Doctoral Program
Computational Mathematics

Rational general solutions of first order non-autonomous parametric ODEs

L.X.Chau Ngo

Supported by

Austrian Science Fund (FWF)

Editorial Board: Bruno Buchberger
Bert Jüttler
Ulrich Langer
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner
Managing Editor: Veronika Pillwein
Communicated by: Franz Winkler
Peter Paule

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

Rational general solutions of first order non-autonomous parametric ODEs *

Ngo Lam Xuan Chau ${ }^{\dagger}$
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria.

Abstract

In this paper we study the non-autonomous algebraic $\operatorname{ODE} F\left(x, y, y^{\prime}\right)=0$ with a proper parametrization $\mathcal{P}(s, t)$ of the corresponding algebraic surface $F(x, y, z)=0$. Using this parametrization we drive to a system of ODEs in two parameters s, t of order 1 and of degree 1 . We prove the correspondence of a rational general solution of the equation $F\left(x, y, y^{\prime}\right)=0$ and a rational general solution of the new system of ODEs in s, t.

Key words: Rational general solutions, first order non-autonomous ODE, rational surfaces, proper parametrization, parametric curves.

1 Introduction

In Hub96, the general solutions of non-autonomous algebraic ODE $F\left(x, y, y^{\prime}\right)=0$ is studied by giving a method to compute a basis of the general solution of this equation and applied the result to study the local behaviour of the solutions in a neighborhood of a singular solution.

The rational general solutions of first order autonomous algebraic ODEs $F\left(y, y^{\prime}\right)=$ 0 is well studied by R. Feng and X-S. Gao in current papers [FG04], [FG06]. In fact, $F\left(y, y^{\prime}\right)$ is supposed to be a first order non-zero differential polynomial with coefficients in \mathbb{Q} and irreducible over $\overline{\mathbb{Q}}$. One of the key observations in these papers is that a nontrivial rational solution of $F\left(y, y^{\prime}\right)=0$ defines a proper rational parametrization of the corresponding algebraic curve $F(y, z)=0$. Conversely, if a proper rational parametrization of the algebraic curve $F(y, z)=0$ satisfies certain conditions, then we can create a rational solution of $F\left(y, y^{\prime}\right)=0$ from this parametrization. Moreover, from a nontrivial rational solution $y(x)$ of $F\left(y, y^{\prime}\right)=0$, we can immediately create a rational general solution by shifting the variable x by an arbitrary constant c, namely $y(x+c)$ is a rational general solution of $F\left(y, y^{\prime}\right)=0$. Therefore, the class of autonomous algebraic

[^0]ODE $F\left(y, y^{\prime}\right)=0$ with rational general solutions is certainly a subclass of the class of rational algebraic curves. Moreover, the problem of computing a rational general solution is reduced to the problem of computing a nontrivial rational solution. This approach has a great advantage because one can use the theory of rational algebraic curves, which is well-known in Wal78, SWPD08, to study the nature of rational solutions of first order autonomous algebraic ODEs. For instance, the degree of a nontrivial rational solution is exactly equal to the degree of y^{\prime} in the differential equation $F\left(y, y^{\prime}\right)=0$ (FG04], FG06]).

In this paper we consider a non-autonomous algebraic ODE $F\left(x, y, y^{\prime}\right)=0$ and propose a way to compute a rational general solution of this equation under certain conditions. In fact, one way to consider the non-autonomous differential equation $F\left(x, y, y^{\prime}\right)=0$ is to consider the corresponding surface \mathcal{S} defined by the equation $F(x, y, z)=0$. Then a nontrivial rational solution $y=f(x)$ of the equation $F\left(x, y, y^{\prime}\right)=0$ defines a parametric curve $\left(x, f(x), f^{\prime}(x)\right)$ on the corresponding surface \mathcal{S}. Suppose that \mathcal{S} is a rational algebraic surface. Using the birational map $\mathcal{P}(s, t)$, which parametrizes the surface \mathcal{S}, we define a new system of differential equations in two indeterminates s, t. Then we prove that a rational general solution $(\bar{s}(x), \bar{t}(x))$ of this system will generate a rational general solution of the original differential equation. Note that this system consists of two differential equations of order 1 and of degree 1 in the parameters s, t.

