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A PROOF OF SELLERS’ CONJECTURE

PETER PAULE AND SILVIU RADU

ABSTRACT. In 1994 James Sellers conjectured an infinite family of Ramanujan
type congruences for 2-colored Frobenius partitions introduced by George E.
Andrews. These congruences arise modulo powers of 5. In 2002 Dennis Eich-
horn and Sellers were able to settle the conjecture for powers up to 4. In this
article we prove Sellers’ conjecture for all powers of 5.

1. INTRODUCTION

In his 1984 Memoir [1], George E. Andrews introduced two families of partition
functions, ¢r(m) and cor(m), which he called generalized Frobenius partition func-
tions. In this paper we restrict our attention to 2-colored Frobenius partitions.
Their generating function reads as follows [1, (5.17)]:

o0 -2

1 _
(1) Z cha(m H 2 161 V(1 — ¢in)’

m=0 n=1

In 1994 James Sellers [15] conjectured that for all integers n > 0 and o > 1 one has
cpa(5“n+Ay) =0 (mod 5%),

where ), is defined to be the smallest positive integer such that

(2) 120 =1 (mod 5%).

In his joint paper with Dennis Eichhorn [4] this conjecture was proved for the cases
a = 1,2,3,4. In this paper we settle Sellers’ conjecture for all « in the spirit of
G. N. Watson [16]. Several authors (e.g. [9], [2]) have stated that the method of
Watson works well when the modular functions involved live on a Riemann surface
of genus 0. The reason for this is that every such modular function can be written as
a rational function (in Watson’s case polynomial function) in some fixed modular
function ¢. In contrast to this, the modular functions that appear in this paper
belong to a Riemann surface of genus 1. Treatments of this type are very rare in
the literature. To the best of our knowledge only the papers by B. Gordon and
K. Hughes [6], [7] and [8] apply Watson’s method to genus 1 Riemann surfaces. In
these papers the authors use a relatively simple trick on the modular equation to
make Watson’s method work for larger genus then 0. We are applying essentially
the same idea in this paper; see Lemma 3.4 below.

Our article is structured as follows. In Section 2 we state the Main Theorem (The-
orem 2.7) of our paper. It describes the action of a class of Rademacher operators
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on a quotient of eta function products being crucial for the problem Sellers’ conjec-
ture then is derived as an immediate consequence (Corollary 2.8). The rest of the
paper deals with proving the Main Theorem. The basic building blocks of our proof
are the twenty Fundamental Relations listed in the Appendix (Section 6). Despite
postponing their proof to Section 5, we shall use these relations already in Section
3 and Section 4. In Section 3 a crucial result is proved, the Fundamental Lemma
(Lemma 3.4), which has been inspired by work of B. Gordon and K. Hughes as it
was mentioned above. The proof of the Main Theorem is presented in Section 4. To
this end three further lemmas are introduced, all being immediate consequences of
the Fundamental Lemma. Finally we mention that in Section 5, in order to prove
the twenty Fundamental Relations, we utilize a computer-assisted method which is
based on a variant of a well-known lemma by M. Newman (Lemma 5.6).

Throughout the paper we will use the following conventions: N = {0,1,...} and
N* = {1,2,...} denote the nonnegative and positive integers, respectively. The
complex upper half plane is denoted by H := {7 € C : Im(7) > 0}. As usual, n(7)
for 7 € H denotes the Dedekind eta function for which

p"‘

(3) n(r) =qz H(l —¢") where ¢ := *™",
n=1

We will also use the short hand notation:
(4) (1) :=n(nt), neZ, 7eH.

For = € R the symbol |z] (“foor” of ) as usual denotes the greatest integer less
or equal to . Let f = > _,a,q", f # 0, be such that a,, = 0 for almost all
n < 0. Then the order of f is the smallest integer N such that ay # 0; we write
N = ord(f). More generally, let ' = fot=73" _,a,t" witht=73" -, b,q", then
the t-order of F' is defined to be the smallest integer N such that ay # 0; we write
N = ord¢(F). For example, if ord(f) = —1 and t = ¢?, then ord;(F) = —1 but
ord(F) = —2.

2. THE MAIN THEOREM

Let

Lemma 2.1. For € H,

Proof. From (1),
(1 _ q2(2n71))(1 _ q2n)4
(I=g")*(1 —q")

11— —¢*")
(1 _ qn)4(1 _ q4n)2 :

C®3(q)

4

=y 1="
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Subsequently we will study the action of the Rademacher [12] operator U, on
C®4(q), respectively on

(5) A(r) = _ ) T e H.

