Doctoral Program
Computational Mathematics

A criterion for existence of rational general solutions of planar systems of ODEs

L.X.Chau Ngo

Supported by

Austrian Science Fund (FWF)

Editorial Board: Bruno Buchberger
Bert Jüttler
Ulrich Langer
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner
Managing Editor: Veronika Pillwein
Communicated by: Franz Winkler
Peter Paule

DK sponsors:

- Johannes Kepler University Linz (JKU)
- Austrian Science Fund (FWF)
- Upper Austria

A criterion for existence of rational general solutions of planar systems of ODEs *

Ngo Lam Xuan Chau ${ }^{\dagger}$
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria.

Abstract

In the paper Ngo09 we have studied the algebraic ODE of first order $F\left(x, y, y^{\prime}\right)=$ 0 , where $F \in \mathbb{Q}[x, y, z]$, given its proper rational parametrization of the corresponding surface $F(x, y, z)=0$. Using this proper parametrization we deduced the problem of finding rational general solutions of the equation $F\left(x, y, y^{\prime}\right)=0$ to finding rational general solutions of its associated system of ODEs in two new indeterminates s, t. This is a planar autonomous system of first order in s, t and of first degree in s^{\prime}, t^{\prime}.

In this paper we give a criterion for existence of rational general solutions of such an autonomous system provided a degree bound of its rational general solutions. The criterion is based on the vanishing of the differential pseudo remainder of Gao's differential polynomials [FG06] with respect to the chain of the ODE system. As a result, we use this criterion to classify all planar linear systems of ODEs having a rational general solution.

1 Preliminaries

In this section we recall some basic notions in differential algebra such as order, initial, separant, ranking and reduction in a ring of differential polynomials in two indeterminates. The general definitions can be found in Rit50 and Kol73].

Let $\overline{\mathbb{Q}}(x)$ be the differential field of rational functions over $\overline{\mathbb{Q}}$ with usual derivation $\frac{d}{d x}$ and we also use ' notation for an abbreviation of this derivation. Let s, t be two indeterminates over $\overline{\mathbb{Q}}(x)$. The i-th derivatives of s and t are denoted by s_{i} and t_{i}, respectively. The differential polynomial ring $\overline{\mathbb{Q}}(x)\{s, t\}$ is the ring consisting of all polynomials in s, t and all their derivatives up to any order. Let $F \in \overline{\mathbb{Q}}(x)\{s, t\}$ be a differential polynomial. The i-th derivative of F is denoted by $F^{(i)}$. We simply write s and t instead of s_{0} and t_{0}, respectively, or simply write F^{\prime} instead of $F^{(1)}$. The order of F in s (respectively, in t) is the highest n such that s_{n} (respectively, of t_{n}) occuring in

[^0]F, denoted by $\operatorname{ord}_{s}(F)$. For convention we define $\operatorname{ord}_{s}(F)=-1$ if F does not involve any derivative of s.

Definition 1.1. Let $F, G \in \overline{\mathbb{Q}}(x)\{s, t\}$. F is said to be of higher rank than G in s if one of the following conditions holds:

1. $\operatorname{ord}_{s}(F)>\operatorname{ord}_{s}(G)$;
2. $\operatorname{ord}_{s}(F)=\operatorname{ord}_{s}(G)=n$ and $\operatorname{deg}_{s_{n}}(F)>\operatorname{deg}_{s_{n}}(G)$.

If F is of higher rank than G in s, then we also say G is of lower rank than F in s. Similarly, we can define the corresponding notion in t.

We order the family $\left(s_{i}, t_{i}\right)_{i \in \mathbb{N}}$ by a total order as $t<s<t_{1}<s_{1}<\cdots$. In differential algebra, this total order defines an orderly ranking on the set of derivatives of the differential indeterminates s, t of $\overline{\mathbb{Q}}(x)\{s, t\}$. The leader of a differential polynomial F is the greatest derivative occurring in F with respect to this ranking. The initial of F is the leading coefficient of F with respect to its leader. The separant of F is the partial derivative of F with respect to its leader. It is also the initial of any proper derivative of F.

Definition 1.2. Let F and G be two differential polynomials in $\overline{\mathbb{Q}}(x)\{s, t\}$ with the orderly ranking. G is said to be reduced with respect to F if G is lower rank than F in the indeterminate defined by the leader of F.

Definition 1.3. Let $F \in \overline{\mathbb{Q}}(x)\{s, t\}$. By Ritt's reduction, for any $G \in \overline{\mathbb{Q}}(x)\{s, t\}$ there exists a unique representation

$$
S^{m} I^{n} G=\sum_{i} Q_{i} F^{(i)}+R
$$

where S is the separant of F, I is the initial of $F, Q_{i} \in \overline{\mathbb{Q}}(x)\{s, t\}, F^{(i)}$ are the i-th derivatives of $F, m, n \in \mathbb{N}$ and $R \in \overline{\mathbb{Q}}(x)\{s, t\}$ is reduced with respect to F. The R is called the differential pseudo remainder of G with respect to F, denoted by

$$
R=\operatorname{prem}(G, F) .
$$

The reduction of G with respect to F is trivial if $R=G$.
From now on, we consider $M_{1}, N_{1}, M_{2}, N_{2} \in \overline{\mathbb{Q}}[s, t]$ and two special differential polynomials F_{1} and F_{2} in $\overline{\mathbb{Q}}(x)\{s, t\}$ defined as the following. Let

$$
F_{1}=M_{1} s^{\prime}-N_{1}, F_{2}=M_{2} t^{\prime}-N_{2} .
$$

Note that the initial and separant of F_{1} (respectively, of F_{2}) are the same. The differential ideal generated by F_{1} and F_{2} is denoted by $\left[F_{1}, F_{2}\right.$].

