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Abstract

In the paper [Ngo09] we have studied the algebraic ODE of first order F (x, y, y′) =
0, where F ∈ Q[x, y, z], given its proper rational parametrization of the corresponding
surface F (x, y, z) = 0. Using this proper parametrization we deduced the problem of
finding rational general solutions of the equation F (x, y, y′) = 0 to finding rational
general solutions of its associated system of ODEs in two new indeterminates s, t. This
is a planar autonomous system of first order in s, t and of first degree in s′, t′.

In this paper we give a criterion for existence of rational general solutions of such
an autonomous system provided a degree bound of its rational general solutions. The
criterion is based on the vanishing of the differential pseudo remainder of Gao’s differ-
ential polynomials [FG06] with respect to the chain of the ODE system. As a result,
we use this criterion to classify all planar linear systems of ODEs having a rational
general solution.

1 Preliminaries

In this section we recall some basic notions in differential algebra such as order,
initial, separant, ranking and reduction in a ring of differential polynomials in two
indeterminates. The general definitions can be found in [Rit50] and [Kol73].

Let Q(x) be the differential field of rational functions over Q with usual derivation
d
dx and we also use ′ notation for an abbreviation of this derivation. Let s, t be two
indeterminates over Q(x). The i-th derivatives of s and t are denoted by si and ti,
respectively. The differential polynomial ring Q(x){s, t} is the ring consisting of all
polynomials in s, t and all their derivatives up to any order. Let F ∈ Q(x){s, t} be a
differential polynomial. The i-th derivative of F is denoted by F (i). We simply write s
and t instead of s0 and t0, respectively, or simply write F ′ instead of F (1). The order of
F in s (respectively, in t) is the highest n such that sn (respectively, of tn) occuring in

∗This work has been supported by the Austrian Science Foundation (FWF) via the Doctoral Program
“Computational Mathematics” (W1214), project DK11.
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F , denoted by ords(F ). For convention we define ords(F ) = −1 if F does not involve
any derivative of s.

Definition 1.1. Let F,G ∈ Q(x){s, t}. F is said to be of higher rank than G in s if
one of the following conditions holds:

1. ords(F ) > ords(G);

2. ords(F ) = ords(G) = n and degsn
(F ) > degsn

(G).

If F is of higher rank than G in s, then we also say G is of lower rank than F in s.
Similarly, we can define the corresponding notion in t.

We order the family (si, ti)i∈N by a total order as t < s < t1 < s1 < · · · . In differ-
ential algebra, this total order defines an orderly ranking on the set of derivatives of
the differential indeterminates s, t of Q(x){s, t}. The leader of a differential polynomial
F is the greatest derivative occurring in F with respect to this ranking. The initial of
F is the leading coefficient of F with respect to its leader. The separant of F is the
partial derivative of F with respect to its leader. It is also the initial of any proper
derivative of F .

Definition 1.2. Let F and G be two differential polynomials in Q(x){s, t} with the
orderly ranking. G is said to be reduced with respect to F if G is lower rank than F in
the indeterminate defined by the leader of F .

Definition 1.3. Let F ∈ Q(x){s, t}. By Ritt’s reduction, for any G ∈ Q(x){s, t} there
exists a unique representation

SmInG =
∑
i

QiF
(i) +R,

where S is the separant of F , I is the initial of F , Qi ∈ Q(x){s, t}, F (i) are the i-th
derivatives of F , m,n ∈ N and R ∈ Q(x){s, t} is reduced with respect to F . The R is
called the differential pseudo remainder of G with respect to F , denoted by

R = prem(G,F ).

The reduction of G with respect to F is trivial if R = G.

From now on, we consider M1, N1,M2, N2 ∈ Q[s, t] and two special differential
polynomials F1 and F2 in Q(x){s, t} defined as the following. Let

F1 = M1s
′ −N1, F2 = M2t

′ −N2.

Note that the initial and separant of F1 (respectively, of F2) are the same. The differ-
ential ideal generated by F1 and F2 is denoted by [F1, F2].

Lemma 1.1. Let G ∈ Q(x){s, t}, h = ords(G) and F1 = M1s
′ − N1. Let R =

prem(G,F1). Then

ords(R) ≤ 0, ordt(R) ≤ max{ordt(G), h− 1}.
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Proof. Since ords(F1) = 1 and R = prem(G,F1), by definition of the differential pseudo
remainder, we have ords(R) ≤ 0. If h < 1, then R = G. Hence

ordt(R) = ordt(G) ≤ max{ordt(G), h− 1}.