Later the following abbreviation will be also useful:
(6) B(r) := A(57), Te€H.
Definition 2.2. For f:H — C and m € N* we define Up,(f) : H— C by

Unlp)r) =L 3 5 (22, rem

m
A=0

Obviously U, is linear (over C); in addition, it is easy to verify that

(7) Unn =UpnoUy =U,0U,, m,necN".

The periodicity n(7) = n(r + 24) implies for all g : H — C,
(8) Us(Bg) = AUs(g).

Lemma 2.3. For a € N* and A\, as in (2):

Use (A) (1) = ¢ 257 3 edo(5%n + Aa)g", 7€ HL.
n=0

Proof. We have:

Use (A)(7) = Use <q1/12 Z chz(m)qm)

m=0
00 5%—1
_ 2wir 1 2mimT 2miA(24m —2)
=e 12~5‘¥5—a E cpa(m)e” 5 g e 5

m=0 A=0

= T Y cha(m)e
m>0

oo
—27iT

= e 12:5% Z C¢2(5an + Aa)e

n=0

2miT(5%n+Aq)
505

o0
122 —1

= q 125" Z c¢2(5an + )\a)q”;

n=0

the sum Z:nzo runs over all m € N such that 12m =1 (mod 5%). O

The following explicit expressions for A, are easily verified.
Lemma 2.4. For § € N*:

1475261 1+ 11-5%°

)\gﬁ,1 = 12 and )\2,@ = 12
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Definition 2.5. Let t,p,o0,pg, and p1 be functions defined on H as follows:

9 P SR~ (-1
( ) T 60 pi= 3 5 g = 12
n 147120 "M%
1 2 2 2 2
(10) po = 5 (—dto — 25tpo” — 2p0* + 30t0® + 20° + tp),
1
(11) p1 = 5(—2507502 + 200to + 200 + p — 220° + 5po® — 4po).

We note that all functions defined in Definition 2.5 have Taylor series expansions
in powers of ¢ with coefficients in Z, resp. %Z. (In fact, one can show that all
the coefficients are in Z but this is not needed for our purpose.) In particular,
ord(p) = ord(c) = 0 and ord(¢) = 1, which implies ord(py) > 1 and ord(p;) > 1.

Before stating the Main Theorem of the paper, we introduce convenient shorthand
notation.

Definition 2.6. A map a:Z X Z — Z is called discrete array if for each i € Z the
map a(i,—) : Z — Z, j +— a(i,j), has finite support.

Theorem 2.7 (“Main Theorem”). There exist discrete arrays r,s,u,v such that
for B € N* and 7 € H:

U52[f—1 (A)(T) = 52[37114(57') <p0(7') Z T(ﬂ, n)5|.5n;—2jt"(7')
n=0

(12)

NE

+ s(ﬂ,n>5f"2‘5Jt”<r>>,
and
Ussa (A)(7) = 5% A(7) <p1(7) 3 u(B,n)sl 7 e ()
(13) =0

+ (g, n)5|-5n24Jt"(7')> .

The remaining sections are devoted to proving the Main Theorem by mathematical
induction on . In Sections 3 and 4 we describe the algebra underlying the induction
step. In Section 5 we settle the initial cases, i.e., the correctness of the twenty
fundamental relations listed in the Appendix (Section 6).

We conclude this section by deriving the truth of Sellers’ conjecture as a corollary.

Corollary 2.8. Sellers’ conjecture is true; i.e., for a € N*:

ch2(5%n 4+ Ay) =0 (mod 5%), n € N™.

Proof. The statement is derived immediately by applying the Lemmas 2.3 and 2.4
to (12) and (13). O
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3. THE FUNDAMENTAL LEMMA

In this section we prove the Fundamental Lemma, Lemma 3.4, which will play a
crucial role in the proof of the Main Theorem in Section 4.

Definition 3.1. With t = t(7) as in Definition 2.5 we define:
ao(t) = —t,a1(t) = =5%% — 6 - 5t,as(t) = —5°¢* — 6 - 5% — 63 - 5t,
az(t) = =5%* —6- 57> — 63 - 5*? — 52 - 5%t,
ag(t) = =52t — 6-510* — 63573 — 52 55t — 63 - 5%t.

We define s : {0,...,4} x {1,...,5} — Z to be the unique function satisfying

(14) a;(t) =3 s(j, 5L ¢

=1

Note 3.2. Writing a;(t) as in (14) to reveal divisibility by powers of 5 of its coeffi-
cients is of help in the proof of Lemma 4.2 and is inspired by [3].

Lemma 3.3. For 0 < \ <4 let

24\
ta(T) ::t<7+5 ), T e H.

