

Rational general solutions of first order non-autonomous parametric ODEs

L.X.Chau Ngo

DK-Report No. 2009-04

 $11\ 2009$

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF)

Upper Austria

Editorial Board:	Bruno Buchberger Bert Jüttler Ulrich Langer Esther Klann Peter Paule Clemens Pechstein Veronika Pillwein Ronny Ramlau Josef Schicho Wolfgang Schreiner Franz Winkler Walter Zulehner
Managing Editor:	Veronika Pillwein
Communicated by:	Franz Winkler Peter Paule

DK sponsors:

- \bullet Johannes Kepler University Linz $(\rm JKU)$
- \bullet Austrian Science Fund $({\rm FWF})$
- Upper Austria

Rational general solutions of first order non-autonomous parametric ODEs *

Ngo Lam Xuan Chau[†]

Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria.

Abstract

In this paper we study the non-autonomous algebraic ODE F(x, y, y') = 0 with a proper parametrization $\mathcal{P}(s, t)$ of the corresponding algebraic surface F(x, y, z) = 0. Using this parametrization we drive to a system of ODEs in two parameters s, t of order 1 and of degree 1. We prove the correspondence of a rational general solution of the equation F(x, y, y') = 0 and a rational general solution of the new system of ODEs in s, t.

Key words: Rational general solutions, first order non-autonomous ODE, rational surfaces, proper parametrization, parametric curves.

1 Introduction

In [Hub96], the general solutions of non-autonomous algebraic ODE F(x, y, y') = 0is studied by giving a method to compute a basis of the general solution of this equation and applied the result to study the local behaviour of the solutions in a neighborhood of a singular solution.

The rational general solutions of first order autonomous algebraic ODEs F(y, y') = 0 is well studied by R. Feng and X-S. Gao in current papers [FG04], [FG06]. In fact, F(y, y') is supposed to be a first order non-zero differential polynomial with coefficients in \mathbb{Q} and irreducible over $\overline{\mathbb{Q}}$. One of the key observations in these papers is that a non-trivial rational solution of F(y, y') = 0 defines a proper rational parametrization of the corresponding algebraic curve F(y, z) = 0. Conversely, if a proper rational parametrization of the algebraic curve F(y, z) = 0 satisfies certain conditions, then we can create a rational solution of F(y, y') = 0 from this parametrization. Moreover, from a nontrivial rational solution y(x) of F(y, y') = 0, we can immediately create a rational general solution by shifting the variable x by an arbitrary constant c, namely y(x + c) is a rational general solution of F(y, y') = 0. Therefore, the class of autonomous algebraic

^{*}This work has been supported by the Austrian Science Foundation (FWF) via the Doctoral Program "Computational Mathematics" (W1214), project DK11.

[†]Email address: ngo.chau@risc.uni-linz.ac.at

ODE F(y, y') = 0 with rational general solutions is certainly a subclass of the class of rational algebraic curves. Moreover, the problem of computing a rational general solution is reduced to the problem of computing a nontrivial rational solution. This approach has a great advantage because one can use the theory of rational algebraic curves, which is well-known in [Wal78], [SWPD08], to study the nature of rational solutions of first order autonomous algebraic ODEs. For instance, the degree of a nontrivial rational solution is exactly equal to the degree of y' in the differential equation F(y, y') = 0 ([FG04], [FG06]).

In this paper we consider a non-autonomous algebraic ODE F(x, y, y') = 0 and propose a way to compute a rational general solution of this equation under certain conditions. In fact, one way to consider the non-autonomous differential equation F(x, y, y') = 0 is to consider the corresponding surface S defined by the equation F(x, y, z) = 0. Then a nontrivial rational solution y = f(x) of the equation F(x, y, y') = 0 defines a parametric curve (x, f(x), f'(x)) on the corresponding surface S. Suppose that S is a rational algebraic surface. Using the birational map $\mathcal{P}(s, t)$, which parametrizes the surface S, we define a new system of differential equations in two indeterminates s, t. Then we prove that a rational general solution $(\bar{s}(x), \bar{t}(x))$ of this system will generate a rational general solution of the original differential equation. Note that this system consists of two differential equations of order 1 and of degree 1 in the parameters s, t.