Suppose that h ≥ 1. Then the reduction of G with respect to F1 is non-trivial. Assume
that

Mn1
1 G = Qh−1F

(h−1)
1 +R1,

where ords(R1) ≤ h− 1 and Qh−1 ∈ Q(x){s, t}. We claim that

ordt(R1) ≤ max{ordt(G), h− 1}.

By contradiction, if ordt(R1) > max{ordt(G), h − 1}, then Qh−1 would have to in-
volve tordt(R1) and Qh−1F

(h−1)
1 would contain a term involving tordt(R1) and sh. This

term would be balanced neither by R1 nor by Mn1
1 G. Therefore the claim is proven.

Repeating Ritt’s reduction for R1 with respect to F (h−2)
1 we obtain

Mn2
1 R1 = Qh−2F

(h−2)
1 +R2,

where ords(R2) ≤ h− 2, Qh−2 ∈ Q(x){s, t} and

ordt(R2) ≤ max{ordt(R1), h− 2} ≤ max{ordt(G), h− 1}.

Therefore, we eventually reduce G to R = prem(G,F1) with property that

ordt(R) ≤ max{ordt(G), h− 1}.

Lemma 1.2. Let F1 = M1s
′−N1, F2 = M2t

′−N2. Let G ∈ Q(x){s, t} with h = ords(G)
and k = ordt(G). Suppose that R1 = prem(G,F1) and R2 = prem(R1, F2). Then

ords(R2) ≤ max{0, k − 1, h− 2}, ordt(R2) ≤ 0.

Proof. Let h1 = ords(R1) and k1 = ordt(R1). By Lemma 1.1, we have

h1 ≤ 0, k1 ≤ max{k, h− 1}.

Applying Lemma 1.1 for R1, we again have

ordt(R2) ≤ 0, ords(R2) ≤ max{h1, k1 − 1} ≤ max{0, k − 1, h− 2}.

For anyG ∈ Q(x){s, t}, consider the sequenceR1 = prem(G,F1), R2 = prem(R1, F2),
R3 = prem(R2, F1), R4 = prem(R3, F2), . . . . Lemma 1.2 tells us that each two consec-
utive reduction by F1 and F2 returns a differential polynomial having of lower order
than the previous one in both s and t. Therefore, we eventually reach a differential
polynomial which is reduced with respect to both F1 and F2.
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Definition 1.4. Let F1 = M1s
′ − N1, F2 = M2t

′ − N2. Let G ∈ Q(x){s, t}. By
consecutive reductions with respect to F1 and F2 we have a unique representation

Mm
1 M

n
2 G =

∑
i

Q1iF
(i)
1 +

∑
i

Q2iF
(i)
2 +R,

where Q1i, Q2i ∈ Q(x){s, t}, m,n ∈ N, F (i)
1 and F

(i)
2 are the i-th derivatives of F1 and

F2, respectively, R is reduced with respect to both F1 and F2. We denote

R = prem(G,F1, F2)

and call the differential pseudo remainder of G with respect to F1 and F2.

Lemma 1.3. Let
I = {G ∈ Q(x){s, t} | prem(G,F1, F2) = 0}.

Then I is a differential prime ideal in Q(x){s, t}.

Proof. We first prove that I is a differential ideal. It is clear that I ⊃ {F1, F2}. Let
G1, G2 ∈ I. Then we have

Mn1
1 Mm1

2 G1 ∈ [F1, F2], Mn2
1 Mm2

2 G2 ∈ [F1, F2],

where [F1, F2] is the differential ideal generated by F1 and F2. Let n = max{n1, n2}
and m = max{m1,m2}. Then

Mn
1 M

m
2 (G1 +G2) = Mn

1 M
m
2 G1 +Mn

1 M
m
2 G2 ∈ [F1, F2].

Thus
prem(G1 +G2, F1, F2) = 0.

In other words,
G1 +G2 ∈ I.

