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Abstract

In this paper we study the non-autonomous algebraic ODE F(xz,y,y’) = 0 with a
proper parametrization P(s,t) of the corresponding algebraic surface F(x,y,z) = 0.
Using this parametrization we drive to a system of ODEs in two parameters s,t of
order 1 and of degree 1. We prove the correspondence of a rational general solution of
the equation F'(z,y,y’) = 0 and a rational general solution of the new system of ODEs
in s,t.

Key words: Rational general solutions, first order non-autonomous ODE, rational
surfaces, proper parametrization, parametric curves.

1 Introduction

In [Hub96], the general solutions of non-autonomous algebraic ODE F'(z,y,y’) =0
is studied by giving a method to compute a basis of the general solution of this equation
and applied the result to study the local behaviour of the solutions in a neighborhood
of a singular solution.

The rational general solutions of first order autonomous algebraic ODEs F(y,y’) =
0 is well studied by R. Feng and X-S. Gao in current papers [FG04], [FG06]. In fact,
F(y,v) is supposed to be a first order non-zero differential polynomial with coefficients
in Q and irreducible over Q. One of the key observations in these papers is that a non-
trivial rational solution of F(y,y’) = 0 defines a proper rational parametrization of the
corresponding algebraic curve F'(y, z) = 0. Conversely, if a proper rational parametriza-
tion of the algebraic curve F'(y, z) = 0 satisfies certain conditions, then we can create a
rational solution of F'(y,y’) = 0 from this parametrization. Moreover, from a nontriv-
ial rational solution y(z) of F(y,y") = 0, we can immediately create a rational general
solution by shifting the variable x by an arbitrary constant ¢, namely y(x + ¢) is a
rational general solution of F(y,y’) = 0. Therefore, the class of autonomous algebraic
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ODE F(y,y') = 0 with rational general solutions is certainly a subclass of the class
of rational algebraic curves. Moreover, the problem of computing a rational general
solution is reduced to the problem of computing a nontrivial rational solution. This
approach has a great advantage because one can use the theory of rational algebraic
curves, which is well-known in [Wal78], [SWPDO0S], to study the nature of rational
solutions of first order autonomous algebraic ODEs. For instance, the degree of a non-
trivial rational solution is exactly equal to the degree of ¥ in the differential equation
F(y,y") =0 ([EG04], [FGO6]).

In this paper we consider a non-autonomous algebraic ODE F(z,y,y’) = 0 and
propose a way to compute a rational general solution of this equation under cer-
tain conditions. In fact, one way to consider the non-autonomous differential equa-
tion F(z,y,y") = 0 is to consider the corresponding surface S defined by the equa-
tion F(x,y,z) = 0. Then a nontrivial rational solution y = f(x) of the equation
F(z,y,y") = 0 defines a parametric curve (z, f(z), f'(x)) on the corresponding surface
S. Suppose that S is a rational algebraic surface. Using the birational map P(s,t),
which parametrizes the surface S, we define a new system of differential equations in
two indeterminates s,t. Then we prove that a rational general solution (5(z),#(x)) of
this system will generate a rational general solution of the original differential equation.
Note that this system consists of two differential equations of order 1 and of degree 1
in the parameters s, t.

2 Preliminaries

In this section we recall the notion of rational general solutions of algebraic ODEs of
first order. One can find this notion in [FG04], [FG06]. Let £ = Q(x) be the differential
field of rational functions in x with usual differential operator %, also written by ’.
Let y be an indeterminate over K. The i-th derivative of y is denoted by y;. The
ring consisting of all polynomials in the y; with coefficients in K is called the ring of
differential polynomials over K, denoted by K{y}. Let U be a universal extension of
the differential field K. Let ¥ be a set of differential polynomials in {y}. An element
n € U is a zero of 3 if it vanishes for all differential polynomials in Y. Note that the
zero set of X is the same as the zero set of the differential ideal generated by 3. The
notion of a generic zero of an ideal can be adapted to a differential ideal.

DEFINITION 2.1. Let ¥ be a nontrivial prime differential ideal in K{y}. A zero n of
Y is called a generic zero of ¥ if for any differential polynomial P € K{y}, P(n) =0
implies that P € X..