2 Preliminaries

In this section we recall the notion of rational general solutions of algebraic ODEs of first order. One can find this notion in [FG04, [FG06]. Let $\mathcal{K}=\mathbb{Q}(x)$ be the differential field of rational functions in x with usual differential operator $\frac{d}{d x}$, also written by ${ }^{\prime}$. Let y be an indeterminate over \mathcal{K}. The i-th derivative of y is denoted by y_{i}. The ring consisting of all polynomials in the y_{i} with coefficients in \mathcal{K} is called the ring of differential polynomials over \mathcal{K}, denoted by $\mathcal{K}\{y\}$. Let \mathcal{U} be a universal extension of the differential field \mathcal{K}. Let Σ be a set of differential polynomials in $\mathcal{K}\{y\}$. An element $\eta \in \mathcal{U}$ is a zero of Σ if it vanishes for all differential polynomials in Σ. Note that the zero set of Σ is the same as the zero set of the differential ideal generated by Σ. The notion of a generic zero of an ideal can be adapted to a differential ideal.

Definition 2.1. Let Σ be a nontrivial prime differential ideal in $\mathcal{K}\{y\}$. A zero η of Σ is called a generic zero of Σ if for any differential polynomial $P \in \mathcal{K}\{y\}, P(\eta)=0$ implies that $P \in \Sigma$.

Let $F \in \mathcal{K}\{y\}$. The highest derivative of y in F is called the order of F, denoted by $\operatorname{ord}(F)$. Suppose that $\operatorname{ord}(F)=p$. Then F has the form

$$
F=a_{d} y_{p}^{d}+a_{d-1} y_{p}^{d-1}+\cdots+a_{0},
$$

where a_{i} are differential polynomials in $y, y_{1}, \ldots, y_{p-1}$ and $a_{d} \neq 0$. In this case, a_{d} is called the initial of F and $S:=\frac{\partial F}{\partial y_{p}}=a_{d} d y_{p}^{d-1}+a_{d-1}(d-1) y_{p}^{d-2}+\cdots+a_{1}$ is called the separant of F. For any differential polynomial $G \in \mathcal{K}\{y\}$ we have the following
representation

$$
J G=Q_{0} F+Q_{1} F^{(1)}+\cdots+Q_{r} F^{(r)}+R,
$$

where J is a product of certain powers of the initial and separant of $F ; F^{(i)}$ are the i-th derivative of $F ; Q_{i}$ and R are differential polynomials in $\mathcal{K}\{y\}$. Moreover, ord $(R)<p$ or $\operatorname{ord}(R)=p$ and $\operatorname{deg}_{y_{p}} R<d$. Then R is called the differential pseudo remainder of G with respect to F, denoted by $\operatorname{prem}(G, F)$.

Suppose that F is an irreducible differential polynomial in $\overline{\mathbb{Q}}(x)\left[y, y_{1}, \ldots, y_{p}\right]$. Let

$$
\Sigma_{F}=\{G \in \mathcal{K}\{y\} \mid S G \in\{F\}\}
$$

where $\{F\}$ is the perfect differential idea ${ }^{1}$ generated by F. Note that $\Sigma_{F}=\{F\}: S$, $\{F\} \subset \Sigma_{F}$ and it is well known by Rit50] that

Lemma 2.1. Σ_{F} is a prime differential ideal and G belongs to Σ_{F} iff prem $(G, F)=0$.
Definition 2.2. Let $F \in \mathcal{K}\{y\}$ be an irreducible differential polynomial. A generic zero of the prime differential ideal Σ_{F} is called a general solution of $F=0$. A rational general solution is defined as a general solution of the form

$$
y=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}}
$$

where a_{i}, b_{j} are constants in the constant field of a universal extension of \mathcal{K} and $b_{m} \neq 0$.
The following is a direct consequence of the above definition and the Lemma 2.1. Corollary 2.1. If η is a general solution of $F=0$, then for any differential polynomial $G \in \mathcal{K}\{y\}$ we have

$$
G(\eta)=0 \Leftrightarrow \operatorname{prem}(G, F)=0 .
$$

3 Main result

In this section we consider a non-autonomous first order ODE

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

where $F \in \mathbb{Q}[x, y, z]$ is an irreducible polynomial over $\overline{\mathbb{Q}}$. A rational solution $y=f(x)$ of (1) is an element of $\overline{\mathbb{Q}}(x)$ such that

$$
\begin{equation*}
F\left(x, f(x), f^{\prime}(x)\right)=0 \tag{2}
\end{equation*}
$$

