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SHAPE-EXPLICIT CONSTANTS
FOR SOME BOUNDARY INTEGRAL OPERATORS

CLEMENS PECHSTEIN∗

Abstract. Among the well-known constants in the theory of boundary integral equations
are the coercivity constants of the single layer potential and the hypersingular boundary
integral operator, and the contraction constant of the double layer potential. Whereas there
have been rigorous studies how these constants depend on the size and aspect ratio of the
underlying domain, only little is known on their dependency on the shape of the boundary.

In this article, we consider the homogeneous Laplace equation and derive explicit esti-
mates for the above mentioned constants in three dimensions. Using an alternative trace
norm we make the dependency explicit in two geometric parameters, the so-called Jones
parameter and the constant in Poincaré’s inequality. The latter one can be tracked back to
the constant in an isoperimetric inequality. There are many domains with quite irregular
boundaries, where these parameters stay bounded. Our results provide a new tool in the
analysis of numerical methods for boundary integral equations.

AMS Subject Classification (2010): 65R20, 65N38, 31C15

Keywords: boundary integral equations, boundary integral operators, explicit constants,
Poincaré’s inequality, Sobolev extension, boundary element method

1. Introduction

Boundary integral equations for strongly elliptic partial differential equations and their
variational framework provide a profound mathematical basis for the Galerkin boundary
element method (BEM), see [13] for an early work. The BEM has become a rather popular
method for the numerical solution of certain partial differential equations which occur in
many problems from physics and engineering. For a comprehensive introduction to boundary
integral equations we refer the reader e. g. to [15, 23] and to [30, 33]. The latter references
also cover the BEM and related computational aspects.

This article discusses a special issue of boundary integral equations for the Laplace problem.
In case of Laplace’s equation, there are two equations relating the Dirichlet trace of the
solution to its Neumann trace. These equations are usually posed in Sobolev spaces on
the boundary of the computational domain, see e. g. [1, 22, 23], and they involve several
boundary integral operators, among them the single and double layer potential operator, as
well as the hypersingular boundary integral operator. The properties of these operators are
well-studied, see e. g. [4, 7] and the references given above. The probably most important
properties are the (semi-)coercivity and boundedness of the single layer potential operator
and the hypersingular operator, which hold true under suitable conditions. However, the
constants of coercivity and boundedness depend on the choice of the Sobolev norms and are
in general not accessible.
∗ Institute of Computational Mathematics, Johannes Kepler University, Altenberger Str. 69, 4040 Linz,
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2 C. PECHSTEIN

In the course of this paper, we elaborate explicit estimates for coercivity and boundedness
constants in three dimensions with respect to particularly chosen Sobolev norms. Moreover,
we can explicitly bound the contraction constant of the double layer potential operator,
cf. [34]. The dependence on the computational domain is made explicit in two geometric
parameters. The first one is due to Jones, cf. [16, 29], the other one the constant in Poincaré’s
inequality, [2, 24], which can be tracked back to the constant in an isoperimetric inequality
due to Maz’ja, cf. [11, 21, 22]. There are many domains with quite irregular boundaries, where
all these parameters stay bounded. This fact was recently used by Dohrmann, Klawonn, and
Widlund [8, 9] (see also Klawonn, Rheinbach, and Widlund [18]) to prove shape-robust
estimates for domain decomposition methods for finite element equations. Actually, our
research was inspired by their work.

The results from our work can be used to obtain more explicit estimates in BEM-based
domain decomposition methods, cf. e. g. [14, 25, 26], or to show rigorous error estimates for
so-called BEM-based finite element methods, cf. [3].

The remainder of this article is organized as follows. In Section 2 we describe the problem
in more detail and present the main statements. In Section 3 we give precise definitions for
our geometric parameters. We recall an extension theorem by Jones and a Poincaré type in-
equality by Maz’ja. Combining these results we state and prove an auxiliary extension result
(Lemma 3.9) that will be used a couple of times in the sequel. Section 4 summarizes some
properties of boundary integral operators. In Section 5 we define our alternative norms and
prove related inequalities for the Dirichlet and Neumann traces. Finally, Section 6 contains
the main results: explicit coercivity and boundedness estimates together with proofs.

2. Problem description and main statement

Let Ωint ⊂ Rd (d = 2 or 3) be a bounded Lipschitz domain with boundary Γ, unit outward
normal n, and its exterior Ωext := Rd \ Ωint. We consider Laplace’s problem

−∆u = 0

both in Ωint and Ωext. The fundamental solution of the Laplace operator is given by

U∗(x, y) =

{
1

2π log 1
|x−y| for d = 2 ,

1
4π

1
|x−y| for d = 3 .

