such an approximation!
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Computing the link of the singularity

We use Axel for the implementation. Why Axel?
]

For C = {(z,y) € C?2® — 4> =0} C R e=1
@ and L. =

= {(u,v,w) € R*|R(a) = 0,I(cr) = 0}

E(Docmra
[m] = -

Do
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Computing the link of the singularity

We use Axel for the implementation. Why Axel?
@ ForC= {(z,y) €C?2® —¢y* =0} CRYe=1
@ and L. =
= {(u,v,w) € R*|R(a) = 0, () = 0}
@ we also compute (for visualization reasons)
' {(u,v,w) € R3|R(cr) + () = 0}
{(u,v,w) € R*|R(a) — I() = 0}

7"
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Computing the link of the singularity

We use Axel for the implementation. Why Axel?

@ For C={(z,y) €C*2® —¢y* =0} C R e=1
@ and L. =
= {(u,v,w) € R*|R(a) = 0,I(cr) = 0}
o we also compute (for visualization reasons)
S = {(u,v,w) €R3| () + I(ar) = 0}
= {(u,v,w) € R*|R(a) — I(a) = 0}
@ L. is the intersection of any 2 of the surfaces:

R(), I(@)
R(a) + (), R(e) = I(e)
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Next

‘ Plane complex algebraic curve‘

computelnumerically

‘Singularities moved in the origin‘

compute \L numerically-symbolically

’Algebraic link and operations on it (e needed)‘

I
compute | symbolically

y
’ Alexander polynomial ‘

I
compute | symbolically

y
’5—invariant, genus, Milnor number, etc‘
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Computing the Alexander polynomial
Diagram and arcs

We give an example to compute the Alexander polynomial
Ay for a link L with K knots! We need some definitions.

A diagram is the image under projection, together with the

information on each crossing telling which branch goes over

and which under.

An arc is the part of a diagram between two undercrossings. Crossings

A crossing is:
-righthanded if the underpass traffic goes from right to left.
-lefthanded if the underpass traffic goes from left to right.

RH LH

7N
XK
NS
R/ boctorai Program
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Computing the Alexander polynomial of the link

Example: Ayp for L with K =1 knot (i.e. trefoil knot).

‘type label; label; labely
-1 2 1 3

C1

RH(+1) LH(—1)

o) /\ /\

1[ -1 t 1-t Kmnma\?rogram
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Computing the Alexander polynomial of the link

Example: Ay, for L with K =1 knot.

\type label; label; labely

. C1 -1 2 1 3
M(L) = 1—t t -1
2 1 3
_ _ RH(+1) .
P(L) = 1—t t 1 LH(-1)
ky/' iyk
NS
i j k i i +
-t -1t -t ot -
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Computing the Alexander polynomial of the link

Example: Ay, for L with K =1 knot.

\type label; label; labely

. C1 -1 2 1 3
M(L) = 1—t t -1
1 2 3
_ _ RH(+1) .
P(L) = t 1—t 1 LH(-1)
ky/' iyk
NS
i j k i i +
-t -1t -t ot -
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Computing the Alexander polynomial of the link

Example: Ay, for L with K =1 knot

t 1-t -1
PLy=1-t -1 ¢
-1t 1-—t

D := det(minor(P(L))) = —t> +t —1
A(L) := A(t) = Normalise(D) = t* —t + 1

RH(+1) LHE1)

For a link L with K > 1 knots and n crossings,
A(L) is the ged of all the (n — 1) x (n — 1) minor

determinants of P(L). ky‘ iyk
NS

1-t -1 t 1-t E(Duaura\ Program

21/29



Computing the Alexander polynomial of the link

So, the Alexander polynomial is computed in several steps:

—1 PO | —Aw

v v v

compute compute compute
labelling matrix preAlexander matrix Alexander polynomial

In order to compute it, we need D(L)!

" Doctoral Program
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Computing the Alexander polynomial of the link

o G(L) = (P,E) D(L)
@ We need to transform the graph data structure G(L.) returned by Axel into the
diagram of the algebraic link D(L).
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Computing the Alexander polynomial of the link

(] ' ¢ =
@ We developed several computational geometry and combinatorial algorithms for
this! (M. Hodorog, J.Schicho. Computational geometry and combinatorial

algorithms for the genus computation problem. DK 10-07 Report).
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Implementation

@ Axel free algebraic geometric modeler
(INRIA Sophia-Antipolis) ?

http://axel.inria.fr/

?Acknowledgements: Julien Wintz 2 octoral Program
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http://people.ricam.oeaw.ac.at/m.hodorog/software.html
http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Implementation

@ Axel free algebraic geometric modeler
(INRIA Sophia-Antipolis) ?

