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Bert Jüttler
Ulrich Langer
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Veronika Pillwein

Communicated by: Franz Winkler
Peter Paule

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria



Rational general solutions of first order

non-autonomous parametric ODEs ∗

Ngo Lam Xuan Chau †

Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria.

Abstract

In this paper we study the non-autonomous algebraic ODE F (x, y, y′) = 0 with a
proper parametrization P(s, t) of the corresponding algebraic surface F (x, y, z) = 0.
Using this parametrization we drive to a system of ODEs in two parameters s, t of
order 1 and of degree 1. We prove the correspondence of a rational general solution of
the equation F (x, y, y′) = 0 and a rational general solution of the new system of ODEs
in s, t.

Key words: Rational general solutions, first order non-autonomous ODE, rational
surfaces, proper parametrization, parametric curves.

1 Introduction

In [Hub96], the general solutions of non-autonomous algebraic ODE F (x, y, y′) = 0
is studied by giving a method to compute a basis of the general solution of this equation
and applied the result to study the local behaviour of the solutions in a neighborhood
of a singular solution.

The rational general solutions of first order autonomous algebraic ODEs F (y, y′) =
0 is well studied by R. Feng and X-S. Gao in current papers [FG04], [FG06]. In fact,
F (y, y′) is supposed to be a first order non-zero differential polynomial with coefficients
in Q and irreducible over Q. One of the key observations in these papers is that a non-
trivial rational solution of F (y, y′) = 0 defines a proper rational parametrization of the
corresponding algebraic curve F (y, z) = 0. Conversely, if a proper rational parametriza-
tion of the algebraic curve F (y, z) = 0 satisfies certain conditions, then we can create a
rational solution of F (y, y′) = 0 from this parametrization. Moreover, from a nontriv-
ial rational solution y(x) of F (y, y′) = 0, we can immediately create a rational general
solution by shifting the variable x by an arbitrary constant c, namely y(x + c) is a
rational general solution of F (y, y′) = 0. Therefore, the class of autonomous algebraic
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ODE F (y, y′) = 0 with rational general solutions is certainly a subclass of the class
of rational algebraic curves. Moreover, the problem of computing a rational general
solution is reduced to the problem of computing a nontrivial rational solution. This
approach has a great advantage because one can use the theory of rational algebraic
curves, which is well-known in [Wal78], [SWPD08], to study the nature of rational
solutions of first order autonomous algebraic ODEs. For instance, the degree of a non-
trivial rational solution is exactly equal to the degree of y′ in the differential equation
F (y, y′) = 0 ([FG04], [FG06]).

In this paper we consider a non-autonomous algebraic ODE F (x, y, y′) = 0 and
propose a way to compute a rational general solution of this equation under cer-
tain conditions. In fact, one way to consider the non-autonomous differential equa-
tion F (x, y, y′) = 0 is to consider the corresponding surface S defined by the equa-
tion F (x, y, z) = 0. Then a nontrivial rational solution y = f(x) of the equation
F (x, y, y′) = 0 defines a parametric curve (x, f(x), f ′(x)) on the corresponding surface
S. Suppose that S is a rational algebraic surface. Using the birational map P(s, t),
which parametrizes the surface S, we define a new system of differential equations in
two indeterminates s, t. Then we prove that a rational general solution (s̄(x), t̄(x)) of
this system will generate a rational general solution of the original differential equation.
Note that this system consists of two differential equations of order 1 and of degree 1
in the parameters s, t.

2 Preliminaries

In this section we recall the notion of rational general solutions of algebraic ODEs of
first order. One can find this notion in [FG04], [FG06]. Let K = Q(x) be the differential
field of rational functions in x with usual differential operator d

dx , also written by ′.
Let y be an indeterminate over K. The i-th derivative of y is denoted by yi. The
ring consisting of all polynomials in the yi with coefficients in K is called the ring of
differential polynomials over K, denoted by K{y}. Let U be a universal extension of
the differential field K. Let Σ be a set of differential polynomials in K{y}. An element
η ∈ U is a zero of Σ if it vanishes for all differential polynomials in Σ. Note that the
zero set of Σ is the same as the zero set of the differential ideal generated by Σ. The
notion of a generic zero of an ideal can be adapted to a differential ideal.

Definition 2.1. Let Σ be a nontrivial prime differential ideal in K{y}. A zero η of
Σ is called a generic zero of Σ if for any differential polynomial P ∈ K{y}, P (η) = 0
implies that P ∈ Σ.