Lemma 1.1. Let $G \in \overline{\mathbb{Q}}(x)\{s, t\}, h=\operatorname{ord}_{s}(G)$ and $F_{1}=M_{1} s^{\prime}-N_{1}$. Let $R=$ $\operatorname{prem}\left(G, F_{1}\right)$. Then

$$
\operatorname{ord}_{s}(R) \leq 0, \operatorname{ord}_{t}(R) \leq \max \left\{\operatorname{ord}_{t}(G), h-1\right\}
$$

Proof. Since $\operatorname{ord}_{s}\left(F_{1}\right)=1$ and $R=\operatorname{prem}\left(G, F_{1}\right)$, by definition of the differential pseudo remainder, we have $\operatorname{ord}_{s}(R) \leq 0$. If $h<1$, then $R=G$. Hence

$$
\operatorname{ord}_{t}(R)=\operatorname{ord}_{t}(G) \leq \max \left\{\operatorname{ord}_{t}(G), h-1\right\}
$$

Suppose that $h \geq 1$. Then the reduction of G with respect to F_{1} is non-trivial. Assume that

$$
M_{1}^{n_{1}} G=Q_{h-1} F_{1}^{(h-1)}+R_{1},
$$

where $\operatorname{ord}_{s}\left(R_{1}\right) \leq h-1$ and $Q_{h-1} \in \overline{\mathbb{Q}}(x)\{s, t\}$. We claim that

$$
\operatorname{ord}_{t}\left(R_{1}\right) \leq \max \left\{\operatorname{ord}_{t}(G), h-1\right\}
$$

By contradiction, if $\operatorname{ord}_{t}\left(R_{1}\right)>\max \left\{\operatorname{ord}_{t}(G), h-1\right\}$, then Q_{h-1} would have to involve $t_{\operatorname{ord}_{t}\left(R_{1}\right)}$ and $Q_{h-1} F_{1}^{(h-1)}$ would contain a term involving $t_{\operatorname{ord}_{t}\left(R_{1}\right)}$ and s_{h}. This term would be balanced neither by R_{1} nor by $M_{1}^{n_{1}} G$. Therefore the claim is proven. Repeating Ritt's reduction for R_{1} with respect to $F_{1}^{(h-2)}$ we obtain

$$
M_{1}^{n_{2}} R_{1}=Q_{h-2} F_{1}^{(h-2)}+R_{2}
$$

where $\operatorname{ord}_{s}\left(R_{2}\right) \leq h-2, Q_{h-2} \in \overline{\mathbb{Q}}(x)\{s, t\}$ and

$$
\operatorname{ord}_{t}\left(R_{2}\right) \leq \max \left\{\operatorname{ord}_{t}\left(R_{1}\right), h-2\right\} \leq \max \left\{\operatorname{ord}_{t}(G), h-1\right\}
$$

Therefore, we eventually reduce G to $R=\operatorname{prem}\left(G, F_{1}\right)$ with property that

$$
\operatorname{ord}_{t}(R) \leq \max \left\{\operatorname{ord}_{t}(G), h-1\right\}
$$

Lemma 1.2. Let $F_{1}=M_{1} s^{\prime}-N_{1}, F_{2}=M_{2} t^{\prime}-N_{2}$. Let $G \in \overline{\mathbb{Q}}(x)\{s, t\}$ with $h=\operatorname{ord}_{s}(G)$ and $k=\operatorname{ord}_{t}(G)$. Suppose that $R_{1}=\operatorname{prem}\left(G, F_{1}\right)$ and $R_{2}=\operatorname{prem}\left(R_{1}, F_{2}\right)$. Then

$$
\operatorname{ord}_{s}\left(R_{2}\right) \leq \max \{0, k-1, h-2\}, \quad \operatorname{ord}_{t}\left(R_{2}\right) \leq 0
$$

Proof. Let $h_{1}=\operatorname{ord}_{s}\left(R_{1}\right)$ and $k_{1}=\operatorname{ord}_{t}\left(R_{1}\right)$. By Lemma 1.1, we have

$$
h_{1} \leq 0, k_{1} \leq \max \{k, h-1\}
$$

Applying Lemma 1.1 for R_{1}, we again have

$$
\operatorname{ord}_{t}\left(R_{2}\right) \leq 0, \quad \operatorname{ord}_{s}\left(R_{2}\right) \leq \max \left\{h_{1}, k_{1}-1\right\} \leq \max \{0, k-1, h-2\}
$$

For any $G \in \overline{\mathbb{Q}}(x)\{s, t\}$, consider the sequence $R_{1}=\operatorname{prem}\left(G, F_{1}\right), R_{2}=\operatorname{prem}\left(R_{1}, F_{2}\right)$, $R_{3}=\operatorname{prem}\left(R_{2}, F_{1}\right), R_{4}=\operatorname{prem}\left(R_{3}, F_{2}\right), \ldots$ Lemma 1.2 tells us that each two consecutive reduction by F_{1} and F_{2} returns a differential polynomial having of lower order than the previous one in both s and t. Therefore, we eventually reach a differential polynomial which is reduced with respect to both F_{1} and F_{2}.