Now, for any G ∈ Q(x){s, t} we will prove that GG1 ∈ I. Since Mn1
1 Mm1

2 G1 ∈ [F1, F2],
we have

Mn1
1 Mm1

2 G1G ∈ [F1, F2].

Thus prem(GG1, F1, F2) = 0, which means GG1 ∈ I.
We also prove that G′1 ∈ I. We have

Mn1
1 Mm1

2 G1 ∈ [F1, F2].

It follows that (Mn1
1 Mm1

2 G1)′ ∈ [F1, F2]. Thus

n1M
′
1M

n1−1
1 Mm1

2 G1 +m1M
′
2M

n1
1 Mm1−1

2 G1 +Mn1
1 Mm1

2 G′1 ∈ [F1, F2].

Multiplying by M1M2 we obtain

Mn1+1
1 Mm1+1

2 G′1 ∈ [F1, F2],

which means prem(G′1, F1, F2) = 0. Therefore, G′1 ∈ I. Hence I is a differential ideal
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in K{s, t}.
Moreover, let G1, G2 ∈ Q(x){s, t} be such that G1G2 ∈ I. Suppose that

Mn1
1 Mm1

2 G1 ≡ R1 mod F1, F2 and Mn2
1 Mm2

2 G2 ≡ R2 mod F1, F2.

Then R1, R2 ∈ Q(x)[s, t] and

R1R2 = prem(R1R2, F1, F2).

On the other hand, since prem(G1G2, F1, F2) = 0, we have

Mn
1 M

m
2 G1G2 ≡ 0 mod F1, F2.

Hence
Mn

1 M
m
2 R1R2 ≡Mn1+n2

1 Mm1+m2
2 (Mn

1 M
m
2 G1G2) mod F1, F2

≡0 mod F1, F2

This means
R1R2 = prem(R1R2, F1, F2) = 0.

Since Q(x)[s, t] is an integral domain, we have either R1 = 0 or R2 = 0. Therefore, I
is a prime ideal.

2 The planar autonomous system of ODEs of first order, first degree with
rational general solutions

Definition 2.1. Let M1, N1,M2, N2 ∈ Q[s, t], M1,M2 6= 0. A system of ordinary
differential equations of the form 

s′ =
N1(s, t)
M1(s, t)

t′ =
N2(s, t)
M2(s, t)

(1)

is called a planar autonomous system of ODEs of first order and first degree in s and
t.

Definition 2.2. A rational solution (s(x), t(x)) of the system (1) is called a rational
general solution if for any G ∈ Q(x){s, t} we have

G(s(x), t(x)) = 0⇐⇒ prem(G,M1s
′ −N1,M2t

′ −N2) = 0.

Remark 2.1. 1. A rational general solution of the system (1) is nothing but a
generic zero of the prime differential ideal

I = {G ∈ Q(x){s, t} | prem(G,M1s
′ −N1,M2t

′ −N2) = 0}.

2. For any G ∈ Q(x){s, t}, prem(G,M1s
′ −N1,M2t

′ −N2) ∈ Q(x)[s, t].

3. Observe that if (s(x), t(x)) is a rational general solution of the system (1), then
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for any polynomial G ∈ Q(x)[s, t] we have

G(s(x), t(x)) = 0 =⇒ G = 0,

because G = prem(G,M1s
′ −N1,M2t

′ −N2).

Lemma 2.1. Let

s(x) =
akx

k + ak−1x
k−1 + · · ·+ a0

blxl + bl−1xl−1 + · · ·+ b0

and

t(x) =
cnx

n + cn−1x
n−1 + · · ·+ c0

dmxm + dm−1xm−1 + · · ·+ d0

be a rational solution of the system (1), where ai, bi, ci, di are constants in an extension
field of Q(x). If (s(x), t(x)) is a rational general solution of the system (1), then there
exists a constant in the coefficients of s(x) and t(x) such that it is transcendental over
Q.

Proof. Let

S = (blxl + bl−1x
l−1 + · · ·+ b0)s− (akxk + ak−1x

k−1 + · · ·+ a0),

and
T = (dmxm + dm−1x

m−1 + · · ·+ d0)t− (cnxn + cn−1x
n−1 + · · ·+ c0).

LetG = resx(S, T ). ThenG is a polynomial in s and t with the coefficients depending on
ai, bi, ci, di. If all ai, bi, ci, di were in Q, then G ∈ Q[s, t] and G(s(x), t(x)) = 0. Since
(s(x), t(x)) is a rational general solution, it follows that G = 0. This is impossible
because G = resx(S, T ) 6= 0, which is known for computing the implicit equation of
the rational algebraic curve having the rational parametrization (s(x), t(x)) [SWPD08].
Therefore, there is a coefficient that does not belong to Q. Since Q is an algebraically
closed field, a constant which is not in Q must be a transcendental element over Q.