Then in the polynomial ring C(t)[X]:

(15) Xo4 ) a;(t)X7 = J[(X —t).
=0 A=0

Proof. First we prove
4
(16) It =—a®) =t.
A=0
With w := e*7/5 one has for 7 € H:
4 1—g¢ 6 o 4 1—qn 6
1/5 A - _ —
[ = T T (=) =TT ()
A=0 A=0
oo 11— q 6 oo 30
—alla-a 30H (1—61 > 11 (1—q”> =)
n=1

Here we used the fact that [J3_,(1 — w*"z) equals (1 — 2)? if 5|n, and 1 — 2°
otherwise.

For the remaining part of the proof we use (16) to rewrite (15) into the equivalent
form

4 4
(17) Xo4) ;)X =t [ - Xt
j=0 A=0

Hence to complete the proof, in view of ¢t = Hi:o ty it remains to show that
(18) aj(t) = (1) ettty h), 0<j <4,

where the e; are the elementary symmetric functions. To this end we utilize the

fact that
4

5Us(t77) = > 37, je
A=0
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The first non-trivial case is j = 1. Observing

4
ety trh) =)t =5U5(t""),
A=0

to show (18) for j = 1 we need to show that

5Us(t™') =t tai(t) = —5%t — 5-6.
But this is a disguised version of the second entry
(19) Us(Bt™) = (=5%t — 6)A

of Group III of the twenty fundamental relations from the Appendix. Namely, by
(8) one has Us(Bt~1) = AUs(t~1). The next cases 2 < j < 4 work analogously with
the remaining entries of Group III. For example, if j = 2 then Newton’s formula,
translating elementary symmetric functions into power sums, implies

eatyt, ..ty = % ((5U5(t’1))2 — 5U5(t*2)>
= % (5% — 5:6)% — (=5%% + 54-5)) = —t~Las (t).

Here we used the third entry of Group III. a

Finally we are ready for the main result of this section.

Lemma 3.4 (“Fundamental Lemma”). Foru:H — C and j € Z:

4
5(ut?) Z ar () Us (ut?+1=9).

I=

Proof. For X € {0,...,4} Lemma 3.3 implies

4
B+ at)th =
1=0
Multiplying both sides with uxt} > where uy (1) := u((1 + 24))/5) gives
4
u,\ti + Z al(t)uktj;rl_S =0.
1=0

Summing both sides over all A from {0, ..., 4} completes the proof of the lemma. [

4. PROVING THE MAIN THEOREM

We need to prepare with some lemmas. Recall that ¢ is as in Definition 2.5.

Lemma 4.1. Given functions vy, ve,u: H — C andl € Z. Suppose forl < k <[+4
there exist Laurent polynomials p( )( t), p,(f)( t) € Z[t,t71] such that

(20) Us(ut®) = vipy" (t) + vap{ (t)
and
(21) ord, (p,(j)(t)) > V;ﬂ ie{1,2},

for some fixed integers s1 and so. Then there exist families of Laurent polynomials
PN (@), p2 (1) € Zjt, t71], k € Z, such that (20) and (21) hold for all k € Z.
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Proof. Let N > [+ 4 be an integer and assume by induction that there are families
of Laurent polynomials p,(j) (t), i € {1,2}, such that (20) and (21) hold for I < k <
N — 1. Suppose

pgcl)(t) = Z Ci(kvn)tna 1< k < N — ]-7

n> {"*5 W

with integers ¢;(k,n). Applying Lemma 3.4 we obtain:

4
Us (ut") = — Z a;(t)Us (ut"77?)
=0

4 2
—Zaj(t)ZUi Z ¢i(N+j—5n)t"
j=0 i=1 j 545

:—Zv,’Zaj(t)fl Z ¢i(N+j—5mn—1)t"

i=1 j=0 n>[Ntite)

Recalling the fact that a;(t)t~! for 0 < j <4 is a polynomial in ¢, this determines

Laurent polynomials p( )( t) with the desired properties. The induction proof for
N <l work analogously. (Il

Lemma 4.2. Given functions vi,ve,u: H — C andl € Z. Suppose forl < k <[+4
there exist Laurent polynomials p( ) e Z[t,t7Y, i € {1,2}, such that

(22) Us(ut®) = vipi" (t) + vap{? (¢)

where
(23) PO = it sl e

with integers v; and c;(k,n). Then there exist families of Laurent polynomials

p,(;)( t) € Zit,t7 Y], k € Z, of the form (23) for which property (22) holds for all
ke Z.