2 Preliminaries

In this section we recall the notion of rational general solutions of algebraic ODEs of first order. One can find this notion in [FG04], [FG06]. Let $\mathcal{K} = \mathbb{Q}(x)$ be the differential field of rational functions in x with usual differential operator $\frac{d}{dx}$, also written by '. Let y be an indeterminate over \mathcal{K} . The *i*-th derivative of y is denoted by y_i . The ring consisting of all polynomials in the y_i with coefficients in \mathcal{K} is called the *ring of differential polynomials over* \mathcal{K} , denoted by $\mathcal{K}\{y\}$. Let \mathcal{U} be a universal extension of the differential field \mathcal{K} . Let Σ be a set of differential polynomials in $\mathcal{K}\{y\}$. An element $\eta \in \mathcal{U}$ is a zero of Σ if it vanishes for all differential polynomials in Σ . Note that the zero set of Σ is the same as the zero set of the differential ideal generated by Σ . The notion of a generic zero of an ideal can be adapted to a differential ideal.

DEFINITION 2.1. Let Σ be a nontrivial prime differential ideal in $\mathcal{K}\{y\}$. A zero η of Σ is called a *generic zero of* Σ if for any differential polynomial $P \in \mathcal{K}\{y\}$, $P(\eta) = 0$ implies that $P \in \Sigma$.

Let $F \in \mathcal{K}\{y\}$. The highest derivative of y in F is called the *order of* F, denoted by $\operatorname{ord}(F)$. Suppose that $\operatorname{ord}(F) = p$. Then F has the form

$$F = a_d y_p^d + a_{d-1} y_p^{d-1} + \dots + a_0,$$

where a_i are differential polynomials in y, y_1, \ldots, y_{p-1} and $a_d \neq 0$. In this case, a_d is called the *initial of* F and $S := \frac{\partial F}{\partial y_p} = a_d dy_p^{d-1} + a_{d-1}(d-1)y_p^{d-2} + \cdots + a_1$ is called the *separant of* F. For any differential polynomial $G \in \mathcal{K}\{y\}$ we have the following

representation

$$JG = Q_0F + Q_1F^{(1)} + \dots + Q_rF^{(r)} + R,$$

where J is a product of certain powers of the initial and separant of F; $F^{(i)}$ are the *i*-th derivative of F; Q_i and R are differential polynomials in $\mathcal{K}\{y\}$. Moreover, ord(R) < p or ord(R) = p and $\deg_{y_p} R < d$. Then R is called the *differential pseudo remainder of* G with respect to F, denoted by prem(G, F).

Suppose that F is an irreducible differential polynomial in $\overline{\mathbb{Q}}(x)[y, y_1, \ldots, y_p]$. Let

$$\Sigma_F = \{ G \in \mathcal{K}\{y\} | SG \in \{F\} \}$$

where $\{F\}$ is the perfect differential ideal¹ generated by F. Note that $\Sigma_F = \{F\} : S$, $\{F\} \subset \Sigma_F$ and it is well known by [Rit50] that

LEMMA 2.1. Σ_F is a prime differential ideal and G belongs to Σ_F iff prem(G, F) = 0. DEFINITION 2.2. Let $F \in \mathcal{K}\{y\}$ be an irreducible differential polynomial. A generic zero of the prime differential ideal Σ_F is called a *general solution of* F = 0. A rational general solution is defined as a general solution of the form

$$y = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}$$

where a_i, b_j are constants in the constant field of a universal extension of \mathcal{K} and $b_m \neq 0$.

The following is a direct consequence of the above definition and the Lemma 2.1. COROLLARY 2.1. If η is a general solution of F = 0, then for any differential polynomial $G \in \mathcal{K}\{y\}$ we have

$$G(\eta) = 0 \Leftrightarrow prem(G, F) = 0$$

3 Main result

In this section we consider a non-autonomous first order ODE

$$F(x, y, y') = 0, \tag{1}$$

where $F \in \mathbb{Q}[x, y, z]$ is an irreducible polynomial over $\overline{\mathbb{Q}}$. A rational solution y = f(x) of (1) is an element of $\overline{\mathbb{Q}}(x)$ such that

$$F(x, f(x), f'(x)) = 0.$$
 (2)

By viewing x, y and y' as independent variables, whose values are in the field $\overline{\mathbb{Q}}$, the equation F(x, y, z) = 0 defines an algebraic surface S in the space $\mathbb{A}^3(\overline{\mathbb{Q}})$. Then the condition (2) tells us that the parametric space curve $\gamma(x) = (x, f(x), f'(x))$ lies on the surface S.

From now on we assume that the surface S can be parametrized by a rational proper parametrization

$$\mathcal{P}(s,t) = (\chi_1(s,t), \chi_2(s,t), \chi_3(s,t)).$$

¹It is defined as the radical ideal in the ring theory.