Definition 1.4. Let $F_{1}=M_{1} s^{\prime}-N_{1}, F_{2}=M_{2} t^{\prime}-N_{2}$. Let $G \in \overline{\mathbb{Q}}(x)\{s, t\}$. By consecutive reductions with respect to F_{1} and F_{2} we have a unique representation

$$
M_{1}^{m} M_{2}^{n} G=\sum_{i} Q_{1 i} F_{1}^{(i)}+\sum_{i} Q_{2 i} F_{2}^{(i)}+R
$$

where $Q_{1 i}, Q_{2 i} \in \overline{\mathbb{Q}}(x)\{s, t\}, m, n \in \mathbb{N}, F_{1}^{(i)}$ and $F_{2}^{(i)}$ are the i-th derivatives of F_{1} and F_{2}, respectively, R is reduced with respect to both F_{1} and F_{2}. We denote

$$
R=\operatorname{prem}\left(G, F_{1}, F_{2}\right)
$$

and call the differential pseudo remainder of G with respect to F_{1} and F_{2}.
Lemma 1.3. Let

$$
I=\left\{G \in \overline{\mathbb{Q}}(x)\{s, t\} \mid \operatorname{prem}\left(G, F_{1}, F_{2}\right)=0\right\} .
$$

Then I is a differential prime ideal in $\overline{\mathbb{Q}}(x)\{s, t\}$.
Proof. We first prove that I is a differential ideal. It is clear that $I \supset\left\{F_{1}, F_{2}\right\}$. Let $G_{1}, G_{2} \in I$. Then we have

$$
M_{1}^{n_{1}} M_{2}^{m_{1}} G_{1} \in\left[F_{1}, F_{2}\right], \quad M_{1}^{n_{2}} M_{2}^{m_{2}} G_{2} \in\left[F_{1}, F_{2}\right]
$$

where $\left[F_{1}, F_{2}\right]$ is the differential ideal generated by F_{1} and F_{2}. Let $n=\max \left\{n_{1}, n_{2}\right\}$ and $m=\max \left\{m_{1}, m_{2}\right\}$. Then

$$
M_{1}^{n} M_{2}^{m}\left(G_{1}+G_{2}\right)=M_{1}^{n} M_{2}^{m} G_{1}+M_{1}^{n} M_{2}^{m} G_{2} \in\left[F_{1}, F_{2}\right]
$$

Thus

$$
\operatorname{prem}\left(G_{1}+G_{2}, F_{1}, F_{2}\right)=0
$$

In other words,

$$
G_{1}+G_{2} \in I
$$

Now, for any $G \in \overline{\mathbb{Q}}(x)\{s, t\}$ we will prove that $G G_{1} \in I$. Since $M_{1}^{n_{1}} M_{2}^{m_{1}} G_{1} \in\left[F_{1}, F_{2}\right]$, we have

$$
M_{1}^{n_{1}} M_{2}^{m_{1}} G_{1} G \in\left[F_{1}, F_{2}\right]
$$

Thus $\operatorname{prem}\left(G G_{1}, F_{1}, F_{2}\right)=0$, which means $G G_{1} \in I$.
We also prove that $G_{1}^{\prime} \in I$. We have

$$
M_{1}^{n_{1}} M_{2}^{m_{1}} G_{1} \in\left[F_{1}, F_{2}\right]
$$

It follows that $\left(M_{1}^{n_{1}} M_{2}^{m_{1}} G_{1}\right)^{\prime} \in\left[F_{1}, F_{2}\right]$. Thus

$$
n_{1} M_{1}^{\prime} M_{1}^{n_{1}-1} M_{2}^{m_{1}} G_{1}+m_{1} M_{2}^{\prime} M_{1}^{n_{1}} M_{2}^{m_{1}-1} G_{1}+M_{1}^{n_{1}} M_{2}^{m_{1}} G_{1}^{\prime} \in\left[F_{1}, F_{2}\right]
$$

Multiplying by $M_{1} M_{2}$ we obtain

$$
M_{1}^{n_{1}+1} M_{2}^{m_{1}+1} G_{1}^{\prime} \in\left[F_{1}, F_{2}\right]
$$

which means $\operatorname{prem}\left(G_{1}^{\prime}, F_{1}, F_{2}\right)=0$. Therefore, $G_{1}^{\prime} \in I$. Hence I is a differential ideal
in $K\{s, t\}$.
Moreover, let $G_{1}, G_{2} \in \overline{\mathbb{Q}}(x)\{s, t\}$ be such that $G_{1} G_{2} \in I$. Suppose that $M_{1}^{n_{1}} M_{2}^{m_{1}} G_{1} \equiv R_{1} \bmod F_{1}, F_{2} \quad$ and $M_{1}^{n_{2}} M_{2}^{m_{2}} G_{2} \equiv R_{2} \bmod F_{1}, F_{2}$.