Let F ∈ K{y}. The highest derivative of y in F is called the order of F , denoted
by ord(F ). Suppose that ord(F ) = p. Then F has the form

F = ady
d
p + ad−1y

d−1
p + · · ·+ a0,

where ai are differential polynomials in y, y1, . . . , yp−1 and ad 6= 0. In this case, ad is
called the initial of F and S := ∂F

∂yp
= addy

d−1
p + ad−1(d − 1)yd−2

p + · · · + a1 is called
the separant of F . For any differential polynomial G ∈ K{y} we have the following
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representation
JG = Q0F +Q1F

(1) + · · ·+QrF
(r) +R,

where J is a product of certain powers of the initial and separant of F ; F (i) are the i-th
derivative of F ; Qi and R are differential polynomials in K{y}. Moreover, ord(R) < p

or ord(R) = p and degyp
R < d. Then R is called the differential pseudo remainder of

G with respect to F , denoted by prem(G,F ).
Suppose that F is an irreducible differential polynomial in Q(x)[y, y1, . . . , yp]. Let

ΣF = {G ∈ K{y}|SG ∈ {F}}

where {F} is the perfect differential ideal1 generated by F . Note that ΣF = {F} : S,
{F} ⊂ ΣF and it is well known by [Rit50] that

Lemma 2.1. ΣF is a prime differential ideal and G belongs to ΣF iff prem(G,F ) = 0.

Definition 2.2. Let F ∈ K{y} be an irreducible differential polynomial. A generic
zero of the prime differential ideal ΣF is called a general solution of F = 0. A rational
general solution is defined as a general solution of the form

y =
anx

n + an−1x
n−1 + · · ·+ a0

bmxm + bm−1xm−1 + · · ·+ b0
,

where ai, bj are constants in the constant field of a universal extension of K and bm 6= 0.

The following is a direct consequence of the above definition and the Lemma 2.1.

Corollary 2.1. If η is a general solution of F = 0, then for any differential polynomial
G ∈ K{y} we have

G(η) = 0⇔ prem(G,F ) = 0.

3 Main result

In this section we consider a non-autonomous first order ODE

F (x, y, y′) = 0, (1)

where F ∈ Q[x, y, z] is an irreducible polynomial over Q. A rational solution y = f(x)
of (1) is an element of Q(x) such that

F (x, f(x), f ′(x)) = 0. (2)

By viewing x, y and y′ as independent variables, whose values are in the field Q, the
equation F (x, y, z) = 0 defines an algebraic surface S in the space A3(Q). Then the
condition (2) tells us that the parametric space curve γ(x) = (x, f(x), f ′(x)) lies on
the surface S.

From now on we assume that the surface S can be parametrized by a rational
proper parametrization

P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)).

1It is defined as the radical ideal in the ring theory.
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Since P is a birational map A2(Q) → S ⊂ A3(Q), there is a birational inverse map
P−1 defining on the surface S except finitely many curves or points on S.

Definition 3.1. A solution y = f(x) of the equation F (x, y, y′) = 0 is parametrizable
by P if the parametric curve (x, f(x), f ′(x)) lies in the domain of the image of P.

Proposition 3.1. Let F (x, y, z) = 0 be a rational surface with a proper parametriza-
tion

P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)).

The differential equation F (x, y, y′) = 0 has a rational solution, which is parametrizable
by P, if and only if there exist two rational functions s(x) and t(x) such thatχ1(s(x), t(x)) = x

dχ2(s(x), t(x))
dx

= χ3(s(x), t(x)).
(3)

If this is the case, then y = χ2(s(x), t(x)) is a rational solution of F (x, y, y′) = 0.

Proof. Assume that y = f(x) is a rational solution of F (x, y, y′) = 0, which is
parametrizable by P. Then let

(s(x), t(x)) = P−1(x, f(x), f ′(x)).

This is a plane parametric curve and satisfies the following relations

P(s(x), t(x)) = P(P−1(x, f(x), f ′(x))) = (x, f(x), f ′(x)).

In other words, we have 
χ1(s(x), t(x)) = x

χ2(s(x), t(x)) = f(x)

χ3(s(x), t(x)) = f ′(x).

(4)

Moreover, (s(x), t(x)) is a rational plane curve in (s, t)-plane because P−1 is a birational
map and coordinate functions of γ(x) are rational functions in x.

Conversely, if two rational functions s = s(x) and t = t(x) satisfy the systemχ1(s(x), t(x)) = x
dχ2(s(x), t(x))

dx
= χ3(s(x), t(x)),

then it is clear that y = χ2(s(x), t(x)) is a rational solution of the differential equation
F (x, y, y′) = 0.