Since \mathcal{P} is a birational map $\mathbb{A}^2(\overline{\mathbb{Q}}) \to \mathcal{S} \subset \mathbb{A}^3(\overline{\mathbb{Q}})$, there is a birational inverse map \mathcal{P}^{-1} defining on the surface \mathcal{S} except finitely many curves or points on \mathcal{S} .

DEFINITION 3.1. A solution y = f(x) of the equation F(x, y, y') = 0 is parametrizable by \mathcal{P} if the parametric curve (x, f(x), f'(x)) lies in the domain of the image of \mathcal{P} .

PROPOSITION 3.1. Let F(x, y, z) = 0 be a rational surface with a proper parametrization

$$\mathcal{P}(s,t) = (\chi_1(s,t), \chi_2(s,t), \chi_3(s,t))$$

The differential equation F(x, y, y') = 0 has a rational solution, which is parametrizable by \mathcal{P} , if and only if there exist two rational functions s(x) and t(x) such that

$$\begin{cases} \chi_1(s(x), t(x)) = x \\ \frac{d\chi_2(s(x), t(x))}{dx} = \chi_3(s(x), t(x)). \end{cases}$$
(3)

If this is the case, then $y = \chi_2(s(x), t(x))$ is a rational solution of F(x, y, y') = 0.

PROOF. Assume that y = f(x) is a rational solution of F(x, y, y') = 0, which is parametrizable by \mathcal{P} . Then let

$$(s(x), t(x)) = \mathcal{P}^{-1}(x, f(x), f'(x)).$$

This is a plane parametric curve and satisfies the following relations

$$\mathcal{P}(s(x), t(x)) = \mathcal{P}(\mathcal{P}^{-1}(x, f(x), f'(x))) = (x, f(x), f'(x)).$$

In other words, we have

$$\begin{cases} \chi_1(s(x), t(x)) = x \\ \chi_2(s(x), t(x)) = f(x) \\ \chi_3(s(x), t(x)) = f'(x). \end{cases}$$
(4)

Moreover, (s(x), t(x)) is a rational plane curve in (s, t)-plane because \mathcal{P}^{-1} is a birational map and coordinate functions of $\gamma(x)$ are rational functions in x.

Conversely, if two rational functions s = s(x) and t = t(x) satisfy the system

$$\begin{cases} \chi_1(s(x), t(x)) = x \\ \frac{d\chi_2(s(x), t(x))}{dx} = \chi_3(s(x), t(x)) \end{cases}$$

then it is clear that $y = \chi_2(s(x), t(x))$ is a rational solution of the differential equation F(x, y, y') = 0.

REMARK 3.1. Suppose that $\mathcal{P}_1(s,t)$ and $\mathcal{P}_2(s,t)$ are two proper parametrizations of F(x, y, y') = 0. It may happen that a rational solution y = f(x) of F(x, y, y') = 0 is parametrizable by $\mathcal{P}_1(s,t)$ but it is not parametrizable by $\mathcal{P}_2(s,t)$. This is the case when the parametric curve (x, f(x), f'(x)) is not covered by $\mathcal{P}_2(s,t)$. However, the set of missing curves is finite. On the other hand, if $\mathcal{P}_2(s,t)$ is a normal parametrization, then every solution of F(x, y, y') = 0 is parametrizable by $\mathcal{P}_2(s, t)$.

We are going to study the condition on s(x), t(x) in detail. Suppose that s = s(x)and t = t(x) are two rational functions such that

$$\begin{cases} \chi_1(s(x), t(x)) = x \\ \frac{d\chi_2(s(x), t(x))}{dx} = \chi_3(s(x), t(x)). \end{cases}$$
(5)

Differentiate the first equation of (5) and expand the last equation of (5), we get

$$\begin{cases} \frac{\partial\chi_1(s(x), t(x))}{\partial s} \cdot s'(x) + \frac{\partial\chi_1(s(x), t(x))}{\partial t} \cdot t'(x) = 1\\ \frac{\partial\chi_2(s(x), t(x))}{\partial s} \cdot s'(x) + \frac{\partial\chi_2(s(x), t(x))}{\partial t} \cdot t'(x) = \chi_3(s(x), t(x)). \end{cases}$$
(6)