The following lemma can be found in [FG06].

Lemma 2.2. There exists a differential polynomial Dn,m(y) such that every rational
function

y =
anx

n + an−1x
n−1 + · · ·+ a0

bmxm + bm−1xm−1 + · · ·+ b0

is a solution of Dn,m(y). Moreover, the differential polynomial Dn,m(y) has only ra-
tional solutions.

Proof.

Dn,m(y) =

∣∣∣∣∣∣∣∣∣∣

(
n+1

0

)
y(n+1)

(
n+1

1

)
y(n) · · ·

(
n+1
m

)
y(n+1−m)(

n+2
0

)
y(n+2)

(
n+2

1

)
y(n+1) · · ·

(
n+2
m

)
y(n+2−m)

...
... · · ·

...(
n+1+m

0

)
y(n+1+m)

(
n+1+m

1

)
y(n+m) · · ·

(
n+1+m

m

)
y(n+1)

∣∣∣∣∣∣∣∣∣∣
.
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Using Gao’s differential polynomial we have the following criterion.

Theorem 2.1. The system (1) has a rational general solution (s(x), t(x)) with deg s(x)
≤ n and deg t(x) ≤ m if and only if{

prem(Dn,n(s),M1s
′ −N1,M2t

′ −N2) = 0

prem(Dm,m(t),M1s
′ −N1,M2t

′ −N2) = 0.
(2)

Proof. Suppose that the system (1) has a rational general solution (s(x), t(x)) with
deg s(x) ≤ n and deg t(x) ≤ m. Then (s(x), t(x)) is a solution of Dn,n(s) and Dm,m(t)
as well. By the definition of rational general solutions of the system (1) we have{

prem(Dn,n(s),M1s
′ −N1,M2t

′ −N2) = 0

prem(Dm,m(t),M1s
′ −N1,M2t

′ −N2) = 0.

Conversely, if these two conditions hold, then Dn,n(s) and Dm,m(t) belong to the prime
differential ideal I as defined in Lemma 1.3. Since I is a prime ideal, it has a generic
zero. This generic zero is a zero of Dn,n(s) and Dm,m(t). By Lemma 2.2 these two
differential polynomials have only rational solutions. Therefore, the generic zero of I
must be rational.

Remark 2.2. If we know a degree bound of the rational solutions of the system (1),
then Theorem 2.1 gives us a criterion for existence of rational general solutions of the
system (1).

In the paper [Ngo09] we have studied the algebraic ODE of first order F (x, y, y′) = 0
given a proper rational parametrization

P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t))

of its corresponding surface F (x, y, z) = 0. We know that its associated system is
a planar autonomous system. Moreover, every rational solution (s(x), t(x)) of this
associated system satisfies the condition

χ1(s(x), t(x)) = x.

From this condition we can see that the degree of t(x) is determined in terms of the
degree of s(x) and the degree of χ1(s, t) with respect to s.

Theorem 2.2. Let

χ1(s, t) =
an(t)sn + an−1(t)sn−1 + · · ·+ a0(t)
bm(t)sm + bm−1(t)sm−1 + · · ·+ b0(t)

∈ Q(x)(s, t).

Suppose that s(x) and t(x) are rational functions such that χ1(s(x), t(x)) = x. Let
δ = degx s(x). Then

1. If n ≥ m, then degx t(x) ≤ 1 + nδ.

2. If n < m, then degx t(x) ≤ 1 +mδ.
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Proof. We have

χ1(s(x), t(x)) = x⇐⇒ an(t(x))s(x)n + an−1(t(x))s(x)n−1 · · ·+ a0(t(x))
bm(t(x))s(x)m + bm−1(t)s(x)m−1 · · ·+ b0(t(x))

= x.

Suppose that K is the coefficient field of s(x) and t(x). We know that for any rational
function t ∈ K(x), x is algebraic over K(t) and

degx t(x) = [K(x) : K(t)].

Therefore, in order to find a degree bound for t, it is enough to find an algebraic

equation for x over K(t). Let s =
P (x)
Q(x)

, δ = degx s(x) = max{degx P (x),degxQ(x)},

l = degxQ(x). We have

x =
Q(x)m

Q(x)n
(an(t)P (x)n + · · ·+ a0(t)Q(x)n)
(bm(t)P (x)m + · · ·+ b0(t)Q(x)m)

.