Let F' € K{y}. The highest derivative of y in F is called the order of F', denoted
by ord(F'). Suppose that ord(F) = p. Then F has the form

F= adyg + ad_lyg_l + .-+ ap,
where a; are differential polynomials in y,y1,...,yp—1 and ag # 0. In this case, aq is
called the initial of F' and S := 3712 = addyz‘f_1 + aqg—1(d — 1)yg_2 4+ .-+ +ay is called
the separant of F. For any differential polynomial G € K{y} we have the following



representation

JG =QoF + Q1FM + ...+ Q. F") + R,

where J is a product of certain powers of the initial and separant of F; F(®) are the i-th
derivative of F'; Q; and R are differential polynomials in C{y}. Moreover, ord(R) < p
or ord(R) = p and deg;yp R < d. Then R is called the differential pseudo remainder of
G with respect to F', denoted by prem(G, F).

Suppose that F is an irreducible differential polynomial in Q(z)[y,y1,- - ., yp). Let

Yr ={G e K{y}|SG € {F}}
where {F} is the perfect differential ideal'] generated by F. Note that S = {F} : S,
{F} C ¥p and it is well known by [Rit50] that

LEMMA 2.1. ¥p is a prime differential ideal and G belongs to X r iff prem(G, F) = 0.

DEFINITION 2.2. Let F' € K{y} be an irreducible differential polynomial. A generic
zero of the prime differential ideal X is called a general solution of F = 0. A rational
general solution is defined as a general solution of the form

_apx” + Ap_12" 4 -+ ag
by @™ A+ by 2™ b

where a;, b; are constants in the constant field of a universal extension of K and b,, # 0.
The following is a direct consequence of the above definition and the Lemma [2.1

COROLLARY 2.1. Ifn is a general solution of F' = 0, then for any differential polynomial
G € K{y} we have
G(n) =0 < prem(G,F) =0.

3 Main result

In this section we consider a non-autonomous first order ODE

F($7y7y/) =0, (1)

where F' € Q[z,, 2] is an irreducible polynomial over Q. A rational solution y = f(z)
of is an element of Q(x) such that

F(x, f(z), f'(x)) = 0. (2)

By viewing z,y and 3’ as independent variables, whose values are in the field Q, the
equation F(z,y,z) = 0 defines an algebraic surface S in the space A3(Q). Then the
condition tells us that the parametric space curve v(x) = (z, f(x), f'(x)) lies on
the surface S.

From now on we assume that the surface S can be parametrized by a rational
proper parametrization

P(87 t) = (Xl (57 t)? X2(57 t)v X3(87 t))

Tt is defined as the radical ideal in the ring theory.



Since P is a birational map A%2(Q) — S C A%(Q), there is a birational inverse map
P~ defining on the surface S except finitely many curves or points on S.

DEFINITION 3.1. A solution y = f(z) of the equation F(z,y,y") = 0 is parametrizable
by P if the parametric curve (z, f(x), f'(z)) lies in the domain of the image of P.

PROPOSITION 3.1. Let F(xz,y,z) = 0 be a rational surface with a proper parametriza-
tion
P(S, t) - (Xl (37 t)7 XQ(Sa t), X3(57 t))

The differential equation F(x,y,y') = 0 has a rational solution, which is parametrizable
by P, if and only if there exist two rational functions s(x) and t(x) such that

x1(s(x), t(z)) = x )
DD _ (). ).
If this is the case, then y = xa(s(x),t(x)) is a rational solution of F(x,y,y") = 0.

PROOF. Assume that y = f(x) is a rational solution of F(z,y,y’) = 0, which is
parametrizable by P. Then let

(s(2), t(x)) = P}z, f(x), f'(x)).
This is a plane parametric curve and satisfies the following relations
P(s(x), t(x)) = PP~ (z, f(z), f'(x))) = (z, f(2), ['(x)).
In other words, we have

xa(s(x), t(z)) = f(x) (4)
x3(s(x), t(x)) = f'(x).

Moreover, (s(z),t(z)) is a rational plane curve in (s, t)-plane because P! is a birational

map and coordinate functions of v(z) are rational functions in x.
Conversely, if two rational functions s = s(x) and ¢t = t(z) satisfy the system

x1(s(x), t(z)) =«

DD _ vy (o), ),

then it is clear that y = x2(s(x),t(x)) is a rational solution of the differential equation
F(z,y,y') = 0. O

REMARK 3.1. Suppose that P;(s,t) and Py(s,t) are two proper parametrizations of
F(z,y,y") = 0. It may happen that a rational solution y = f(x) of F(x,y,y’) = 0 is
parametrizable by Pj(s,t) but it is not parametrizable by Pa(s,t). This is the case
when the parametric curve (z, f(z), f'(x)) is not covered by Pa(s,t). However, the set
of missing curves is finite. On the other hand, if Pa(s,t) is a normal parametrization,
then every solution of F(z,y,y’) = 0 is parametrizable by Pa(s, ).