If

$$\det \begin{pmatrix} \frac{\partial \chi_1(s(x), t(x))}{\partial s} & \frac{\partial \chi_1(s(x), t(x))}{\partial t} \\ \frac{\partial \chi_2(s(x), t(x))}{\partial s} & \frac{\partial \chi_2(s(x), t(x))}{\partial t} \end{pmatrix} \not\equiv 0,$$
(7)

then (s(x), t(x)) is a solution of the system of differential equations of order 1 in s, tand degree 1 in s', t'

$$\begin{cases} s'(x) = \frac{f_1(s,t)}{g(s,t)} \\ t'(x) = -\frac{f_2(s,t)}{g(s,t)}, \end{cases}$$
(8)

where $f_1(s,t), f_2(s,t), g(s,t)$ are rational functions in s, t and defined by

$$f_{1}(s,t) = \frac{\partial \chi_{2}(s,t)}{\partial t} - \chi_{3}(s,t) \cdot \frac{\partial \chi_{1}(s,t)}{\partial t},$$

$$f_{2}(s,t) = \frac{\partial \chi_{2}(s,t)}{\partial s} - \chi_{3}(s,t) \cdot \frac{\partial \chi_{1}(s,t)}{\partial s},$$

$$g(s,t) = \frac{\partial \chi_{1}(s,t)}{\partial s} \cdot \frac{\partial \chi_{2}(s,t)}{\partial t} - \frac{\partial \chi_{1}(s,t)}{\partial t} \cdot \frac{\partial \chi_{2}(s,t)}{\partial s}.$$
(9)

If the determinant (7) is equal to 0, then (s(x), t(x)) is a solution of the system

$$\begin{cases} \bar{g}(s,t) = 0\\ \bar{f}_1(s,t) = 0, \end{cases}$$
(10)

where $\bar{g}(s,t)$ and $\bar{f}_1(s,t)$ are numerators of g(s,t) and $f_1(s,t)$ respectively. Thus (s(x), t(x)) defines a curve iff $gcd(\bar{g}(s,t), \bar{f}_1(s,t))$ is a non constant polynomial in s, t. Otherwise, (s(x), t(x)) is just an intersection point of two algebraic curves $\bar{g}(s,t) = 0$ and $\bar{f}_1(s,t) = 0$, which does not satisfy the relation (5).

We would expect that a rational general solution of the system (8) will define a rational general solution of the equation F(x, y, y') = 0. At this point we define what we mean by a rational general solution of the system (8). Let N_i and M_i be the

numerator and the denominator of $\frac{f_i(s,t)}{g(s,t)}$ for i = 1, 2.

DEFINITION 3.2. A rational solution $(\bar{s}(x), \bar{t}(x))$ of the system (8) is called a *rational* general solution if for any differential polynomial $G \in \mathcal{K}\{s, t\}$ we have

$$G(\bar{s}(x), \bar{t}(x)) = 0 \Leftrightarrow prem(G, \{s'M_1(s, t) - N_1(s, t), t'M_2(s, t) + N_2(s, t)\}) = 0,$$

where $prem(G, \{s'M_1(s,t)-N_1(s,t), t'M_2(s,t)+N_2(s,t)\})$ is the pseudo remainder of G with respect to the system of differential polynomials $s'M_1(s,t) - N_1(s,t), t'M_2(s,t) + N_2(s,t)$.

We can see that the $prem(G, \{s'M_1(s,t) - N_1(s,t), t'M_2(s,t) + N_2(s,t)\})$ will be a polynomial in $\mathcal{K}[s,t]$ because the degree of s' and t' are 1. In particular, we have

LEMMA 3.1. Let $(\bar{s}(x), \bar{t}(x))$ be a rational general solution of the system (8). Let G be a bivariate polynomial in $\mathcal{K}[s,t]$. If $G(\bar{s}(x), \bar{t}(x)) = 0$, then G = 0 in $\mathcal{K}[s,t]$.

PROOF. Since $G \in \mathcal{K}[s, t]$, we have

$$prem(G, \{s'M_1(s,t) - N_1(s,t), t'M_2(s,t) + N_2(s,t)\}) = G.$$

Therefore, $G(\bar{s}(x), \bar{t}(x)) = 0$ implies G = 0 in $\mathcal{K}[s, t]$.

THEOREM 3.1. Let $\bar{y} = f(x)$ be a rational general solution of F(x, y, y') = 0. Suppose that $\bar{y} = f(x)$ is parametrizable by \mathcal{P} . Let

$$(\bar{s}(x), \bar{t}(x)) = \mathcal{P}^{-1}(x, f(x), f'(x)).$$

If $g(\bar{s}(x), \bar{t}(x)) \neq 0$ then $(\bar{s}(x), \bar{t}(x))$ is a rational general solution of the system (8).