Proof. Suppose for an integer N > [ + 4 there are families of Laurent polynomials
p,(;) (t), i € {1,2}, of the form (23) satisfying property (22) for | < k < N — 1.
We proceed by mathematical induction on N. Applying Lemma 3.4 and using the
induction base (22) and (23) we obtain:

2
Us(ut™) = Za] )ZU¢ZCi(N+jf5,n)5
=1 n

Utilizing (14) from Definition 3.1 this rewrites into :

[Sn—(N:j—SHw,;J m

4

U5(utN) _ ZS ], ol+] 4Jtl
7j=01=1
2 Sn—(N+j=5)+v;
X vZch(NJrj 5, )5L 2 Jt"
(24) i=1 n
2 4 5
= - U'L Z .77l)cl(N+]_5n_l)
i=1 =01[l=1 n
» 5“(" H— (A;+] >)+wiJ+|_5z+2Jf4Jtn
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The induction step is completed by simplifying the exponent of 5 as follows:
{5(n—l)—(1\7+j—5)+% N {5l+j—4H

2 2
> {5(nl)(1\f2+35)+% +5l+;5J
on — N +;
_ {ZJ |
The induction proof for N < [ works analogously. O

Before proving the Main Theorem, Theorem 2.7, we need one more lemma.

Lemma 4.3. Given A and B as in (5) and (6), and po and p1 as in (10) and (11),
respectively. Then there exist discrete arrays a;, b;,c, and d;, i € {0,1}, such that
the following relations hold for all k € N:

(25)

BUs(At) = Y aolkm)slTE T e Y ksl e,
n>[(k+1)/5] n>[(k—4)/5]

(26)

B Us(Apt") = Y bo(k,n)slTF  erpy Y bk sl T e,
n>[(k+1)/5] n>[(k—4)/5]

(27) ATWs(BFY = N ek, n)sl T e,

n>[k/5]
(28)
ATWUs(Bpot") = Y dolk, sl F T e ST di (ks e,

nz[(k+1)/5] n>[k/5]

Proof. The Appendix (Section 6) lists twenty fundamental relations, which are
proved in Section 5 (Theorem 5.16). The five fundamental relations of Group I
fit the pattern of the relation (25) for five consecutive values of k. The same ob-
servation applies to the relations of the Groups II, III and IV with regard to the
relations (26), (27), and (28), respectively. In each of these cases k is less or equal
to 0. Hence applying Lemma 4.1 and Lemma 4.2 immediately proves the statement
for all £ > 0. U

Now we are ready for the proof of the Main Theorem.

Proof of Theorem 2.7 (“Main Theorem”). Recall that B(r) = A(57) for 7 € H. We
proceed by mathematical induction on . For § = 1 the statement is settled by
the first fundamental identity Us(A) = 5B(—t + 5pg) of the Appendix (Section 6).
The induction step will be carried out as follows: In the first step we show that the
correctness of (12) for N =28 — 1, § € N*, implies (13) for N + 1 = 28, which in
the second step is shown to imply the correctness of (12) for N +2 =25 + 1.

For the first step we recall (7) and apply the induction hypothesis (12) to obtain
Us2s(A) = Us(Us26-1(A))

_ 5281 (i (8,n)5L77 | Us (Bpot™) i [*5] U5(Bt")>

n=0

Utilizing (27) and (28) of Lemma 4.3 with discrete arrays ¢ and d; gives
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Us2s(A) = 526-1 4 n Z Z (8,n)d1(n, m)5 L5,L+2J | smontt ”HJtm

m>0n>0
(29) + 30 S r(Bmydo(n,m)sl L
m>1n>0
+ 30 3 s(Bmeln, mysl = =
m>1n>1

Observe that for m,n > 0:

5n + 2 i Sm—n—+1
2 2

L5m+n+1J {3n+2J {5m+1J
+ > 41,

2 2 2
5n + 2 bm—n—2 Sm+n—2 3n+ 2 5m — 4
= > 1

and for m,n > 1:
5n —5 n Sm—n—1| |dm+n—>5 n 3n—1 - 5m —4 L1
2 2 N 2 2 - 2 '

Hence the right hand side of (29) is of the desired form (13).

For the second step we again recall (7) and apply the induction hypothesis (13) to

obtain

Us2s+1(A) = Us(Us2s(A))

= 526 <§: (8,n)5L 72" U5 (Ap ™) i n)5L 7 U5(At")>.

n=0 n=1

Utilizing (25) and (26) of Lemma 4.3 with discrete arrays a; and b; gives
Us241(A) = 5%°B

[0 3 S @22 2

m>0n>0

s(B,n)ai(n,m 5Lt [+ Bt ym
(30) +P0§0T§1 (B,m)a:( ) 13

+ Z Z7‘(,3,n)bo(n’m)5|_5n2+1J+L%Jtm

m>1n>0

+ 30 Y s(Bmao(nmsl T

m>1n>1

Similar to above observe that for m,n > 0:
1 — 4 2 2
5n + n om —n + _ om +n + n 3n+3 > 5m + i1
2 2 2
form>0and n > 1:

5n —4 n Sm—n+5| |dm+n+2
2 2 N 2

+
—_—
w
3
|
—_
[
I
—_
(@2
3
+
]
[E
+
-
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form > 1 and n > 0:

n+1 n Sm—n—2 _ bm+n—4 n 3n+3 - 5m —5 1
2 2 N 2 2 - 2 ’

and for m,n > 1:

- et ] ]

Hence the right hand side of (30) is of the desired form (12) with 8 replaced by
B+ 1. This completes the proof of the Main Theorem assuming the validity of the
twenty fundamental relation in the Appendix (Section 6). Their correctness will be
proven in the next section. O

5. PROVING THE FUNDAMENTAL RELATIONS

5.1. Basic definitions and facts. The general linear group
GL2(Z) := {( CCL 2 ) ca,b,c,d € Z and ad—bc;«éO}

acts on elements 7 of the upper half plane H as usual; i.e., for v = (‘Z Z) € GLy(Z) :

at +b
et +d’
We recall basic notions related to the modular group

SLo(Z) := {( (Cl Z ) ca,b,e,d € Z and ad—bc:l}

which, as a subgroup of GLa(Z), again acts on H. For any fixed k € Z this action
induces another fundamental group action, the action of SLy(Z) on functions f :

H — C defined as follows. If v = (‘Z Z) € SLy(Z) then
(flam)(r) = (er +d)™*f(y7)

T =

for all 7 € H. Note that in addition to the group action laws, we have for fi,..., f, :
H— C,
(31) (frley) - (faley) = (fr o )bk

v € SL2(Z). Considering subgroups of SLy(Z), for our purpose it suffices to restrict
to the level N € N* congruence subgroups I'o(N), i.e.,

To(N) := {( “! ) €SLy(Z):e=0 (mod N)}.

Note 5.1. A subgroup G of SLy(Z) is called congruence subgroup if it contains the
subgroup I'(N) := Ker(SL2(Z) — SL2(Z/NZ)); the smallest such N is the level of
G. (For further details and related notions see e.g. [14, p. 74].)

For any subgroup G of SLy(Z) we denote by G* the set of all matrices (‘; Z) eG
with a > 0,¢ > 0, and ged(a, 6) = 1. The following Lemma is proven in [11, p. 374].

Lemma 5.2. For N € N* the group T'o(N) is generated by the set T'o(N)*.

For the sake of completeness we recall the definition of modular forms.

Definition 5.3. Let G be a congruence subgroup of SLa(Z). A modular form of
integer weight k for G is a function f :H — C with the following properties:
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(i) f holomorphic on H;

(i) floy = f for ally € G;
(iii) flry for all v € SLo(Z) is holomorphic at oo.

Note 5.4. From the generating function point of view, we note that (iii) is equivalent
to the existence of a positive integer M such that for all ¥ € SLy(Z) there is a Fourier
expansion of f|gy of the form

(fley)(T) = Zay(n)qﬁ, reH.
n=0

For a congruence subgroup G of level N € N* (e.g. if G = TI'¢(IV) as in our context)
one has Ty := ((1) T) € 7 1Gy for all v € SLy(Z) owing to the fact that T'(N)

is normal in SLy(Z). Consequently, (i) implies the periodicity (f|x(vTn))(7) =
(fley)(m + N) = (flegy)(7), and M can be taken as N.

The modular forms of weight k for T'g(N) obviously form a vector space (over C)
that we denote by My (V). Clearly My(N) is not a ring, for example, as stated in
(31)7 f1>---afn€Mk(N) lmphes fl """ anMnk(N)

For the following it will be convenient to introduce the notion of a T-function.

Definition 5.5. A holomorphic function f : H — C with a Fourier expansion of
the form

[ee}
n

f(r) = Z c(n)g™, TeH,

n=0

for some fixed M € N*, will be called a T-function.

5.2. Newman’s lemma. The following lemma is a mild extension of an extremely
useful result stated and exploited first by M. Newman in [10, Th. 1] and [11, Th. 1].
Newman’s version deals with modular functions, ours with modular forms. In the
given context our version has an additional condition and delivers a computationally
easy-to-check criterion to decide My (N) membership of products of 1 functions.

Our proof is following tightly the same proof strategy used in [10] and [11]; never-
theless, we include it in our presentation because of the (algorithmic) importance
of Newman’s lemma in this modified version.

Lemma 5.6 (“Newman’s Lemma”). Let 7 = (r5)5n be a finite sequence of integers
indexed by the positive divisors § of N € N*. Let f. : H — C be defined by

fr(T) = 1lsn 1" (67). Then

1
fr € My(N) for k= 2;\;7‘5,

if the following conditions are satisfied:

(i) 25|N ors =0 (mod 24);
(i) > 55 Nrs/0 =0 (mod 24);
(ili) L5 0" is the square of a rational number;
(iv) > 5n7s =0 (mod 4);
(v) an g0d2(57 d)rs/6 >0 for all d|N.