We need to know the degree of x in the above equation. It follows from l ≤ δ that if
n ≥ m, then

degx t(x) ≤ max{1 +mδ + l(n−m), nδ} ≤ 1 + nδ.

If n < m, then

degx t(x) ≤ max{1 +mδ, nδ + l(m− n)} ≤ 1 +mδ.

2.1 The linear system of autonomous ODEs

Consider the linear system {
s′ = as+ bt+ e

t′ = cs+ dt+ h
(3)

where a, b, c, d, e, h are constants. We claim that

Lemma 2.3. Every rational solution of the linear system is a polynomial solution.

Proof. Assume that s(x) =
A

pαB
, t(x) =

C

pβD
, where p is an irreducible polynomial

and α, β > 0; A,B,C,D have no factor of p. Then

ordp(s′(x)) = α+ 1 ordp(t′(x)) = β + 1.

We have
as+ bt+ e = a

A

pαB
+ b

C

pβD
+ e.

Hence

ordp(as+ bt+ e) ≤ max{α, β}, ordp(cs+ dt+ h) ≤ max{α, β}.
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There are two cases

• If α ≥ β, then ordp(as+ bt+ e) ≤ α < ordp(s′(x)). It is impossible.

• If α < β, then ordp(cs+ dt+ h) ≤ β < ordp(t′(x)). It is impossible.

Therefore, α = β = 0. Thus s(x), t(x) are polynomials.

Theorem 2.3. Every rational general solution of the linear system (3) is a couple of
polynomials of degree at most 2.

Proof. We can write the linear system in the form(
s′

t′

)
=

(
a b

c d

)(
s

t

)
+

(
e

h

)

Hence (
s′′

t′′

)
=

(
a b

c d

)2(
s

t

)
+

(
a b

c d

)(
e

h

)
...(

s(n+1)

t(n+1)

)
=

(
a b

c d

)n+1(
s

t

)
+

(
a b

c d

)n(
e

h

)
.

The system has a polynomial general solution of degree n iff{
prem(s(n+1), [s′ − as− bt− e, t′ − cs− dt− h]) = 0

prem(t(n+1), [s′ − as− bt− e, t′ − cs− dt− h]) = 0.

It means (
a b

c d

)n+1

= 0 and

(
a b

c d

)n(
e

h

)
= 0.

We will prove that this holds if and only if(
a b

c d

)2

= 0.

In fact, the “if ” is clear. Conversely, let(
a b

c d

)n
= 0.

Then ad− bc = 0 and the Jordan form of the matrix is

either

(
0 0
0 a+ d

)
or

(
0 1
0 0

)
.

Therefore, a+ d = 0 and n = 2.
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We have

(
a b

c d

)2

= 0⇐⇒


a2 + bc = 0

b(a+ d) = 0

c(a+ d) = 0

d2 + bc = 0.

Solving this algebraic system we obtain the following cases

• If b = 0, then a = d = 0.

• If b 6= 0, then a = −d and c = −d
2

b
.

Thus the explicit polynomial solutions of the system given by the following table.

System Rational general solutions(
0 0
0 0

) {
s(x) = ex+ C1

t(x) = hx+ C2(
0 0
c 0

) s(x) = ex+ C1

t(x) = ce
x2

2
+ (cC1 + h)x+ C2 −d b

−d
2

b
d



s(x) =

hb− ed
2

x2 + (bC1 + e)x+ C2

t(x) =
(hb− ed)d

2b
x2 + (dC1 + h)x+

d

b
C2 + C1

Note that the last matrix of the table also covers the other symmetric cases, for
instance

d = 0 −→

(
0 b

0 0

)
, d = −a, b = −a

2

c
−→

 a −a
2

c
c −a

 .

We can prove that they are rational general solutions of the corresponding system. For
instance, consider a simple system {

s′ = e

t′ = h

where e, h are not all zero. It turns out that the system has a solution given by

s(x) = ex+ C1, t(x) = hx+ C2

where C1, C2 are arbitrary constants. The implicit equation of (s(x), t(x)) is

et− hs+ hC1 − eC2 = 0.

Let G ∈ Q[s, t] be such that G(s(x), t(x)) = 0. Then et− hs+ hC1− eC2 is a factor of
G for arbitrary constant C = hC1− eC2. It implies that G = 0. Therefore, (s(x), t(x))
is a rational general solution of the given system. Using a similar argument we prove
for the other systems in the table.
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2.2 The polynomial system of autonomous ODEs

In this section we present some simple properties of the polynomial system of au-
tonomous ODEs. Consider the system{

s′ = P (s, t)

t′ = Q(s, t)
(4)

where P and Q are polynomials in Q[s, t] and gcd(P,Q) = 1.