PROOF. From the assumption it follows that $(\bar{s}(x), \bar{t}(x))$ is a solution of (8). Suppose that $P \in \mathcal{K}\{s, t\}$ is a differential polynomial such that $P(\bar{s}(x), \bar{t}(x)) = 0$. Let

$$R = prem(P, \{s'M_1(s,t) - N_1(s,t), t'M_2(s,t) + N_2(s,t)\}).$$

Then $R \in \mathcal{K}[s, t]$, we have to prove that R = 0. We know that

$$R(\bar{s}(x), \bar{t}(x)) = R(\mathcal{P}^{-1}(x, f(x), f'(x))) = 0$$

Let's consider the rational function $R(\mathcal{P}^{-1}(x, y, z)) = \frac{U(x, y, z)}{V(x, y, z)}$. Then U(x, y, y') is a differential polynomial satisfying the condition

$$U(x, f(x), f'(x)) = 0.$$

Since f(x) is a rational general solution of F = 0 and both F and U are differential polynomials of order 1, we have

$$I.U(x, y, y') = Q_0 F,$$

where I is the initial of F and Q_0 is a differential polynomial of order 1 in $\mathcal{K}\{y\}$. Therefore,

$$R(s,t) = R(\mathcal{P}^{-1}(\mathcal{P}(s,t))) = \frac{U(\mathcal{P}(s,t))}{V(\mathcal{P}(s,t))} = \frac{Q_0(\mathcal{P}(s,t))F(\mathcal{P}(s,t))}{I(\mathcal{P}(s,t))V(\mathcal{P}(s,t))} = 0.$$

Thus $(\bar{s}(x), \bar{t}(x))$ is a rational general solution of (8).

We are now constructing a rational general solution of F(x, y, y') = 0 from a rational general solution of the system (8). Assume that $(\bar{s}(x), \bar{t}(x))$ is a rational general solution of (8). Substituting $\bar{s}(x)$ and $\bar{t}(x)$ into $\chi_1(s, t)$ we get

$$\chi_1(\bar{s}(x), \bar{t}(x)) = x + c$$

for some constant c. Hence

$$\chi_1(\bar{s}(x-c), \bar{t}(x-c)) = x.$$

It follows that $y = \chi_2(\bar{s}(x-c), \bar{t}(x-c))$ is a solution of the differential equation

F(x, y, y') = 0.

Moreover, we will prove that $y = \chi_2(\bar{s}(x-c), \bar{t}(x-c))$ is a rational general solution of F(x, y, y') = 0. The main theorem is the following.

THEOREM 3.2. Let $(\bar{s}(x), \bar{t}(x))$ is a rational general solution of the system (8). Then

$$\bar{y} = \chi_2(\bar{s}(x-c), \bar{t}(x-c))$$

is a rational general solution of F(x, y, y') = 0.

PROOF. It is clear that $\bar{y} = \chi_2(\bar{s}(x-c), \bar{t}(x-c))$ is a rational solution of F(x, y, y') = 0. Let G be an arbitrary differential polynomial in $\mathcal{K}\{y\}$ such that $G(\bar{y}) = 0$. Let

$$R = prem(G, F)$$

be the differential pseudo-remainder of G with respect to F. It follows that

$$R(\bar{y}) = 0$$

We have to prove that R = 0. Assume that $R \neq 0$. Then

$$R(\chi_1(s,t),\chi_2(s,t),\chi_3(s,t)) = \frac{W(s,t)}{Z(s,t)} \in \overline{\mathbb{Q}}(s,t).$$

On the other hand,

$$R(\chi_1(\bar{s}(x), \bar{t}(x)), \chi_2(\bar{s}(x), \bar{t}(x)), \chi_3(\bar{s}(x), \bar{t}(x))) = 0.$$

It follows that $W(\bar{s}(x), \bar{t}(x)) = 0$. By the Lemma 3.1 we have W(s, t) = 0. Thus $R(\chi_1(s, t), \chi_2(s, t), \chi_3(s, t)) = 0$. Since F is irreducible and $\deg_{y'} R < \deg_{y'} F$, we have R = 0 in $\mathbb{Q}[x, y, z]$. Therefore, \bar{y} is a rational general solution of F(x, y, y') = 0.