By viewing x, y and y^{\prime} as independent variables, whose values are in the field $\overline{\mathbb{Q}}$, the equation $F(x, y, z)=0$ defines an algebraic surface \mathcal{S} in the space $\mathbb{A}^{3}(\overline{\mathbb{Q}})$. Then the condition (2) tells us that the parametric space curve $\gamma(x)=\left(x, f(x), f^{\prime}(x)\right)$ lies on the surface \mathcal{S}.

From now on we assume that the surface \mathcal{S} can be parametrized by a rational proper parametrization

$$
\mathcal{P}(s, t)=\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)
$$

[^1]Since \mathcal{P} is a birational map $\mathbb{A}^{2}(\overline{\mathbb{Q}}) \rightarrow \mathcal{S} \subset \mathbb{A}^{3}(\overline{\mathbb{Q}})$, there is a birational inverse map \mathcal{P}^{-1} defining on the surface \mathcal{S} except finitely many curves or points on \mathcal{S}.

Definition 3.1. A solution $y=f(x)$ of the equation $F\left(x, y, y^{\prime}\right)=0$ is parametrizable by \mathcal{P} if the parametric curve $\left(x, f(x), f^{\prime}(x)\right)$ lies in the domain of the image of \mathcal{P}.

Proposition 3.1. Let $F(x, y, z)=0$ be a rational surface with a proper parametrization

$$
\mathcal{P}(s, t)=\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)
$$

The differential equation $F\left(x, y, y^{\prime}\right)=0$ has a rational solution, which is parametrizable by \mathcal{P}, if and only if there exist two rational functions $s(x)$ and $t(x)$ such that

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x \tag{3}\\
\frac{d \chi_{2}(s(x), t(x))}{d x}=\chi_{3}(s(x), t(x))
\end{array}\right.
$$

If this is the case, then $y=\chi_{2}(s(x), t(x))$ is a rational solution of $F\left(x, y, y^{\prime}\right)=0$.
Proof. Assume that $y=f(x)$ is a rational solution of $F\left(x, y, y^{\prime}\right)=0$, which is parametrizable by \mathcal{P}. Then let

$$
(s(x), t(x))=\mathcal{P}^{-1}\left(x, f(x), f^{\prime}(x)\right)
$$

This is a plane parametric curve and satisfies the following relations

$$
\mathcal{P}(s(x), t(x))=\mathcal{P}\left(\mathcal{P}^{-1}\left(x, f(x), f^{\prime}(x)\right)\right)=\left(x, f(x), f^{\prime}(x)\right)
$$

In other words, we have

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x \tag{4}\\
\chi_{2}(s(x), t(x))=f(x) \\
\chi_{3}(s(x), t(x))=f^{\prime}(x) .
\end{array}\right.
$$

Moreover, $(s(x), t(x))$ is a rational plane curve in (s, t)-plane because \mathcal{P}^{-1} is a birational map and coordinate functions of $\gamma(x)$ are rational functions in x.

Conversely, if two rational functions $s=s(x)$ and $t=t(x)$ satisfy the system

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x \\
\frac{d \chi_{2}(s(x), t(x))}{d x}=\chi_{3}(s(x), t(x))
\end{array}\right.
$$

then it is clear that $y=\chi_{2}(s(x), t(x))$ is a rational solution of the differential equation $F\left(x, y, y^{\prime}\right)=0$.