12 PETER PAULE AND SILVIU RADU

Proof. In order to prove property (i) in Definition 5.3, owing to Lemma 5.2 it is
sufficient to show that f.|py = f, for all v € To(N)*. In [11, p. 374] it is proven

that the following formula holds for all 7 € H and (é g) € SLa(Z)*:

@) (G = icrs oy (G ) e FEE )

with (C/A) being the Legendre-Jacobi symbol.

For 6|N and v = (‘; Z) € T'g(N)* this implies:
5@T+b ~ (a(oT)+bd
T er+a) =" $(oT) +d

1) ami
= (—i(er + d))l/2 <CZ) e‘ﬁ(c/é_‘"’_@n(&').

Consequently we have:

rs aT+b . %Z NTS 6/75 "
117 <5c7+d = (ier +d)) = [T =
SIN SIN
Xe—%(czsw7'6/5—525\N7'65—325\N7'6)Hnra(&.).
SIN

Because of (i), (ii) and k = 3 >_sn 7o this reduces to:

IIER (JZZL’}) — (iler + )] (/5) 4 o (om).

5N 5N 5N

Next we note that

1) ) ()0 -ne)"

5N 5|N 5N S5|N

where we applied (iv). By property (%ii) this reduces to 1.
Hence we have proven that for all v = (‘Z Z) € Tp(N)*:

(frlim)(r) = (=i)ke™ 2 T 07 (67).

5N

wika

Because of ged(a,6) = 1 and (i) we have that (—i)*e 2" = 1, which proves the
desired property. Owing to the fact that the n function is holomorphic on H it re-
mains to show that property (i) of Definition 5.3 holds. Lemma 5.2 combined with

(32) implies for all v = (‘Z Z) € SL2(Z) the existence of an expression €(a,b, ¢, d)
such that

(33) n(yr) = (et + d)?e(a,b, ¢, d)n(r), 7€ H.

d
be integers satisfying daxs + cys = ged(da, ). Observe that ged(da,c) = ged(0, )

because of ged(a,¢) = 1, and set X := ged(d,¢). Set vp,5 := (65/;‘ _jf) € SLo(Z)

and 71,5 = (6\5“(;5;\@5), and verify that v 5716 = (50“ ‘Zb). Then by (33) and
because of

For a fixed v = (‘c’ b) € SLy(Z) and a fixed positive divisor § of N, let xs,ys

c A
X’YL(;T + x5 = S(CT +d)
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we have:

A
n(70,671,6T) = <5(CT + d)) €(da/X, —ys, e/, xs) n(71,67).

Noting that §(y7) = (y0,671,6)7 one obtains
o en)(7) = (e7 + d) ™ Fu(77) = Clar by, d) - T (am),
SIN
where
A rs/2
C T ( .
(a,b,c,d) : He (da/X, —ys, ¢/, x(s)H(é)
SIN SIN
Finally we observe that

AT + dbxs + dy5>
’Yl 57'

5/A

ey
_ 6bm5+dy5 A

/\7 Ti(Sbrs+dys)I\ > n 2min(dbxs+dys)A
q2456 126 | I 1 — q e Bl .

n=1

a2
Consequently, [ | SN 1" (y1,67) = qi 25N %h(q) for some T-function h. Recalling
A = ged (4, ¢), this means that condition (i) of Definition 5.3 is fulfilled if and only
if

2
(34) T %(50) >0
5|N

for all ¢ € Z. But since ged(0, ¢) = ged(6, ged (e, N)) whenever §| N, we see that we
need to check (34) only for ¢ being a divisor of N. O

Remark 5.7. Newman’s Lemma in its original version in [10] or [11] can be refined
to an “if and only if” statement, as remarked-without proof-for instance by Garvan
[5, Thm. 4.7]. Being not relevant for the present context, we only mention that an
analogous refinement holds also for our modified version.

5.3. An algorithmic proof method. The twenty fundamental relations listed in
the Appendix can be proved using a computational approach. We illustrate this
computational method by taking as an example the celebrated identity of Jacobi
[17, p. 470]:

(35) H(l @B +16qH (1+¢*™)® :H (14 ¢
n=1 n=1 n=1

First we rewrite this identity in terms of eta products:

) e e

n%(27) n(2r)  nP(r)nd(4r)

We multiply both sides of (36) with n™ (7)n"2(27)n™(47). Then ri,ry and rq,
together with N and k, are determined such that each summand in the resulting
new equation becomes a modular form in My(N). Computationally this amounts
to solving the relations in Newman’s Lemma (more precisely, the congruences (i),
(#) and (iv) under the constraints (i) and (v)) simultaneously for each of the three
summands. A priori it is not clear that such a solution exists, but in the particular

(36)
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case (r1,7r2,74) = (8,8,8) is one possible solution. This way, (36) is transformed
into
(37) ()0 (A7) + 160" (47)0" (1) — n**(27) = 0,

and, again by Lemma 5.6, it is trivial to verify-independently from the steps of the
computation-that all three summands are in Mio(4).