> written in C++, Qt Script
for Applications (QSA);

?Acknowledgements: Julien Wintz E(?.uf‘?m pogam
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http://people.ricam.oeaw.ac.at/m.hodorog/software.html
http://people.ricam.oeaw.ac.at/m.hodorog/software.html

Implementation

@ Axel free algebraic geometric modeler
(INRIA Sophia-Antipolis) ?

> written in C++, Qt Script
for Applications (QSA);

@ GENOMB3CK-our library in Axel (GEnus
cOMputation of plane Complex algebraiC
Curves with Knot theory). Support:
http://people.ricam.oeaw.ac.at/m.
hodorog/software.html and
madalina.hodorog@oeaw.ac.at

?Acknowledgements: Julien Wintz
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Implementation

@ Axel free algebraic geometric modeler
(INRIA Sophia-Antipolis) ?

> written in C++, Qt Script
for Applications (QSA);

@ GENOMB3CK-our library in Axel (GEnus
cOMputation of plane Complex algebraiC
Curves with Knot theory). Support:
http://people.ricam.oeaw.ac.at/m.
hodorog/software.html and
madalina.hodorog@oeaw.ac.at

@ Version 0.2 of GENOM3CK is released!

?Acknowledgements: Julien Wintz
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Analysis of the algorithm

With the notations:
@ FE the symbolic algorithm to compute the Alexander polynomial, which is ill-posed.

@ A, the symbolic-numeric algorithm to compute the e-Alexander polynomial A,
from the e-algebraic link L..

> For input polynomial f, Ac(f) returns as output A..
» For perturbed f5 (for any & : ||f — fs5]| < 8), Ac(fs) returns as output A?.
and based on:

@ Milnor's theorem, i.e. if € — 0 then A, tends to the exact solution
(convergence for exact data)

@ and on general results from regularization theory (adapted to our case).

The algorithm A, is a regularization, i.e.:

" Doctoral Program
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Analysis of the algorithm

With the notations:
@ FE the symbolic algorithm to compute the Alexander polynomial, which is ill-posed.

@ A, the symbolic-numeric algorithm to compute the e-Alexander polynomial A,
from the e-algebraic link L..

> For input polynomial f, Ac(f) returns as output A..
» For perturbed f5 (for any & : ||f — fs5]| < 8), Ac(fs) returns as output A?.
and based on:

@ Milnor's theorem, i.e. if € — 0 then A, tends to the exact solution
(convergence for exact data)

@ and on general results from regularization theory (adapted to our case).

The algorithm A, is a regularization, i.e.:
@ A? depends continuously on the perturbed input polynomial fs (continuity);

@ If 6 — 0 and € is chosen appropiately, then A? tends to the exact solution
(convergence for perturbed data).
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Demo (Numeric and Symbolic Examples)

Demo
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Conclusion and future work

v/ DONE:

@ automatization of
symbolic-numeric algorithms for
plane curves in GENOM3CK (i.e.
algorithm to compute the X TO DO's:

Alexander polynomial);

@ describe algorithms with principles
from regularization theory;

E(Ducmra\ Program

28/29



Conclusion and future work

v/ DONE:

automatization of
symbolic-numeric algorithms for
plane curves in GENOM3CK (i.e.
algorithm to compute the
Alexander polynomial);

describe algorithms with principles
from regularization theory;

test experiments show that the
algorithm has the continuity and
the convergence for perturbed
data properties;

proofs for continuity and
convergence for perturbed data
properties are constructed.

X TO DO's:
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Conclusion and future work

v/ DONE:

automatization of
symbolic-numeric algorithms for
plane curves in GENOM3CK (i.e.
algorithm to compute the
Alexander polynomial);

describe algorithms with principles
from regularization theory;

test experiments show that the
algorithm has the continuity and
the convergence for perturbed
data properties;

proofs for continuity and
convergence for perturbed data
properties are constructed.

X TO DO's:

@ finalize the proof for
convergence for perturbed
data property of the algorithm;
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Conclusion and future work

v/ DONE:

automatization of
symbolic-numeric algorithms for
plane curves in GENOM3CK (i.e.
algorithm to compute the
Alexander polynomial);

describe algorithms with principles
from regularization theory;

test experiments show that the
algorithm has the continuity and
the convergence for perturbed
data properties;

proofs for continuity and
convergence for perturbed data
properties are constructed.

X TO DO's:

@ finalize the proof for
convergence for perturbed
data property of the algorithm;

@ include other operations, i.e.
from knot theory, algebraic
geometry.
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Thank you for your attention.
Questions?

A
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