REmark 3.1. Suppose that $\mathcal{P}_{1}(s, t)$ and $\mathcal{P}_{2}(s, t)$ are two proper parametrizations of $F\left(x, y, y^{\prime}\right)=0$. It may happen that a rational solution $y=f(x)$ of $F\left(x, y, y^{\prime}\right)=0$ is parametrizable by $\mathcal{P}_{1}(s, t)$ but it is not parametrizable by $\mathcal{P}_{2}(s, t)$. This is the case when the parametric curve $\left(x, f(x), f^{\prime}(x)\right)$ is not covered by $\mathcal{P}_{2}(s, t)$. However, the set of missing curves is finite. On the other hand, if $\mathcal{P}_{2}(s, t)$ is a normal parametrization, then every solution of $F\left(x, y, y^{\prime}\right)=0$ is parametrizable by $\mathcal{P}_{2}(s, t)$.

We are going to study the condition on $s(x), t(x)$ in detail. Suppose that $s=s(x)$ and $t=t(x)$ are two rational functions such that

$$
\left\{\begin{array}{l}
\chi_{1}(s(x), t(x))=x \tag{5}\\
\frac{d \chi_{2}(s(x), t(x))}{d x}=\chi_{3}(s(x), t(x))
\end{array}\right.
$$

Differentiate the first equation of (5) and expand the last equation of (5), we get

$$
\left\{\begin{array}{l}
\frac{\partial \chi_{1}(s(x), t(x))}{\partial s} \cdot s^{\prime}(x)+\frac{\partial \chi_{1}(s(x), t(x))}{\partial t} \cdot t^{\prime}(x)=1 \tag{6}\\
\frac{\partial \chi_{2}(s(x), t(x))}{\partial s} \cdot s^{\prime}(x)+\frac{\partial \chi_{2}(s(x), t(x))}{\partial t} \cdot t^{\prime}(x)=\chi_{3}(s(x), t(x))
\end{array}\right.
$$

If

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial \chi_{1}(s(x), t(x))}{\partial s} & \frac{\partial \chi_{1}(s(x), t(x))}{\partial t} \tag{7}\\
\frac{\partial \chi_{2}(s(x), t(x))}{\partial s} & \frac{\partial \chi_{2}(s(x), t(x))}{\partial t}
\end{array}\right) \not \equiv 0
$$

then $(s(x), t(x))$ is a solution of the system of differential equations of order 1 in s, t and degree 1 in s^{\prime}, t^{\prime}

$$
\left\{\begin{array}{l}
s^{\prime}(x)=\frac{f_{1}(s, t)}{g(s, t)} \tag{8}\\
t^{\prime}(x)=-\frac{f_{2}(s, t)}{g(s, t)}
\end{array}\right.
$$

where $f_{1}(s, t), f_{2}(s, t), g(s, t)$ are rational functions in s, t and defined by

$$
\begin{align*}
f_{1}(s, t) & =\frac{\partial \chi_{2}(s, t)}{\partial t}-\chi_{3}(s, t) \cdot \frac{\partial \chi_{1}(s, t)}{\partial t} \\
f_{2}(s, t) & =\frac{\partial \chi_{2}(s, t)}{\partial s}-\chi_{3}(s, t) \cdot \frac{\partial \chi_{1}(s, t)}{\partial s} \tag{9}\\
g(s, t) & =\frac{\partial \chi_{1}(s, t)}{\partial s} \cdot \frac{\partial \chi_{2}(s, t)}{\partial t}-\frac{\partial \chi_{1}(s, t)}{\partial t} \cdot \frac{\partial \chi_{2}(s, t)}{\partial s}
\end{align*}
$$

If the determinant $\sqrt{7}$ is equal to 0 , then $(s(x), t(x))$ is a solution of the system

$$
\left\{\begin{array}{l}
\bar{g}(s, t)=0 \tag{10}\\
\bar{f}_{1}(s, t)=0
\end{array}\right.
$$

where $\bar{g}(s, t)$ and $\bar{f}_{1}(s, t)$ are numerators of $g(s, t)$ and $f_{1}(s, t)$ respectively. Thus $(s(x), t(x))$ defines a curve iff $\operatorname{gcd}\left(\bar{g}(s, t), \bar{f}_{1}(s, t)\right)$ is a non constant polynomial in s, t. Otherwise, $(s(x), t(x))$ is just an intersection point of two algebraic curves $\bar{g}(s, t)=0$ and $\bar{f}_{1}(s, t)=0$, which does not satisfy the relation (5).