For the remaining part of the method one invokes two classical facts (e.g. [13, Th.
4.1.4 and (1.4.23)]).

Lemma 5.8. Let N € N*, k € N and f € Mi(N) with f(7) =02 a(n)q". Let

n=m

w:=[SLo(Z) : To(N)] be the index of To(N) in SLa(Z). Then m > pk/12 implies
f=0.

Lemma 5.9. For N € N*,

[SL2(Z) : To(N)] = N [ | (1 + ;) .

p|N

Using these lemmas the proof of (37), resp. (35), is completed as follows. Denoting
the left hand side of (37) with f, we have that f € My (N) with £k = 12 and N = 4.
Hence p = [SLa(Z) : T9(4)] = 6, and to prove f = 0 it suffices to prove that the
first 1+ ku/12 = 7 coefficients in its Taylor expansion are equal to 0.

5.4. Some helpful lemmas. Before we apply the proof strategy described in the
previous section, it is convenient to introduce two lemmas.

Lemma 5.10. Let f € M(N). If p is a prime with p*|N, then Uy(f) € My (N/p).

Proof. For v = (Z Z) € I'o(N/p) and 7 € H we have

WL T+ 240
W) (r) = (e + )2 30 p (TE2)),

A=0 p
For each A there exist integers x) and y, satisfying
(38) (a+24Xc)xy + peyy = 1.
Note that ged(a+24X¢, pe) = 1 owing to p|c and ged(e, a) = 1. Relation (38) implies
that v, = (“'ff’\c _xyf) € I'y(N) and

(39) pe(0xT) + ) =cT +d

for 8y := (é (b+24)‘d)p‘“+pdy* ) In addition, we have

+ 24\
(40) P22 = (ada)T
and
(41) zx=d (mod p).

Identity (40) is a straight-forward verification, relation (41) is also implied by (38)
together with plc and ad =1 (mod p). Finally we are ready to complete the proof
as follows:



A PROOF OF SELLERS’ CONJECTURE 15

D7) = fer )74 > o) (by (40))
- ;§<f|m><sm (by (39))
= ;iif(axr) (f € M)
_ ;jz_‘;f <7’+ (b +p24)\d)a:>\) (/ has period 1)
! Z (et (by (41))
U, )m),

For the last equality one applies that \ — bd + 24\d? is a bijection modulo p. [

Definition 5.11. For f: H — C and p, := (6”1)) € GLy(Z) define flp, : H— C
by (flpn)(7) := f(pn7), 7 € H.

Note 5.12. With this convention we have e.g. 1, (7) = n(,(7)). The advantage of
writing f(n7) as f(u,7) will become clear later.

The following lemma generalizes (8).

Lemma 5.13. Let r and f, be as in Lemma 5.6. Then for any n € N* and
g:H— C,
Un((frlptn)g) = frUn(9)-

Proof. We have for 7 € H:

Unl(frl10n)9) Zfr (r-+200 (T212)

n

_ —Z <T+24A> [T (o7 +243)

SIN
=( n(g)fr)(T)-
The last equality follows from (7 + 24) = n(r),7 € H. O

5.5. A computerized proof of the fundamental relations. At the level of eta
products we need the following facts that are immediate from Newman’s Lemma.

Lemma 5.14. For the functions from Definition 2.5 the following statements are
true:

pn ;P775 €M12(20);

t=In2t € Mi2(20), 0 < j <5;
t— E M24(20)

tin i € M, (20), —2 < j <5;
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(viil) p1n™, pini? € M36(20);
(ix) pon”®, pond® € Mas(20).

Proof. The statements (i)-(vii) are straight-forward verifications invoking Lemma
5.6. In proving (viii) and (iz) we restrict to showing that p1n™ € M36(20) in (vidi),
since the other cases are analogous. According to (11) we need to show that

to®n" ton >, on", 02,0’ 070", apn™ € Msg(20).
By (ii) and (iii) we have that tn?* and on?* are in M;2(20). Consequently
on?* - on*t - tn*t € Ms6(20).

Similarly one sees that tn?*-on?*-n?* € M36(20) because 7** € M;5(20). The other
monomials are treated analogously. O

Next we connect all the fundamental relations to Newman’s lemma.