We are going to study the condition on s(x),t(x) in detail. Suppose that s = s(x)
and t = t(x) are two rational functions such that

x1(s(x), t(z)) =«

ST T 5
D@D ), 1(2)). ?

Differentiate the first equation of and expand the last equation of , we get

Ox1(s(x), t(x)) Ix1(s(x), t(x))

9 -8 (x) + ot H(r)=1
(6)
D) |y | D) ) o) 1)
If
Ixa(s(z),t(x)) Oxi(s(z),t(z))
0s ot
det #0, (7)
Ixa(s(z),t(x)) Oxa(s(x),t(z))
Os ot

then (s(z),t(x)) is a solution of the system of differential equations of order 1 in s,t
and degree 1 in s',t’

fl(su t)
s'(x) =
@) g(s,t)
(8)
fa(s,t)
t'(x) = — ,
@) g(s,1)
where fi(s,t), fa(s,t),g(s,t) are rational functions in s,t and defined by
_ Oxa(s,t) ox1(s,t)
fi(s, 1) ot x3(s,t) - ot
Ixa(s, t) Ixa (s, t)
— - : 9
f2(87t) 83 X3(8’t) 68 ) ( )
(5.1) _oxals,t) Oxa(s,t)  Oxa(s,t) 9Ixals,t)
T =0, ot ot os
If the determinant (7)) is equal to 0, then (s(z),t(z)) is a solution of the system
g(s,t) =0
{g(s’ ) (10)
fl (Sa t) - 07

where §(s,t) and fi(s,t) are numerators of g(s,t) and fi(s,t) respectively. Thus
(s(x),t(x)) defines a curve iff ged(g(s,t), fi(s,t)) is a non constant polynomial in s, t.
Otherwise, (s(x),t(x)) is just an intersection point of two algebraic curves g(s,t) =0
and fi(s,t) = 0, which does not satisfy the relation (F]).

We would expect that a rational general solution of the system will define a
rational general solution of the equation F'(x,y,y’) = 0. At this point we define what
we mean by a rational general solution of the system . Let N; and M; be the



fi(s,t)
9(s,t)
DEFINITION 3.2. A rational solution (5(z),¢(x)) of the system is called a rational
general solution if for any differential polynomial G € K{s,t} we have

numerator and the denominator of fori=1,2.

G(3(z),t(7)) = 0 & prem(G, {s'Mi(s,t) — Ni(s,t),t' Ma(s,t) + No(s,t)}) = 0,

where prem(G, {s' My (s,t)—Ni(s,t),t' Ma(s,t)+Na(s,t)}) is the pseudo remainder of G
with respect to the system of differential polynomials s’ M (s,t) — Ni(s,t), ' Ma(s,t)+
NQ(S, t).

We can see that the prem(G, {s'Mi(s,t) — N1i(s,t),t' Ma(s,t) + Nao(s,t)}) will be a
polynomial in K[s, ¢] because the degree of s’ and ¢’ are 1. In particular, we have

LEMMA 3.1. Let (5(z),¢(z)) be a rational general solution of the system (8)). Let G be
a bivariate polynomial in K[s,t]. If G(3(x),t(x)) = 0, then G =0 in K[s, t].

PROOF. Since G € K[s, t], we have
prem(G, {s'M(s,t) — Nyi(s,t),t'Ma(s,t) + Na(s,t)}) = G.
Therefore, G(5(z),t(z)) = 0 implies G = 0 in K[s, t]. O

THEOREM 3.1. Let §j = f(x) be a rational general solution of F(x,y,y’) = 0. Suppose
that § = f(x) is parametrizable by P. Let

(8(2), {(x)) = P~ (x, f(x), f'(2))-
If g(5(z),t(x)) # 0 then (5(z),t(z)) is a rational general solution of the system ().