We would expect that a rational general solution of the system (8) will define a rational general solution of the equation $F\left(x, y, y^{\prime}\right)=0$. At this point we define what we mean by a rational general solution of the system (8). Let N_{i} and M_{i} be the
numerator and the denominator of $\frac{f_{i}(s, t)}{g(s, t)}$ for $i=1,2$.
Definition 3.2. A rational solution $(\bar{s}(x), \bar{t}(x))$ of the system (8) is called a rational general solution if for any differential polynomial $G \in \mathcal{K}\{s, t\}$ we have

$$
G(\bar{s}(x), \bar{t}(x))=0 \Leftrightarrow \operatorname{prem}\left(G,\left\{s^{\prime} M_{1}(s, t)-N_{1}(s, t), t^{\prime} M_{2}(s, t)+N_{2}(s, t)\right\}\right)=0
$$

where $\operatorname{prem}\left(G,\left\{s^{\prime} M_{1}(s, t)-N_{1}(s, t), t^{\prime} M_{2}(s, t)+N_{2}(s, t)\right\}\right)$ is the pseudo remainder of G with respect to the system of differential polynomials $s^{\prime} M_{1}(s, t)-N_{1}(s, t), t^{\prime} M_{2}(s, t)+$ $N_{2}(s, t)$.

We can see that the $\operatorname{prem}\left(G,\left\{s^{\prime} M_{1}(s, t)-N_{1}(s, t), t^{\prime} M_{2}(s, t)+N_{2}(s, t)\right\}\right)$ will be a polynomial in $\mathcal{K}[s, t]$ because the degree of s^{\prime} and t^{\prime} are 1 . In particular, we have

Lemma 3.1. Let $(\bar{s}(x), \bar{t}(x))$ be a rational general solution of the system (8). Let G be a bivariate polynomial in $\mathcal{K}[s, t]$. If $G(\bar{s}(x), \bar{t}(x))=0$, then $G=0$ in $\mathcal{K}[s, t]$.

Proof. Since $G \in \mathcal{K}[s, t]$, we have

$$
\operatorname{prem}\left(G,\left\{s^{\prime} M_{1}(s, t)-N_{1}(s, t), t^{\prime} M_{2}(s, t)+N_{2}(s, t)\right\}\right)=G
$$

Therefore, $G(\bar{s}(x), \bar{t}(x))=0$ implies $G=0$ in $\mathcal{K}[s, t]$.
THEOREM 3.1. Let $\bar{y}=f(x)$ be a rational general solution of $F\left(x, y, y^{\prime}\right)=0$. Suppose that $\bar{y}=f(x)$ is parametrizable by \mathcal{P}. Let

$$
(\bar{s}(x), \bar{t}(x))=\mathcal{P}^{-1}\left(x, f(x), f^{\prime}(x)\right)
$$

If $g(\bar{s}(x), \bar{t}(x)) \neq 0$ then $(\bar{s}(x), \bar{t}(x))$ is a rational general solution of the system (8).
Proof. From the assumption it follows that $(\bar{s}(x), \bar{t}(x))$ is a solution of (8). Suppose that $P \in \mathcal{K}\{s, t\}$ is a differential polynomial such that $P(\bar{s}(x), \bar{t}(x))=0$. Let

$$
R=\operatorname{prem}\left(P,\left\{s^{\prime} M_{1}(s, t)-N_{1}(s, t), t^{\prime} M_{2}(s, t)+N_{2}(s, t)\right\}\right)
$$

Then $R \in \mathcal{K}[s, t]$, we have to prove that $R=0$. We know that

$$
R(\bar{s}(x), \bar{t}(x))=R\left(\mathcal{P}^{-1}\left(x, f(x), f^{\prime}(x)\right)\right)=0
$$