4 Algorithm and Example

- Input: F(x, y, y') = 0, proper parametrization $(\chi_1(s, t), \chi_2(s, t), \chi_3(s, t)) \in \overline{\mathbb{Q}}(s, t)$ of F(x, y, y') = 0
- Output: y = f(x) rational general solution of F(x, y, y') = 0.
 - 1. Compute $f_1(s,t), f_2(s,t), g(s,t)$ as in (9)
 - 2. Solve the associated system of ODEs for a rational general solution $(\bar{s}(x), \bar{t}(x))$

$$\begin{cases} s'(x) = \frac{f_1(s,t)}{g(s,t)} \\ t'(x) = -\frac{f_2(s,t)}{g(s,t)} \end{cases}$$

- 3. Compute the constant $c := \chi_1(\bar{s}(x), \bar{t}(x)) x$
- 4. Return $y = \chi_2(\bar{s}(x-c), \bar{t}(x-c))$.

EXAMPLE 4.1. Consider the differential equation

$$y'^3 - 4xyy' + 8y^2 = 0.$$

The corresponding surface has a proper parametrization

$$\mathcal{P}(s,t) = (t, -4s^2(2s-t), -4s(2s-t)).$$

The inverse map is

$$\mathcal{P}^{-1}(x,y,z) = \left(\frac{y}{z},x\right).$$

We compute

$$g(s,t) = 8s(3s-t),$$

$$f_1(s,t) = 4s(3s-t), \quad f_2(s,t) = -8s(3s-t).$$

Thus the associated system is

$$\begin{cases} s'(x) = \frac{1}{2} \\ t'(x) = 1. \end{cases}$$

Solving this system we obtain a rational general solution $\bar{s}(x) = \frac{x}{2} + c_2$, $\bar{t}(x) = x + c_1$ for arbitrary constants c_1, c_2 . It follows that the general solution is

$$\bar{y} = -4\bar{s}(x-c_1)^2(2\bar{s}(x-c_1)-\bar{t}(x-c_1)) = -C(x+C)^2$$

where $C = 2c_2 - c_1$.

Note that in this example

$$gcd(g(s,t), f_1(s,t)) = 4s(3s-t).$$

It defines two parametric curves s(x) = 0, t(x) = x and $s(x) = \frac{x}{3}, t(x) = x$. This gives us two other solutions y = 0 and $y = \frac{4}{27}x^3$.

${\bf Acknowledgments}$

I would like to express my deep thanks to professor Franz Winkler for his advices and improved comments.

References

[FG04]	R. Feng and X-S. Gao. Rational general solutions of algebraic ordinary differential equations. <i>Proc. ISSAC2004. ACM Press, New York</i> , pages 155–162, 2004.
[FG06]	R. Feng and X-S. Gao. A polynomial time algorithm for finding rational general solutions of first order autonomous odes. <i>J. Symbolic Computation</i> , 41:739–762, 2006.
[Hub96]	E. Hubert. The general solution of an ordinary differential equation. <i>Proc. ISSAC1996. ACM Press, New York</i> , pages 189–195, 1996.
[Rit50]	J. F. Ritt. <i>Differential Algebra</i> , volume 33. Amer. Math. Society. Colloquium Publications, 1950.
[SWPD08]	J. R. Sendra, F. Winkler, and S. Pérez-Díaz. Rational algebraic curves - A computer algebra approach. Springer, 2008.

[Wal78] R. J. Walker. Algebraic curves. Springer-Verlag, 1978.

Technical Reports of the Doctoral Program "Computational Mathematics"

$\boldsymbol{2009}$

- **2009-01** S. Takacs, W. Zulehner: Multigrid Methods for Elliptic Optimal Control Problems with Neumann Boundary Control October 2009. Eds.: U. Langer, J. Schicho
- 2009-02 P. Paule, S. Radu: A Proof of Sellers' Conjecture October 2009. Eds.: V. Pillwein, F. Winkler
- **2009-03** K. Kohl, F. Stan: An Algorithmic Approach to the Mellin Transform Method November 2009. Eds.: P. Paule, V. Pillwein
- **2009-04** L.X.Chau Ngo: *Rational general solutions of first order non-autonomous parametric ODEs* November 2009. Eds.: F. Winkler, P. Paule

Doctoral Program

"Computational Mathematics"

rof. Dr. Peter Paule
esearch Institute for Symbolic Computation
rof. Dr. Bert Jüttler
stitute of Applied Geometry
phannes Kepler University Linz
octoral Program "Computational Mathematics"
ltenbergerstr. 69
-4040 Linz
ustria
el.: ++43 732-2468-7174
fice@dk-compmath.jku.at
tp://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board who communicate their approval to the Managing Editor.