Then $R_{1}, R_{2} \in \overline{\mathbb{Q}}(x)[s, t]$ and

$$
R_{1} R_{2}=\operatorname{prem}\left(R_{1} R_{2}, F_{1}, F_{2}\right) .
$$

On the other hand, since $\operatorname{prem}\left(G_{1} G_{2}, F_{1}, F_{2}\right)=0$, we have

$$
M_{1}^{n} M_{2}^{m} G_{1} G_{2} \equiv 0 \bmod F_{1}, F_{2} .
$$

Hence

$$
\begin{aligned}
M_{1}^{n} M_{2}^{m} R_{1} R_{2} & \equiv M_{1}^{n_{1}+n_{2}} M_{2}^{m_{1}+m_{2}}\left(M_{1}^{n} M_{2}^{m} G_{1} G_{2}\right) \bmod F_{1}, F_{2} \\
& \equiv 0 \bmod F_{1}, F_{2}
\end{aligned}
$$

This means

$$
R_{1} R_{2}=\operatorname{prem}\left(R_{1} R_{2}, F_{1}, F_{2}\right)=0 .
$$

Since $\overline{\mathbb{Q}}(x)[s, t]$ is an integral domain, we have either $R_{1}=0$ or $R_{2}=0$. Therefore, I is a prime ideal.

2 The planar autonomous system of ODEs of first order, first degree with rational general solutions

Definition 2.1. Let $M_{1}, N_{1}, M_{2}, N_{2} \in \overline{\mathbb{Q}}[s, t], M_{1}, M_{2} \neq 0$. A system of ordinary differential equations of the form

$$
\left\{\begin{array}{l}
s^{\prime}=\frac{N_{1}(s, t)}{M_{1}(s, t)} \tag{1}\\
t^{\prime}=\frac{N_{2}(s, t)}{M_{2}(s, t)}
\end{array}\right.
$$

is called a planar autonomous system of ODEs of first order and first degree in s and t.

Definition 2.2. A rational solution $(s(x), t(x))$ of the system (1) is called a rational general solution if for any $G \in \overline{\mathbb{Q}}(x)\{s, t\}$ we have

$$
G(s(x), t(x))=0 \Longleftrightarrow \operatorname{prem}\left(G, M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right)=0 .
$$

Remark 2.1. 1. A rational general solution of the system (1) is nothing but a generic zero of the prime differential ideal

$$
I=\left\{G \in \overline{\mathbb{Q}}(x)\{s, t\} \mid \operatorname{prem}\left(G, M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right)=0\right\} .
$$

2. For any $G \in \overline{\mathbb{Q}}(x)\{s, t\}$, $\operatorname{prem}\left(G, M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right) \in \overline{\mathbb{Q}}(x)[s, t]$.
3. Observe that if $(s(x), t(x))$ is a rational general solution of the system (1), then
for any polynomial $G \in \overline{\mathbb{Q}}(x)[s, t]$ we have

$$
G(s(x), t(x))=0 \Longrightarrow G=0
$$

because $G=\operatorname{prem}\left(G, M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right)$.
Lemma 2.1. Let

$$
s(x)=\frac{a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0}}{b_{l} x^{l}+b_{l-1} x^{l-1}+\cdots+b_{0}}
$$

and

$$
t(x)=\frac{c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}}{d_{m} x^{m}+d_{m-1} x^{m-1}+\cdots+d_{0}}
$$

be a rational solution of the system (1), where $a_{i}, b_{i}, c_{i}, d_{i}$ are constants in an extension field of $\overline{\mathbb{Q}}(x)$. If $(s(x), t(x))$ is a rational general solution of the system $\sqrt[11]{ }$, then there exists a constant in the coefficients of $s(x)$ and $t(x)$ such that it is transcendental over $\overline{\mathbb{Q}}$.

Proof. Let

$$
S=\left(b_{l} x^{l}+b_{l-1} x^{l-1}+\cdots+b_{0}\right) s-\left(a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0}\right)
$$

and

$$
T=\left(d_{m} x^{m}+d_{m-1} x^{m-1}+\cdots+d_{0}\right) t-\left(c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}\right)
$$

Let $G=\operatorname{res}_{x}(S, T)$. Then G is a polynomial in s and t with the coefficients depending on $a_{i}, b_{i}, c_{i}, d_{i}$. If all $a_{i}, b_{i}, c_{i}, d_{i}$ were in $\overline{\mathbb{Q}}$, then $G \in \overline{\mathbb{Q}}[s, t]$ and $G(s(x), t(x))=0$. Since $(s(x), t(x))$ is a rational general solution, it follows that $G=0$. This is impossible because $G=\operatorname{res}_{x}(S, T) \neq 0$, which is known for computing the implicit equation of the rational algebraic curve having the rational parametrization $(s(x), t(x))$ SWPD08]. Therefore, there is a coefficient that does not belong to $\overline{\mathbb{Q}}$. Since $\overline{\mathbb{Q}}$ is an algebraically closed field, a constant which is not in $\overline{\mathbb{Q}}$ must be a transcendental element over $\overline{\mathbb{Q}}$.