Let's consider the rational function $R\left(\mathcal{P}^{-1}(x, y, z)\right)=\frac{U(x, y, z)}{V(x, y, z)}$. Then $U\left(x, y, y^{\prime}\right)$ is a differential polynomial satisfying the condition

$$
U\left(x, f(x), f^{\prime}(x)\right)=0
$$

Since $f(x)$ is a rational general solution of $F=0$ and both F and U are differential polynomials of order 1, we have

$$
I . U\left(x, y, y^{\prime}\right)=Q_{0} F
$$

where I is the initial of F and Q_{0} is a differential polynomial of order 1 in $\mathcal{K}\{y\}$. Therefore,

$$
R(s, t)=R\left(\mathcal{P}^{-1}(\mathcal{P}(s, t))\right)=\frac{U(\mathcal{P}(s, t))}{V(\mathcal{P}(s, t))}=\frac{Q_{0}(\mathcal{P}(s, t)) F(\mathcal{P}(s, t))}{I(\mathcal{P}(s, t)) V(\mathcal{P}(s, t))}=0
$$

Thus $(\bar{s}(x), \bar{t}(x))$ is a rational general solution of (8).
We are now constructing a rational general solution of $F\left(x, y, y^{\prime}\right)=0$ from a rational general solution of the system (8). Assume that $(\bar{s}(x), \bar{t}(x))$ is a rational general solution of (8). Substituting $\bar{s}(x)$ and $\bar{t}(x)$ into $\chi_{1}(s, t)$ we get

$$
\chi_{1}(\bar{s}(x), \bar{t}(x))=x+c
$$

for some constant c. Hence

$$
\chi_{1}(\bar{s}(x-c), \bar{t}(x-c))=x
$$

It follows that $y=\chi_{2}(\bar{s}(x-c), \bar{t}(x-c))$ is a solution of the differential equation

$$
F\left(x, y, y^{\prime}\right)=0
$$

Moreover, we will prove that $y=\chi_{2}(\bar{s}(x-c), \bar{t}(x-c))$ is a rational general solution of $F\left(x, y, y^{\prime}\right)=0$. The main theorem is the following.
TheOrem 3.2. Let $(\bar{s}(x), \bar{t}(x))$ is a rational general solution of the system (8). Then

$$
\bar{y}=\chi_{2}(\bar{s}(x-c), \bar{t}(x-c))
$$

is a rational general solution of $F\left(x, y, y^{\prime}\right)=0$.
Proof. It is clear that $\bar{y}=\chi_{2}(\bar{s}(x-c), \bar{t}(x-c))$ is a rational solution of $F\left(x, y, y^{\prime}\right)=0$.
Let G be an arbitrary differential polynomial in $\mathcal{K}\{y\}$ such that $G(\bar{y})=0$. Let

$$
R=\operatorname{prem}(G, F)
$$

be the differential pseudo-remainder of G with respect to F. It follows that

$$
R(\bar{y})=0 .
$$

We have to prove that $R=0$. Assume that $R \neq 0$. Then

$$
R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=\frac{W(s, t)}{Z(s, t)} \in \overline{\mathbb{Q}}(s, t) .
$$

On the other hand,

$$
R\left(\chi_{1}(\bar{s}(x), \bar{t}(x)), \chi_{2}(\bar{s}(x), \bar{t}(x)), \chi_{3}(\bar{s}(x), \bar{t}(x))\right)=0
$$

It follows that $W(\bar{s}(x), \bar{t}(x))=0$. By the Lemma 3.1 we have $W(s, t)=0$. Thus $R\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)=0$. Since F is irreducible and $\operatorname{deg}_{y^{\prime}} R<\operatorname{deg}_{y^{\prime}} F$, we have $R=0$ in $\mathbb{Q}[x, y, z]$. Therefore, \bar{y} is a rational general solution of $F\left(x, y, y^{\prime}\right)=0$.

4 Algorithm and Example

- Input: $F\left(x, y, y^{\prime}\right)=0$,
proper parametrization $\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right) \in \overline{\mathbb{Q}}(s, t)$ of $F\left(x, y, y^{\prime}\right)=0$
- Output: $y=f(x)$ rational general solution of $F\left(x, y, y^{\prime}\right)=0$.