Lemma 5.15. For the functions from Definition 2.5 the following statements are
true for any choice of integer coefficients ¢(i,j) and d(i, j):

() 4 (Us (A7) = X (el )t +d(i,j)pot')) € Mra(20), 0 < j < 4;
(i) ' (HUs(Apst™ J) zﬁ,m JE +d(i, j)pot)) € Mra(20), 2 < j < 6;
(i) 7't (4Us(67) - M) € Mra(20), 0 < j < 4;

(iv) 7' (4Us(pot ) - zzﬁ( (1,9t + d(i, j)pot) ) € Mr2(20), 1< j < 5.

Proof. We only prove (i) which corresponds to Group I of the fundamental relations;
the other cases are analogous. The statement follows from showing that each term
in the sum is in M7(20). We start with the term n'**LUs(At™7) for a fixed
j€40,...,4}. By Lemma 5.13,

BT (A7) = Us (" (B~ |us) At 7).
By (5) and (6) we have that

4 9 5
—1 242500 "2
M5 A= n ! )
o)A =15 e
which is in Mi2(100) by Lemma 5.14(3). By Lemma 5.14(v) we have t=n2* €
Mi2(20) € M;2(100), because in general T'g(N) is a subgroup of T'g(Nz) if Na|Nj.
Observing that n% € Myg(20) € Myg(100), we can conclude that

t= Izt 2 (B us) A2’ = ni* (B™ 1 us) At ™7 € M72(100).

Finally, Lemma 5.10 implies that Us(ni**(B~1|us)At=7) € Mz2(20). Proving that
N4t and n1*pott are in My9(20) for —1 < i < 4 is done analogously using Lemma
5.14 again. O

5 (B

Theorem 5.16. The twenty fundamental relations listed in the Appendiz hold true.

Proof. By Lemma 5.15, after multiplication with n'4* the entries of Group I to IV
correspond to elements from My (N) with k¥ = 72 and N = 20. This means, we
can apply the proof method described in Section 5.3 with u = [SLa(Z) : T9(20)] =
36. Consequently, the proof is completed by verifying equality of the first 1 +
uk/12 = 217 coefficients in the Taylor series expansions of both sides of each of the
fundamental relations. This task is left to the computer. O
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6. APPENDIX: THE FUNDAMENTAL RELATIONS

Group I:
B~'Us(A) = =5t + 5°po;
B7Us(At™Y) = =1+ pot ™
B7U5(At™?) = 5% + 11-5% + 11 — po(5% + 2-5t71);
B U5 (At73) = =553 — 34-551% — 51.5% — 119 + po(2-5% + 6-5% + 215t 1);
B U5 (At™*) = =541 4 92.5%2 + 75953t + 253.5 — po(8-57t + 99-51 + 44-5%t71).

B7Us(Ap1t7%) = —5%t% + 114-5% + 59 — po(124-5° + 59t~ 1);
B7Us(Ap1t73) = 5%t — 36-5°t% — 103-5% — 26 — po (55t — 9-5* + 7-5t71);
B Us(Apit™*) = 5114 +14-5% 4 259-5%% + 1436-5%¢ + 385
— po (57t + 122-5% + 211-5* — 7-5¢1);
B7'Us(Apit™°) = —5M° +12:5M¢* + 9-5%3 — 1494 - 554 — 2366-5t — 1965
+ po(512% 4+ 8-5'0¢% 4 282.57¢ 4+ 409-5° — 11-5%t71);

B Us(Apit~6) = —7-51%¢5 — 372.512¢* — 91751043 — 1581-5"¢? + 16089-5* — 69-5°
—t72).

+ 71 4 o (96-5123 + 13-5'%42 — 404-57t — 3152-5° + 361-5%¢
Group III:

Us(B) =
1U5(Bt b= —5% — 6;
LUs(Bt™%) = —55t2 + 54;
WUs(Bt™3) = —102-5;
1U5(Bt 4 = t4 + 966-5.

Group IV:
AU (Bpot™) = 3-51%* + 77573 4+ 562-5% + 41-5% + 1
— p1(5%% 4 14-5%2 + 44-53t 4 2-5);

A7Us(Bpot™2) = —5°% — 14-5% + 7 — 5py;

A7'Us(Bpot™3) = —58t3 14-5%t% — 5% — 12 — 5%py;

A7 U5(Bpot™) = — 14553 — 572 4 12:5 — 57t?py;

A7 Us(Bpot™®) = 4- 514t5 +121-5M¢* + 233.5%¢% 4 738.5%% + 109-5* — 17-5

+ p1(4-510% 4+ 14-5%% 4+ 44-55¢ + 2.5% — 7).
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