The following lemma can be found in [FG06].
Lemma 2.2. There exists a differential polynomial $D_{n, m}(y)$ such that every rational function

$$
y=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}}
$$

is a solution of $D_{n, m}(y)$. Moreover, the differential polynomial $D_{n, m}(y)$ has only rational solutions.

Proof.

$$
D_{n, m}(y)=\left|\begin{array}{cccc}
\binom{n+1}{0} y^{(n+1)} & \binom{n+1}{1} y^{(n)} & \cdots & \binom{n+1}{m} y^{(n+1-m)} \\
\binom{n+2}{0} y^{(n+2)} & \binom{n+2}{1} y^{(n+1)} & \cdots & \binom{n+2}{m} y^{(n+2-m)} \\
\vdots & \vdots & \cdots & \vdots \\
\binom{n+1+m}{0} y^{(n+1+m)} & \binom{n+1+m}{1} y^{(n+m)} & \cdots & \binom{n+1+m}{m} y^{(n+1)}
\end{array}\right|
$$

Using Gao's differential polynomial we have the following criterion.
Theorem 2.1. The system (1) has a rational general solution $(s(x), t(x))$ with $\operatorname{deg} s(x)$ $\leq n$ and $\operatorname{deg} t(x) \leq m$ if and only if

$$
\left\{\begin{array}{l}
\operatorname{prem}\left(D_{n, n}(s), M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right)=0 \tag{2}\\
\operatorname{prem}\left(D_{m, m}(t), M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right)=0
\end{array}\right.
$$

Proof. Suppose that the system (1) has a rational general solution $(s(x), t(x))$ with $\operatorname{deg} s(x) \leq n$ and $\operatorname{deg} t(x) \leq m$. Then $(s(x), t(x))$ is a solution of $D_{n, n}(s)$ and $D_{m, m}(t)$ as well. By the definition of rational general solutions of the system (1) we have

$$
\left\{\begin{array}{l}
\operatorname{prem}\left(D_{n, n}(s), M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right)=0 \\
\operatorname{prem}\left(D_{m, m}(t), M_{1} s^{\prime}-N_{1}, M_{2} t^{\prime}-N_{2}\right)=0
\end{array}\right.
$$

Conversely, if these two conditions hold, then $D_{n, n}(s)$ and $D_{m, m}(t)$ belong to the prime differential ideal I as defined in Lemma 1.3. Since I is a prime ideal, it has a generic zero. This generic zero is a zero of $D_{n, n}(s)$ and $D_{m, m}(t)$. By Lemma 2.2 these two differential polynomials have only rational solutions. Therefore, the generic zero of I must be rational.

REMARK 2.2. If we know a degree bound of the rational solutions of the system (1), then Theorem 2.1 gives us a criterion for existence of rational general solutions of the system (1).

In the paper Ngo09 we have studied the algebraic ODE of first order $F\left(x, y, y^{\prime}\right)=0$ given a proper rational parametrization

$$
\mathcal{P}(s, t)=\left(\chi_{1}(s, t), \chi_{2}(s, t), \chi_{3}(s, t)\right)
$$

of its corresponding surface $F(x, y, z)=0$. We know that its associated system is a planar autonomous system. Moreover, every rational solution $(s(x), t(x))$ of this associated system satisfies the condition

$$
\chi_{1}(s(x), t(x))=x
$$

From this condition we can see that the degree of $t(x)$ is determined in terms of the degree of $s(x)$ and the degree of $\chi_{1}(s, t)$ with respect to s.

Theorem 2.2. Let

$$
\chi_{1}(s, t)=\frac{a_{n}(t) s^{n}+a_{n-1}(t) s^{n-1}+\cdots+a_{0}(t)}{b_{m}(t) s^{m}+b_{m-1}(t) s^{m-1}+\cdots+b_{0}(t)} \in \overline{\mathbb{Q}}(x)(s, t)
$$

Suppose that $s(x)$ and $t(x)$ are rational functions such that $\chi_{1}(s(x), t(x))=x$. Let $\delta=\operatorname{deg}_{x} s(x)$. Then

1. If $n \geq m$, then $\operatorname{deg}_{x} t(x) \leq 1+n \delta$.
2. If $n<m$, then $\operatorname{deg}_{x} t(x) \leq 1+m \delta$.

