
Introduction
Past Activities

Software Study
Current Activities

Formally Specified Computer Algebra Software
DK10

Muhammad Taimoor Khan

Doktoratskolleg Computational Mathematics
Johannes Kepler University

Linz, Austria

March 11, 2010

1 / 15

Introduction
Past Activities

Software Study
Current Activities

Outline

1 Introduction

2 Past Activities

3 Software Study

4 Current Activities

2 / 15

Introduction
Past Activities

Software Study
Current Activities

Introduction

Project goals
Formal specification of programs written in untyped
computer algebra languages
Especially to find errors/inconsistencies

for example violation of method preconditions

Computer algebra software at RISC as examples
DK11: rational parametric algebraic curves (Maple)
DK6: computer algebra tools for special functions in
numerical analysis (Mathematica)
DK1: automated theorem proving (Mathematica)

3 / 15

Introduction
Past Activities

Software Study
Current Activities

Past Activities (October 2009 to February 2010)

Course work
Computer Algebra
Automated Theorem Proving
Formal Methods in Software Development
Thinking, Speaking, Writing
Formal Methods Seminar
Programming Project

Literature study
Type systems

Polymorphism
Abstract data types

Denotational semantics
Functional programming languages

Pattern matching
Type checking and inference

4 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Computer Algebra

Bivariate difference-differential dimension polynomials and
their computation
Relative Gröbner bases computation (using M. Zhou and F.
Winkler’s algorithm)
Maple implementation of the algorithms
Software

Maple package DifferenceDifferential
Christian Dönch

Literature reference
Christian Dönch. Bivariate difference-differential dimension
polynomials and their computation in Maple. Technical
report no. 09-19 in RISC Report Series, University of Linz,
Austria, 2009.

5 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Computer Algebra

ddsub := proc(c,b)
local f, g, i, m, n, a1;
f := c; g:=b;

for i to nops(g) do
g [i][1] := -g [i][1];
f := [op(f),g [i]];

end do;
for m from nops(f) by -1 to 1 do

for n from m-1 by -1 to 1 do
if f [m][2]= f [n][2] and f [m][3]=f [n][3] and f [m][4]=f [n][4] then

a1 := f [m][1]+f [n][1]; f [n] := subsop(1=a1,f [n]);
f := subsop(m=NULL,f); n := m;

end if;
end do;

end do;
....
return f;
end proc;

6 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Computer Algebra

Potential considerations
Limited types used i.e. integer and list
Not much use of Maple libraries - mostly standalone
No destructive update of data structures
Imperative style of development

Procedural/functional Maple package

7 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Algorithmic Combinatorics

Advanced applications of holonomic systems approach
Computations in Ore algebras
Non-commutative Gröbner bases
Solving linear system of differential equations
Software

Symbolic summation and integration for holonomic
functions
Mathematica package - HolonomicFunctions
Christoph Koutschan

Literature reference
Christoph Koutschan. HolonomicFunctions (User’s Guide).
Technical report no. 10-01 in RISC Report Series, JKU,
Austria, January 2010.
Christoph Koutschan. Advanced Applications of the
Holonomic Systems Approach. RISC-Linz, JKU. PhD
Thesis, September 2009.

8 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Algorithmic Combinatorics

OrePlus [p1:OrePolynomial[data1_List, algebra_OreAlgebraObject, order_],
p2:OrePolynomial[data2_List, algebra_OreAlgebraObject, order_]] :=

Module[{i1, i2, l1, l2, c, c1, c2, m1, m2, sum, coeffPlus},
l1 = Length[data1];
If[l1 === 0, Return[p2]];
l2 = Length[data2];
If[l2 === 0, Return[p1]];
coeffPlus = algebra[[3]];
i1 = 1; i2 = 1;
sum = {};
While[i1 <= l1 && i2 <= l2,

{c1, m1} = data1[[i1]];
{c2, m2} = data2[[i2]];
If [m1 === m2, c = coeffPlus[c1, c2];
If[Not[MatchQ[c, 0|0.]], AppendTo[sum, {c, m1}]];
i1++; i2++; ,
If[OreOrderedQ[m1, m2, order], AppendTo[sum, {c1, m1}]; i1++;
....];];

9 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Algorithmic Combinatorics

Potential considerations
Based on pattern matching
Imperative style of programming
Use of abstract data types
Use of customized Mathematica functionality
Not much use of Mathematica libraries

Procedural/functional Mathematica program with abstract data
types

10 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Automated Theorem Proving

Theorema set theory prover (STP)
Automated prover for theorems
Works with Prove-Compute-Solve (PCS) strategy
Integrated with Theorma infrastructure (not standalone)
Software

Mathematica package SetTheory‘Prover‘
Wolfgang Windsteiger

Literature reference
W. Windsteiger. An Automated Prover for Zermelo-Fraenkel
Set Theory in Theorema. JSC 41(3-4), pp. 435-470, 2006,
Elsevier, ISSN 0747-7171.
W. Windsteiger. A Set Theory Prover in Theorema:
Implementation and Practical Applications. RISC. PhD
Thesis, May 2001.

11 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Automated Theorem Proving

STP[•lf[l_,T_∈ Intersection[A_, B__],i_],a_•asml,af_]:=
Module[
{goalList=MapIndexed[•lf[NewLabel[6 cMembershipAlternatives,l,#2],T∈ #1,i]&,
{A,B}],proofSits},
proofSits=Map[Psit[#,a, af]&,goalList];
ProofStep[Prinfo[6 cMembershipFiniteIntersection,l,goalList],
Sequence @@ proofSits]]

12 / 15

Introduction
Past Activities

Software Study
Current Activities

Software Study - Automated Theorem Proving

Potential considerations
Pattern matching rules used

Are the rules overlaping?
Are the rules exhaustive?

Implicit type definitions
Declarative style of programming

Functional Mathematica program, essentially based on pattern
matching

13 / 15

Introduction
Past Activities

Software Study
Current Activities

Current Activities

Definition of simplified/typed versions of Mathematica and
Maple (say MiniMma and MiniMaple)

Syntax
Type system
Semantics and soundness of typing

Implementation of a type checker prototype
Static typing as a prerequisite to logic specification

Experiments with software fragments available at RISC
Next - Formal Specification language

14 / 15

Introduction
Past Activities

Software Study
Current Activities

Thanks for your attention!

15 / 15

	
	
	
	
	Introduction
	Past Activities
	Software Study
	Current Activities

