Formally Specified Computer Algebra Software
DK10

Muhammad Taimoor Khan

Doktoratskolleg Computational Mathematics
Johannes Kepler University
Linz, Austria

March 11, 2010

Outline

e Introduction
e Past Activities
e Software Study

@ Current Activities

Introduction

Introduction

@ Project goals

e Formal specification of programs written in untyped
computer algebra languages
e Especially to find errors/inconsistencies
o for example violation of method preconditions

@ Computer algebra software at RISC as examples
e DK11: rational parametric algebraic curves (Maple)
e DK®6: computer algebra tools for special functions in
numerical analysis (Mathematica)
e DK1: automated theorem proving (Mathematica)

Past Activities

Past Activities (October 2009 to February 2010)

@ Course work

Computer Algebra

Automated Theorem Proving

Formal Methods in Software Development
Thinking, Speaking, Writing

Formal Methods Seminar

Programming Project

@ Literature study
e Type systems
@ Polymorphism
@ Abstract data types
e Denotational semantics
e Functional programming languages

@ Pattern matching
@ Type checking and inference

Software Study

Software Study - Computer Algebra

@ Bivariate difference-differential dimension polynomials and
their computation

@ Relative Grébner bases computation (using M. Zhou and F.
Winkler’s algorithm)
@ Maple implementation of the algorithms
@ Software
e Maple package DifferenceDifferential
@ Christian Dénch
@ Literature reference

e Christian Dénch. Bivariate difference-differential dimension
polynomials and their computation in Maple. Technical
report no. 09-19 in RISC Report Series, University of Linz,
Austria, 2009.

Software Study

Software Study - Computer Algebra

ddsub := proc(c,b)
local f, g, i, m, n, at;
f:=c; g:=b;
for i to nops(g) do
g[1] =-g [101];
f:=[op(f),g [1];
end do;
for m from nops(f) by -1 to 1 do
for nfrom m-1by -1 to 1 do
if f[m][2]= f[n][2] and f[m][3]=f[n][3] and f[m][4]=f[n][4] then
at = f[ml[11+f[n][1]; f[n] := subsop(1=at,f[n]);
f:= subsop(m=NULL,f); n == m,
end if;
end do;
end do;

return f;
end proc;

Software Study

Software Study - Computer Algebra

@ Potential considerations

Limited types used i.e. integer and list

Not much use of Maple libraries - mostly standalone
No destructive update of data structures

Imperative style of development

Procedural/functional Maple package

Software Study

Software Study - Algorithmic Combinatorics

@ Advanced applications of holonomic systems approach
@ Computations in Ore algebras
@ Non-commutative Grébner bases
@ Solving linear system of differential equations
@ Software
e Symbolic summation and integration for holonomic
functions
e Mathematica package - HolonomicFunctions
e Christoph Koutschan
@ Literature reference
e Christoph Koutschan. HolonomicFunctions (User’s Guide).
Technical report no. 10-01 in RISC Report Series, JKU,
Austria, January 2010.
e Christoph Koutschan. Advanced Applications of the
Holonomic Systems Approach. RISC-Linz, JKU. PhD
Thesis, September 2009.

Software Study

Software Study - Algorithmic Combinatorics

OrePlus [p1:OrePolynomial[data1_List, algebra_OreAlgebraObject, order],
p2:0OrePolynomial[data2_List, algebra_OreAlgebraObject, order_]] :=
Module[{i1, i2, 11, 12, c, c1, c2, m1, m2, sum, coeffPlus},
I1 = Length[dataT];
If[l1 === 0, Return[p2]];
12 = Length[dataZ);
If[l2 === 0, Return[p1]];
coeffPlus = algebra|[3]];
i1=1;i2=1;
sum = {};
While[i1 <=11 &&i2 <= 12,
{c1, m1} = dataT[[i1]];
{c2, m2} = dataZ[[i2]];

If [m1 === m2, ¢ = coeffPlus[c1, c2];
If[Not[MatchQ][c, 0]0.]], AppendTo[sum, {c, m1}]];
i14++; i24+; ,

If[OreOrderedQ[m1, m2, order], AppendTo[sum, {c1, m1}]; i1++;
R

Software Study

Software Study - Algorithmic Combinatorics

@ Potential considerations
e Based on pattern matching
Imperative style of programming
Use of abstract data types
Use of customized Mathematica functionality
Not much use of Mathematica libraries

Procedural/functional Mathematica program with abstract data
types

10/15

Software Study

Software Study - Automated Theorem Proving

@ Theorema set theory prover (STP)
@ Automated prover for theorems
@ Works with Prove-Compute-Solve (PCS) strategy

@ Integrated with Theorma infrastructure (not standalone)
@ Software

o Mathematica package SetTheory‘Prover
e Wolfgang Windsteiger
@ Literature reference

o W. Windsteiger. An Automated Prover for Zermelo-Fraenkel
Set Theory in Theorema. JSC 41(3-4), pp. 435-470, 2006,
Elsevier, ISSN 0747-7171.

e W. Windsteiger. A Set Theory Prover in Theorema:
Implementation and Practical Applications. RISC. PhD
Thesis, May 2001.

11/15

Software Study

Software Study - Automated Theorem Proving

STPJelf[/_,T_€ Intersection[A_, B__],i_],a_easml,af]:=
Module[
{goalList=MaplIndexed[elf[NewLabel[£MembershipAlternatives,/,#2], Te #1,il&,
{A,B}],proofSits},
proofSits=Map|[Psit[#,a, afl&,goalList];
ProofStep[Prinfo[£MembershipFinitelntersection,/,goalList],
Sequence @@ proofSits]]

12/15

Software Study

Software Study - Automated Theorem Proving

@ Potential considerations
e Pattern matching rules used

@ Are the rules overlaping?
@ Are the rules exhaustive?

o Implicit type definitions
e Declarative style of programming

Functional Mathematica program, essentially based on pattern
matching

13/15

Current Activities

Current Activities

@ Definition of simplified/typed versions of Mathematica and
Maple (say MiniMma and MiniMaple)
e Syntax
o Type system
e Semantics and soundness of typing

@ Implementation of a type checker prototype

e Static typing as a prerequisite to logic specification
@ Experiments with software fragments available at RISC
@ Next - Formal Specification language

14/15

Current Activities

Thanks for your attention!

15/15

	
	
	
	
	Introduction
	Past Activities
	Software Study
	Current Activities