Proof. We have

$$
\chi_{1}(s(x), t(x))=x \Longleftrightarrow \frac{a_{n}(t(x)) s(x)^{n}+a_{n-1}(t(x)) s(x)^{n-1} \cdots+a_{0}(t(x))}{b_{m}(t(x)) s(x)^{m}+b_{m-1}(t) s(x)^{m-1} \cdots+b_{0}(t(x))}=x
$$

Suppose that \mathbb{K} is the coefficient field of $s(x)$ and $t(x)$. We know that for any rational function $t \in \mathbb{K}(x), x$ is algebraic over $\mathbb{K}(t)$ and

$$
\operatorname{deg}_{x} t(x)=[\mathbb{K}(x): \mathbb{K}(t)]
$$

Therefore, in order to find a degree bound for t, it is enough to find an algebraic equation for x over $\mathbb{K}(t)$. Let $s=\frac{P(x)}{Q(x)}, \delta=\operatorname{deg}_{x} s(x)=\max \left\{\operatorname{deg}_{x} P(x), \operatorname{deg}_{x} Q(x)\right\}$, $l=\operatorname{deg}_{x} Q(x)$. We have

$$
x=\frac{Q(x)^{m}}{Q(x)^{n}} \frac{\left(a_{n}(t) P(x)^{n}+\cdots+a_{0}(t) Q(x)^{n}\right)}{\left(b_{m}(t) P(x)^{m}+\cdots+b_{0}(t) Q(x)^{m}\right)}
$$

We need to know the degree of x in the above equation. It follows from $l \leq \delta$ that if $n \geq m$, then

$$
\operatorname{deg}_{x} t(x) \leq \max \{1+m \delta+l(n-m), n \delta\} \leq 1+n \delta
$$

If $n<m$, then

$$
\operatorname{deg}_{x} t(x) \leq \max \{1+m \delta, n \delta+l(m-n)\} \leq 1+m \delta
$$

2.1 The linear system of autonomous ODEs

Consider the linear system

$$
\left\{\begin{array}{l}
s^{\prime}=a s+b t+e \tag{3}\\
t^{\prime}=c s+d t+h
\end{array}\right.
$$

where a, b, c, d, e, h are constants. We claim that
LEMMA 2.3. Every rational solution of the linear system is a polynomial solution.
Proof. Assume that $s(x)=\frac{A}{p^{\alpha} B}, t(x)=\frac{C}{p^{\beta} D}$, where p is an irreducible polynomial and $\alpha, \beta>0 ; A, B, C, D$ have no factor of p. Then

$$
\operatorname{ord}_{p}\left(s^{\prime}(x)\right)=\alpha+1 \quad \operatorname{ord}_{p}\left(t^{\prime}(x)\right)=\beta+1
$$

We have

$$
a s+b t+e=a \frac{A}{p^{\alpha} B}+b \frac{C}{p^{\beta} D}+e .
$$

Hence

$$
\operatorname{ord}_{p}(a s+b t+e) \leq \max \{\alpha, \beta\}, \quad \operatorname{ord}_{p}(c s+d t+h) \leq \max \{\alpha, \beta\}
$$

There are two cases

- If $\alpha \geq \beta$, then $\operatorname{ord}_{p}(a s+b t+e) \leq \alpha<\operatorname{ord}_{p}\left(s^{\prime}(x)\right)$. It is impossible.
- If $\alpha<\beta$, then $\operatorname{ord}_{p}(c s+d t+h) \leq \beta<\operatorname{ord}_{p}\left(t^{\prime}(x)\right)$. It is impossible.

Therefore, $\alpha=\beta=0$. Thus $s(x), t(x)$ are polynomials.
THEOREM 2.3. Every rational general solution of the linear system (3) is a couple of polynomials of degree at most 2.

Proof. We can write the linear system in the form

$$
\binom{s^{\prime}}{t^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{s}{t}+\binom{e}{h}
$$

Hence

$$
\begin{aligned}
&\binom{s^{\prime \prime}}{t^{\prime \prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{2}\binom{s}{t}+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{e}{h} \\
& \vdots \\
&\binom{s^{(n+1)}}{t^{(n+1)}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{n+1}\binom{s}{t}+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{n}\binom{e}{h} .
\end{aligned}
$$

The system has a polynomial general solution of degree n iff

$$
\left\{\begin{array}{l}
\operatorname{prem}\left(s^{(n+1)},\left[s^{\prime}-a s-b t-e, t^{\prime}-c s-d t-h\right]\right)=0 \\
\operatorname{prem}\left(t^{(n+1)},\left[s^{\prime}-a s-b t-e, t^{\prime}-c s-d t-h\right]\right)=0
\end{array}\right.
$$

It means

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{n+1}=0 \quad \text { and } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{n}\binom{e}{h}=0
$$

We will prove that this holds if and only if

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{2}=0
$$

In fact, the "if" is clear. Conversely, let

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{n}=0
$$

Then $a d-b c=0$ and the Jordan form of the matrix is

$$
\text { either }\left(\begin{array}{cc}
0 & 0 \\
0 & a+d
\end{array}\right) \text { or }\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Therefore, $a+d=0$ and $n=2$.

We have

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{2}=0 \Longleftrightarrow\left\{\begin{array}{l}
a^{2}+b c=0 \\
b(a+d)=0 \\
c(a+d)=0 \\
d^{2}+b c=0
\end{array}\right.
$$

Solving this algebraic system we obtain the following cases

- If $b=0$, then $a=d=0$.
- If $b \neq 0$, then $a=-d$ and $c=-\frac{d^{2}}{b}$.

Thus the explicit polynomial solutions of the system given by the following table.