Remark 3.1. Suppose that P1(s, t) and P2(s, t) are two proper parametrizations of
F (x, y, y′) = 0. It may happen that a rational solution y = f(x) of F (x, y, y′) = 0 is
parametrizable by P1(s, t) but it is not parametrizable by P2(s, t). This is the case
when the parametric curve (x, f(x), f ′(x)) is not covered by P2(s, t). However, the set
of missing curves is finite. On the other hand, if P2(s, t) is a normal parametrization,
then every solution of F (x, y, y′) = 0 is parametrizable by P2(s, t).
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We are going to study the condition on s(x), t(x) in detail. Suppose that s = s(x)
and t = t(x) are two rational functions such thatχ1(s(x), t(x)) = x

dχ2(s(x), t(x))
dx

= χ3(s(x), t(x)).
(5)

Differentiate the first equation of (5) and expand the last equation of (5), we get
∂χ1(s(x), t(x))

∂s
· s′(x) +

∂χ1(s(x), t(x))
∂t

· t′(x) = 1

∂χ2(s(x), t(x))
∂s

· s′(x) +
∂χ2(s(x), t(x))

∂t
· t′(x) = χ3(s(x), t(x)).

(6)

If

det


∂χ1(s(x), t(x))

∂s

∂χ1(s(x), t(x))
∂t

∂χ2(s(x), t(x))
∂s

∂χ2(s(x), t(x))
∂t

 6≡ 0, (7)

then (s(x), t(x)) is a solution of the system of differential equations of order 1 in s, t

and degree 1 in s′, t′ 
s′(x) =

f1(s, t)
g(s, t)

t′(x) = −f2(s, t)
g(s, t)

,

(8)

where f1(s, t), f2(s, t), g(s, t) are rational functions in s, t and defined by

f1(s, t) =
∂χ2(s, t)

∂t
− χ3(s, t) · ∂χ1(s, t)

∂t
,

f2(s, t) =
∂χ2(s, t)

∂s
− χ3(s, t) · ∂χ1(s, t)

∂s
,

g(s, t) =
∂χ1(s, t)

∂s
· ∂χ2(s, t)

∂t
− ∂χ1(s, t)

∂t
· ∂χ2(s, t)

∂s
.

(9)

If the determinant (7) is equal to 0, then (s(x), t(x)) is a solution of the system{
ḡ(s, t) = 0

f̄1(s, t) = 0,
(10)

where ḡ(s, t) and f̄1(s, t) are numerators of g(s, t) and f1(s, t) respectively. Thus
(s(x), t(x)) defines a curve iff gcd(ḡ(s, t), f̄1(s, t)) is a non constant polynomial in s, t.
Otherwise, (s(x), t(x)) is just an intersection point of two algebraic curves ḡ(s, t) = 0
and f̄1(s, t) = 0, which does not satisfy the relation (5).

We would expect that a rational general solution of the system (8) will define a
rational general solution of the equation F (x, y, y′) = 0. At this point we define what
we mean by a rational general solution of the system (8). Let Ni and Mi be the
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numerator and the denominator of
fi(s, t)
g(s, t)

for i = 1, 2.

Definition 3.2. A rational solution (s̄(x), t̄(x)) of the system (8) is called a rational
general solution if for any differential polynomial G ∈ K{s, t} we have

G(s̄(x), t̄(x)) = 0⇔ prem(G, {s′M1(s, t)−N1(s, t), t′M2(s, t) +N2(s, t)}) = 0,

where prem(G, {s′M1(s, t)−N1(s, t), t′M2(s, t)+N2(s, t)}) is the pseudo remainder of G
with respect to the system of differential polynomials s′M1(s, t)−N1(s, t), t′M2(s, t) +
N2(s, t).

We can see that the prem(G, {s′M1(s, t)−N1(s, t), t′M2(s, t) +N2(s, t)}) will be a
polynomial in K[s, t] because the degree of s′ and t′ are 1. In particular, we have

Lemma 3.1. Let (s̄(x), t̄(x)) be a rational general solution of the system (8). Let G be
a bivariate polynomial in K[s, t]. If G(s̄(x), t̄(x)) = 0, then G = 0 in K[s, t].

Proof. Since G ∈ K[s, t], we have

prem(G, {s′M1(s, t)−N1(s, t), t′M2(s, t) +N2(s, t)}) = G.

Therefore, G(s̄(x), t̄(x)) = 0 implies G = 0 in K[s, t].

Theorem 3.1. Let ȳ = f(x) be a rational general solution of F (x, y, y′) = 0. Suppose
that ȳ = f(x) is parametrizable by P. Let

(s̄(x), t̄(x)) = P−1(x, f(x), f ′(x)).

If g(s̄(x), t̄(x)) 6= 0 then (s̄(x), t̄(x)) is a rational general solution of the system (8).

Proof. From the assumption it follows that (s̄(x), t̄(x)) is a solution of (8). Suppose
that P ∈ K{s, t} is a differential polynomial such that P (s̄(x), t̄(x)) = 0. Let

R = prem(P, {s′M1(s, t)−N1(s, t), t′M2(s, t) +N2(s, t)}).