1. Compute $f_{1}(s, t), f_{2}(s, t), g(s, t)$ as in (9)
2. Solve the associated system of ODEs for a rational general solution $(\bar{s}(x), \bar{t}(x))$

$$
\left\{\begin{array}{l}
s^{\prime}(x)=\frac{f_{1}(s, t)}{g(s, t)} \\
t^{\prime}(x)=-\frac{f_{2}(s, t)}{g(s, t)}
\end{array}\right.
$$

3. Compute the constant $c:=\chi_{1}(\bar{s}(x), \bar{t}(x))-x$
4. Return $y=\chi_{2}(\bar{s}(x-c), \bar{t}(x-c))$.

Example 4.1. Consider the differential equation

$$
y^{\prime 3}-4 x y y^{\prime}+8 y^{2}=0 .
$$

The corresponding surface has a proper parametrization

$$
\mathcal{P}(s, t)=\left(t,-4 s^{2}(2 s-t),-4 s(2 s-t)\right) .
$$

The inverse map is

$$
\mathcal{P}^{-1}(x, y, z)=\left(\frac{y}{z}, x\right) .
$$

We compute

$$
\begin{gathered}
g(s, t)=8 s(3 s-t) \\
f_{1}(s, t)=4 s(3 s-t), \quad f_{2}(s, t)=-8 s(3 s-t) .
\end{gathered}
$$

Thus the associated system is

$$
\left\{\begin{array}{l}
s^{\prime}(x)=\frac{1}{2} \\
t^{\prime}(x)=1
\end{array}\right.
$$

Solving this system we obtain a rational general solution $\bar{s}(x)=\frac{x}{2}+c_{2}, \bar{t}(x)=x+c_{1}$ for arbitrary constants c_{1}, c_{2}. It follows that the general solution is

$$
\bar{y}=-4 \bar{s}\left(x-c_{1}\right)^{2}\left(2 \bar{s}\left(x-c_{1}\right)-\bar{t}\left(x-c_{1}\right)\right)=-C(x+C)^{2}
$$

where $C=2 c_{2}-c_{1}$.
Note that in this example

$$
\operatorname{gcd}\left(g(s, t), f_{1}(s, t)\right)=4 s(3 s-t)
$$

It defines two parametric curves $s(x)=0, t(x)=x$ and $s(x)=\frac{x}{3}, t(x)=x$. This gives us two other solutions $y=0$ and $y=\frac{4}{27} x^{3}$.

Acknowledgments

I would like to express my deep thanks to professor Franz Winkler for his advices and improved comments.

References

[FG04] R. Feng and X-S. Gao. Rational general solutions of algebraic ordinary differential equations. Proc. ISSAC2004. ACM Press, New York, pages 155-162, 2004.
[FG06] R. Feng and X-S. Gao. A polynomial time algorithm for finding rational general solutions of first order autonomous odes. J. Symbolic Computation, 41:739-762, 2006.
[Hub96] E. Hubert. The general solution of an ordinary differential equation. Proc. ISSAC1996. ACM Press, New York, pages 189-195, 1996.
[Rit50] J. F. Ritt. Differential Algebra, volume 33. Amer. Math. Society. Colloquium Publications, 1950.
[SWPD08] J. R. Sendra, F. Winkler, and S. Pérez-Díaz. Rational algebraic curves - A computer algebra approach. Springer, 2008.
[Wal78] R. J. Walker. Algebraic curves. Springer-Verlag, 1978.

Technical Reports of the Doctoral Program
 "Computational Mathematics"

2009

2009-01 S. Takacs, W. Zulehner: Multigrid Methods for Elliptic Optimal Control Problems with Neumann Boundary Control October 2009. Eds.: U. Langer, J. Schicho
2009-02 P. Paule, S. Radu: A Proof of Sellers' Conjecture October 2009. Eds.: V. Pillwein, F. Winkler 2009-03 K. Kohl, F. Stan: An Algorithmic Approach to the Mellin Transform Method November 2009. Eds.: P. Paule, V. Pillwein
2009-04 L.X.Chau Ngo: Rational general solutions of first order non-autonomous parametric ODEs November 2009. Eds.: F. Winkler, P. Paule

Doctoral Program

"Computational Mathematics"

Director:

Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Co-Speaker:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-7174

E-Mail:
office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

[^0]: *This work has been supported by the Austrian Science Foundation (FWF) via the Doctoral Program "Computational Mathematics" (W1214), project DK11.
 ${ }^{\dagger}$ Email address: ngo.chau@risc.uni-linz.ac.at

[^1]: ${ }^{1}$ It is defined as the radical ideal in the ring theory.