System	Rational general solutions
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$	$\left\{\begin{array}{l}s(x)=e x+C_{1} \\ t(x)=h x+C_{2}\end{array}\right.$
$\left(\begin{array}{ll}0 & 0 \\ c & 0\end{array}\right)$	$\left\{\begin{array}{l}s(x)=e x+C_{1} \\ t(x)=c e \frac{x^{2}}{2}+\left(c C_{1}+h\right) x+C_{2}\end{array}\right.$
$\left(\begin{array}{cc}-d & b \\ -\frac{d^{2}}{b} & d\end{array}\right)$	$\left\{\begin{array}{l}s(x)=\frac{h b-e d}{2} x^{2}+\left(b C_{1}+e\right) x+C_{2} \\ t(x)=\frac{(h b-e d) d}{2 b} x^{2}+\left(d C_{1}+h\right) x+\frac{d}{b} C_{2}+C_{1}\end{array}\right.$

Note that the last matrix of the table also covers the other symmetric cases, for instance

$$
d=0 \longrightarrow\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right), \quad d=-a, b=-\frac{a^{2}}{c} \longrightarrow\left(\begin{array}{cc}
a & -\frac{a^{2}}{c} \\
c & -a
\end{array}\right)
$$

We can prove that they are rational general solutions of the corresponding system. For instance, consider a simple system

$$
\left\{\begin{array}{l}
s^{\prime}=e \\
t^{\prime}=h
\end{array}\right.
$$

where e, h are not all zero. It turns out that the system has a solution given by

$$
s(x)=e x+C_{1}, t(x)=h x+C_{2}
$$

where C_{1}, C_{2} are arbitrary constants. The implicit equation of $(s(x), t(x))$ is

$$
e t-h s+h C_{1}-e C_{2}=0
$$

Let $G \in \overline{\mathbb{Q}}[s, t]$ be such that $G(s(x), t(x))=0$. Then $e t-h s+h C_{1}-e C_{2}$ is a factor of G for arbitrary constant $C=h C_{1}-e C_{2}$. It implies that $G=0$. Therefore, $(s(x), t(x))$ is a rational general solution of the given system. Using a similar argument we prove for the other systems in the table.

2.2 The polynomial system of autonomous ODEs

In this section we present some simple properties of the polynomial system of autonomous ODEs. Consider the system

$$
\left\{\begin{array}{l}
s^{\prime}=P(s, t) \tag{4}\\
t^{\prime}=Q(s, t)
\end{array}\right.
$$

where P and Q are polynomials in $\overline{\mathbb{Q}}[s, t]$ and $\operatorname{gcd}(P, Q)=1$.
Lemma 2.4. Let $(s(x), t(x))$ be a rational solution of the system 4 Let $F(s, t)$ be the implicit irreducible polynomial defining the parametric curve $(s(x), t(x))$. Then there exists a polynomial $G(s, t)$ such that

$$
\begin{equation*}
F_{s} P+F_{t} Q=F G \tag{5}
\end{equation*}
$$

where F_{s} and F_{t} are partial derivatives of F with respect to s and t. Conversely, suppose that $F(s, t)$ is an irreducible polynomial satisfying the equation (5) for some G and $(s(x), t(x))$ is a rational parametrization of $F(s, t)=0$. Then

$$
s^{\prime}(x) \cdot Q(s(x), t(x))-t^{\prime}(x) \cdot P(s(x), t(x))=0 .
$$

Proof. Suppose that the system (4) has a rational solution $(s(x), t(x))$. Let $F(s, t)$ be the defining polynomial of the rational algebraic curve $(s(x), t(x))$. We have

$$
F(s(x), t(x))=0 .
$$

Differentiating this equation with respect to x we get

$$
F_{s}(s(x), t(x)) \cdot s^{\prime}(x)+F_{t}(s(x), t(x)) \cdot t^{\prime}(x)=0,
$$

hence

$$
F_{s}(s(x), t(x)) \cdot P(s(x), t(x))+F_{t}(s(x), t(x)) \cdot Q(s(x), t(x))=0 .
$$

Therefore, there exists a polynomial $G(s, t)$ such that

$$
F_{s} P+F_{t} Q=F G .
$$

Conversely, assume that $F(s, t)$ is an irreducible polynomial satisfying the equation

$$
F_{s} P+F_{t} Q=F G
$$

for some $G \in \overline{\mathbb{Q}}[s, t]$. Suppose that $(s(x), t(x))$ is a rational parametrization of $F(s, t)=$ 0 . We have

$$
F_{s}(s(x), t(x)) \cdot s^{\prime}(x)+F_{t}(s(x), t(x)) \cdot t^{\prime}(x)=0 .
$$

On the other hand, because of $F(s(x), t(x))=0$,
$F_{s}(s(x), t(x)) \cdot P(s(x), t(x))+F_{t}(s(x), t(x)) \cdot Q(s(x), t(x))=F(s(x), t(x)) \cdot G(s(x), t(x))=0$.