PROOF. From the assumption it follows that (5(z),#(z)) is a solution of (§). Suppose
that P € K{s,t} is a differential polynomial such that P(5(x),t(z)) = 0. Let

R = prem(P,{s'My(s,t) — Ni(s,t),t' Ma(s,t) + Na(s,t)}).
Then R € K[s, t], we have to prove that R = 0. We know that

R(3(x),t(x)) = R(P~ (=, f(2), f'(x))) = 0.

Let’s consider the rational function R(P~(z,y,2)) = W Then U(z,y,y’) is a
x? y? z

differential polynomial satisfying the condition

Uz, f(x), f'(z)) = 0.

Since f(z) is a rational general solution of F' = 0 and both F' and U are differential
polynomials of order 1, we have

I'U(x7y7y/) = QOFa



where I is the initial of F' and Qg is a differential polynomial of order 1 in K{y}.

Therefore,
_ R(P- _ U(P(s,t)) _ Qo(P(s,1))F(P(s,t)) _
Rl ) = RO PO = Gp(aa) = TP )VPED)
Thus (5(x),t(x)) is a rational general solution of (g). O

We are now constructing a rational general solution of F'(z,y,y") = 0 from a rational
general solution of the system (8. Assume that (5(z), f(z)) is a rational general solution
of (8). Substituting 5(z) and t(x) into x1(s,t) we get

x1(5(x), {(z)) =z +c
for some constant c. Hence
x1(8(z — ¢),t(x — ¢)) = .
It follows that y = x2(5(x — ¢), t(xz — ¢)) is a solution of the differential equation

F(x,y,y") =0.

Moreover, we will prove that y = x2(5(z — ¢), t(z — ¢)) is a rational general solution of
F(z,y,y") = 0. The main theorem is the following.

THEOREM 3.2. Let (5(z),t(z)) is a rational general solution of the system (§)). Then
J=x2(5(z =), t(z - c))

is a rational general solution of F(x,y,y") = 0.

PROOF. It is clear that § = x2(5(z—c),t(x—c)) is a rational solution of F'(z,y,y") = 0.
Let G be an arbitrary differential polynomial in I{y} such that G(y) = 0. Let

R =prem(G, F)
be the differential pseudo-remainder of G with respect to F'. It follows that
R() = 0.

We have to prove that R = 0. Assume that R # 0. Then

R(Xl (37 t)> X2(Sa t)a X3(S> t)) =

On the other hand,

R(x1(5(x), 1(x)), x2(5(x), t(z)), x3(5(x), {(x))) = 0.
It follows that W(5(x),t(z)) = 0. By the Lemma we have W (s,t) = 0. Thus

R(x1(s,t), x2(s,t), x3(s,t)) = 0. Since F is irreducible and deg,, R < deg,, F’, we have
R =0 in Q[z,y, z]. Therefore, § is a rational general solution of F(z,y,y’) = 0. ]



4 Algorithm and Example
e Input: F(z,y,y’) =0,
proper parametrization (x1(s,t), x2(s,t), x3(s,t)) € Q(s,t) of F(z,y,9') =0
e Output: y = f(z) rational general solution of F(z,y,y’) = 0.

1. Compute fi(s,t), fa(s,t),g(s,t) as in @D
2. Solve the associated system of ODEs for a rational general solution (5(x), t(x))

/ o f1(57t)
o e
/ _ 2(S,
TN

3. Compute the constant ¢ := x1(5(x),t(z)) —
4. Return y = x2(8(x — ¢), t(z — ¢)).

ExaMPLE 4.1. Consider the differential equation
B _dzyy + 8y? = 0.
The corresponding surface has a proper parametrization
P(s,t) = (t, —4s%(2s — t), —4s(2s — t)).

The inverse map is

Pl (z,y,2) = (g@) .

We compute
g(S,t) = 85(38 - t)v

fi(s,t) =4s(3s —t), fa(s,t) = —8s(3s — ).
Thus the associated system is .
T2
=1
Solving this system we obtain a rational general solution §(x) = g +eo, t(r) =2+

for arbitrary constants ¢y, co. It follows that the general solution is
7= —45(x — )% (25(x —c1) —t(x — 1)) = —C(z + C)?

where C' = 2¢9 — ¢;.
Note that in this example

ged(g(s,t), fi(s,t)) = 4s(3s — ).

It defines two parametric curves s(z) = 0,t(x) = = and s(z) = -, t(x) = x. This gives

Wy

us two other solutions y =0 and y = ﬁx?’
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