Lemma 2.4. Let (s(x), t(x)) be a rational solution of the system 4. Let F (s, t) be the
implicit irreducible polynomial defining the parametric curve (s(x), t(x)). Then there
exists a polynomial G(s, t) such that

FsP + FtQ = FG (5)

where Fs and Ft are partial derivatives of F with respect to s and t. Conversely,
suppose that F (s, t) is an irreducible polynomial satisfying the equation (5) for some
G and (s(x), t(x)) is a rational parametrization of F (s, t) = 0. Then

s′(x) ·Q(s(x), t(x))− t′(x) · P (s(x), t(x)) = 0.

Proof. Suppose that the system (4) has a rational solution (s(x), t(x)). Let F (s, t) be
the defining polynomial of the rational algebraic curve (s(x), t(x)). We have

F (s(x), t(x)) = 0.

Differentiating this equation with respect to x we get

Fs(s(x), t(x)) · s′(x) + Ft(s(x), t(x)) · t′(x) = 0,

hence
Fs(s(x), t(x)) · P (s(x), t(x)) + Ft(s(x), t(x)) ·Q(s(x), t(x)) = 0.

Therefore, there exists a polynomial G(s, t) such that

FsP + FtQ = FG.

Conversely, assume that F (s, t) is an irreducible polynomial satisfying the equation

FsP + FtQ = FG

for some G ∈ Q[s, t]. Suppose that (s(x), t(x)) is a rational parametrization of F (s, t) =
0. We have

Fs(s(x), t(x)) · s′(x) + Ft(s(x), t(x)) · t′(x) = 0.

On the other hand, because of F (s(x), t(x)) = 0,

Fs(s(x), t(x))·P (s(x), t(x))+Ft(s(x), t(x))·Q(s(x), t(x)) = F (s(x), t(x))·G(s(x), t(x)) = 0.
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It follows that{
Fs(s(x), t(x)) · s′(x) + Ft(s(x), t(x)) · t′(x) = 0

Fs(s(x), t(x)) · P (s(x), t(x)) + Ft(s(x), t(x)) ·Q(s(x), t(x)) = 0.

Since F (s, t) is irreducible, Fs(s(x), t(x)) and Ft(s(x), t(x)) are non-zero rational func-
tions in x. Therefore, the determinant of this homogeneous system is 0, i.e.

s′(x) ·Q(s(x), t(x))− t′(x) · P (s(x), t(x)) = 0.

Lemma 2.5. Let F (s, t) be an irreducible polynomial such that

FsP + FtQ = FG

for some G(s, t). If F (0, 0) = Fs(0, 0) = Ft(0, 0) = 0 and Fss(0, 0)Ftt(0, 0)−F 2
st(0, 0) 6=

0, then
P (0, 0) = Q(0, 0) = 0.

Proof. Consider the Taylor expansion of F (s, t) at (0, 0) we have

F (s, t) =
1
2!

(Fss(0, 0)s2 + 2Fst(0, 0)st+ Ftt(0, 0)t2) + higher order.

Then
Fs(s, t) = Fss(0, 0)s+ Fst(0, 0)t+ higher order

and
Ft(s, t) = Fst(0, 0)s+ Ftt(0, 0)t+ higher order.

Suppose that
P (s, t) = p0 + p1s+ p2t+ higher order,

Q(s, t) = q0 + q1s+ q2t+ higher order.

Then we have

FsP + FtQ =p0(Fss(0, 0)s+ Fst(0, 0)t) + q0(Fst(0, 0)s+ Ftt(0, 0)t) + higher order

=(p0Fss(0, 0) + q0Fst(0, 0))s+ (p0Fst(0, 0) + q0Ftt(0, 0))t+ higher order

Since FG is of order at least 2, we have{
p0Fss(0, 0) + q0Fst(0, 0) = 0

p0Fst(0, 0) + q0Ftt(0, 0) = 0.

It follows from the assumption Fss(0, 0)Ftt(0, 0)− F 2
st(0, 0) 6= 0 that

p0 = q0 = 0.

Therefore, P (0, 0) = Q(0, 0) = 0.
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