It follows that

$$
\left\{\begin{array}{l}
F_{s}(s(x), t(x)) \cdot s^{\prime}(x)+F_{t}(s(x), t(x)) \cdot t^{\prime}(x)=0 \\
F_{s}(s(x), t(x)) \cdot P(s(x), t(x))+F_{t}(s(x), t(x)) \cdot Q(s(x), t(x))=0
\end{array}\right.
$$

Since $F(s, t)$ is irreducible, $F_{s}(s(x), t(x))$ and $F_{t}(s(x), t(x))$ are non-zero rational functions in x. Therefore, the determinant of this homogeneous system is 0 , i.e.

$$
s^{\prime}(x) \cdot Q(s(x), t(x))-t^{\prime}(x) \cdot P(s(x), t(x))=0
$$

Lemma 2.5. Let $F(s, t)$ be an irreducible polynomial such that

$$
F_{s} P+F_{t} Q=F G
$$

for some $G(s, t)$. If $F(0,0)=F_{s}(0,0)=F_{t}(0,0)=0$ and $F_{s s}(0,0) F_{t t}(0,0)-F_{s t}^{2}(0,0) \neq$ 0 , then

$$
P(0,0)=Q(0,0)=0
$$

Proof. Consider the Taylor expansion of $F(s, t)$ at $(0,0)$ we have

$$
F(s, t)=\frac{1}{2!}\left(F_{s s}(0,0) s^{2}+2 F_{s t}(0,0) s t+F_{t t}(0,0) t^{2}\right)+\text { higher order }
$$

Then

$$
F_{s}(s, t)=F_{s s}(0,0) s+F_{s t}(0,0) t+\text { higher order }
$$

and

$$
F_{t}(s, t)=F_{s t}(0,0) s+F_{t t}(0,0) t+\text { higher order }
$$

Suppose that

$$
\begin{aligned}
& P(s, t)=p_{0}+p_{1} s+p_{2} t+\text { higher order } \\
& Q(s, t)=q_{0}+q_{1} s+q_{2} t+\text { higher order }
\end{aligned}
$$

Then we have

$$
\begin{aligned}
F_{s} P+F_{t} Q & =p_{0}\left(F_{s s}(0,0) s+F_{s t}(0,0) t\right)+q_{0}\left(F_{s t}(0,0) s+F_{t t}(0,0) t\right)+\text { higher order } \\
& =\left(p_{0} F_{s s}(0,0)+q_{0} F_{s t}(0,0)\right) s+\left(p_{0} F_{s t}(0,0)+q_{0} F_{t t}(0,0)\right) t+\text { higher order }
\end{aligned}
$$

Since $F G$ is of order at least 2 , we have

$$
\left\{\begin{array}{l}
p_{0} F_{s s}(0,0)+q_{0} F_{s t}(0,0)=0 \\
p_{0} F_{s t}(0,0)+q_{0} F_{t t}(0,0)=0
\end{array}\right.
$$

It follows from the assumption $F_{s s}(0,0) F_{t t}(0,0)-F_{s t}^{2}(0,0) \neq 0$ that

$$
p_{0}=q_{0}=0
$$

Therefore, $P(0,0)=Q(0,0)=0$.

References

[FG06] R. Feng and X-S. Gao. A polynomial time algorithm for finding rational general solutions of first order autonomous odes. J. Symbolic Computation, 41:739-762, 2006.
[Kol73] E. R. Kolchin. Differential algebra and Algebraic groups. Academic Press, 1973.
[Ngo09] Chau L.X. Ngo. Rational general solutions of first order non-autonomous parametric odes. Technical report, Research Institute for Symbolic Computation, JKU, 02-2009.
[Rit50] J. F. Ritt. Differential Algebra, volume 33. Amer. Math. Society. Colloquium Publications, 1950.
[SWPD08] J. R. Sendra, F. Winkler, and S. Pérez-Díaz. Rational algebraic curves - A computer algebra approach. Springer, 2008.

Technical Reports of the Doctoral Program
 "Computational Mathematics"

2009

2009-01 S. Takacs, W. Zulehner: Multigrid Methods for Elliptic Optimal Control Problems with Neumann Boundary Control October 2009. Eds.: U. Langer, J. Schicho
2009-02 P. Paule, S. Radu: A Proof of Sellers' Conjecture October 2009. Eds.: V. Pillwein, F. Winkler 2009-03 K. Kohl, F. Stan: An Algorithmic Approach to the Mellin Transform Method November 2009. Eds.: P. Paule, V. Pillwein
2009-04 L.X.Chau Ngo: Rational general solutions of first order non-autonomous parametric ODEs November 2009. Eds.: F. Winkler, P. Paule
2009-05 L.X.Chau Ngo: A criterion for existence of rational general solutions of planar systems of ODEs November 2009. Eds.: F. Winkler, P. Paule

Doctoral Program

"Computational Mathematics"

Director:

Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Co-Speaker:

Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:

Johannes Kepler University Linz
Doctoral Program "Computational Mathematics"
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-7174

E-Mail:
office@dk-compmath.jku.at

Homepage:

http://www.dk-compmath.jku.at

[^0]: *This work has been supported by the Austrian Science Foundation (FWF) via the Doctoral Program "Computational Mathematics" (W1214), project DK11.
 ${ }^{\dagger}$ Email address: ngo.chau@risc.uni-linz.ac.at