Then R ∈ K[s, t], we have to prove that R = 0. We know that

R(s̄(x), t̄(x)) = R(P−1(x, f(x), f ′(x))) = 0.

Let’s consider the rational function R(P−1(x, y, z)) =
U(x, y, z)
V (x, y, z)

. Then U(x, y, y′) is a

differential polynomial satisfying the condition

U(x, f(x), f ′(x)) = 0.

Since f(x) is a rational general solution of F = 0 and both F and U are differential
polynomials of order 1, we have

I.U(x, y, y′) = Q0F,
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where I is the initial of F and Q0 is a differential polynomial of order 1 in K{y}.
Therefore,

R(s, t) = R(P−1(P(s, t))) =
U(P(s, t))
V (P(s, t))

=
Q0(P(s, t))F (P(s, t))
I(P(s, t))V (P(s, t))

= 0.

Thus (s̄(x), t̄(x)) is a rational general solution of (8).

We are now constructing a rational general solution of F (x, y, y′) = 0 from a rational
general solution of the system (8). Assume that (s̄(x), t̄(x)) is a rational general solution
of (8). Substituting s̄(x) and t̄(x) into χ1(s, t) we get

χ1(s̄(x), t̄(x)) = x+ c

for some constant c. Hence

χ1(s̄(x− c), t̄(x− c)) = x.

It follows that y = χ2(s̄(x− c), t̄(x− c)) is a solution of the differential equation

F (x, y, y′) = 0.

Moreover, we will prove that y = χ2(s̄(x− c), t̄(x− c)) is a rational general solution of
F (x, y, y′) = 0. The main theorem is the following.

Theorem 3.2. Let (s̄(x), t̄(x)) is a rational general solution of the system (8). Then

ȳ = χ2(s̄(x− c), t̄(x− c))

is a rational general solution of F (x, y, y′) = 0.

Proof. It is clear that ȳ = χ2(s̄(x−c), t̄(x−c)) is a rational solution of F (x, y, y′) = 0.
Let G be an arbitrary differential polynomial in K{y} such that G(ȳ) = 0. Let

R = prem(G,F )

be the differential pseudo-remainder of G with respect to F . It follows that

R(ȳ) = 0.

We have to prove that R = 0. Assume that R 6= 0. Then

R(χ1(s, t), χ2(s, t), χ3(s, t)) =
W (s, t)
Z(s, t)

∈ Q(s, t).

On the other hand,

R(χ1(s̄(x), t̄(x)), χ2(s̄(x), t̄(x)), χ3(s̄(x), t̄(x))) = 0.

It follows that W (s̄(x), t̄(x)) = 0. By the Lemma 3.1 we have W (s, t) = 0. Thus
R(χ1(s, t), χ2(s, t), χ3(s, t)) = 0. Since F is irreducible and degy′ R < degy′ F, we have
R = 0 in Q[x, y, z]. Therefore, ȳ is a rational general solution of F (x, y, y′) = 0.
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4 Algorithm and Example

• Input: F (x, y, y′) = 0,
proper parametrization (χ1(s, t), χ2(s, t), χ3(s, t)) ∈ Q(s, t) of F (x, y, y′) = 0

• Output: y = f(x) rational general solution of F (x, y, y′) = 0.

1. Compute f1(s, t), f2(s, t), g(s, t) as in (9)

2. Solve the associated system of ODEs for a rational general solution (s̄(x), t̄(x))
s′(x) =

f1(s, t)
g(s, t)

t′(x) = −f2(s, t)
g(s, t)

.

3. Compute the constant c := χ1(s̄(x), t̄(x))− x
4. Return y = χ2(s̄(x− c), t̄(x− c)).

Example 4.1. Consider the differential equation

y′3 − 4xyy′ + 8y2 = 0.

The corresponding surface has a proper parametrization

P(s, t) = (t,−4s2(2s− t),−4s(2s− t)).

The inverse map is
P−1(x, y, z) =

(y
z
, x
)
.

We compute
g(s, t) = 8s(3s− t),

f1(s, t) = 4s(3s− t), f2(s, t) = −8s(3s− t).

Thus the associated system is s′(x) =
1
2

t′(x) = 1.

Solving this system we obtain a rational general solution s̄(x) =
x

2
+ c2, t̄(x) = x+ c1

for arbitrary constants c1, c2. It follows that the general solution is

ȳ = −4s̄(x− c1)2(2s̄(x− c1)− t̄(x− c1)) = −C(x+ C)2

where C = 2c2 − c1.
Note that in this example

gcd(g(s, t), f1(s, t)) = 4s(3s− t).

It defines two parametric curves s(x) = 0, t(x) = x and s(x) =
x

3
, t(x) = x. This gives

us two other solutions y = 0 and y =
4
27
x3.
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