(2.1)

Let V : H−1/2(Γ) → H1/2(Γ) denote the single layer potential operator, K : H1/2(Γ) →
H1/2(Γ) the double layer potential operator, and D : H1/2(Γ)→ H−1/2(Γ) the hypersingular
boundary integral operator. For more precise definitions see Section 4 and [15, 23, 30, 33].
For smooth functions w and v we have the integral representations

(V w)(x) =
∫

Γ
U∗(x, y)w(y) dsy ,

(Kv)(x) =
∫

Γ

∂U∗

∂ny
(x, y) v(y) dsy ,

(Dv)(x) = − ∂

∂nx

∫
Γ

∂U∗

∂ny
(x, y)

(
v(y)− v(x)

)
dsy ,
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where x ∈ Γ. Let γint
0 and γint

1 denote the interior Dirichlet, respectively the Neumann trace
on Γ, i. e., for smooth functions u : Ωint → R,

γint
0 u = u|Γ , γint

1 u =
∂u

∂n
.

Then the solution u to the interior Laplace problem fulfills the two integral equations

V γint
1 u = (1

2I +K)γint
0 u ,

D γint
0 u = (1

2I −K
′)γint

1 u ,

where K ′ is the operator adjoint to K. The operators V , K, K ′, and D are linear and
bounded. One can show that in three dimensions, there exist positive constants cV and cD
such that

〈w, V w〉 ≥ cV ‖w‖2H−1/2(Γ)
∀w ∈ H−1/2(Γ) ,(2.2)

〈Dv, v〉 ≥ cD |v|2H1/2(Γ)
∀v ∈ H1/2(Γ) .(2.3)

In two dimensions, the second estimate remains true. The first one, however, holds in general
only on a subspace (this property is linked to a peculiarity of the two-dimensional exterior
problem). Let 1Γ denote the function that takes the value one everywhere on Γ. According
to [33, Sect. 6.6.1] (see also [23, Theorem 8.15]), we define the subspace

H
−1/2
∗ (Γ) := {w ∈ H−1/2(Γ) : 〈w, 1Γ〉 = 0} .(2.4)

Then, in two dimensions, estimate (2.2) holds for all w ∈ H
−1/2
∗ (Γ). If, in addition the

domain is small enough (a sufficient condition is diam(Ωint) < 1), it also holds on the whole
space H−1/2(Γ). In the general case, at least the inverse of V restricted to H−1/2

∗ (Γ) must
exist. To this end, we define the equilibrium (or natural) density weq ∈ H−1/2(Γ) by

V weq = const , 〈weq, 1Γ〉 = 1 .(2.5)

Its existence and uniqueness follow basically from the above coercivity result, cf. [23, 33].
Using the equilibrium density, we define the subspace

H
1/2
∗ (Γ) := {v ∈ H1/2(Γ) : 〈weq, v〉 = 0} .(2.6)

One can show that V : H−1/2
∗ (Γ) → H

1/2
∗ (Γ) and that V is a isomorphism between the

two spaces, coercive and bounded in both directions. Even if V might not be invertible, we
denote the inverse of this isomorphism by V −1.

Obviously, H1/2
∗ (Γ) is a subspace of H1/2(Γ) with co-dimension 1. By an embedding

argument, one can show that a third constant c̃D > 0 exists such that

〈Dv, v〉 ≥ c̃D ‖v‖2H1/2(Γ)
∀v ∈ H1/2

∗ (Γ) .(2.7)

Then, the constant

c0 := inf
v∈H1/2

∗ (Γ)

〈Dv, v〉
〈V −1v, v〉

(2.8)

is well-defined. From the estimates above we can conclude the bound

c0 ≥ cV c̃D .(2.9)

In [34], Steinbach and Wendland prove that the contraction properties

(1− cK) ‖v‖V −1 ≤ ‖(1
2I ±K)v‖V −1 ≤ cK ‖v‖V −1 ∀v ∈ H1/2

∗ (Γ)
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hold, where

cK := 1
2 +

√
1
4 − c0 , ‖v‖V −1 :=

√
〈V −1v, v〉 .

They show that c0 ≤ 1
4 . Hence, the contraction constant cK is well-defined and strictly

smaller than one. For an alternative proof and historical remarks see [5]. The contraction
properties have a series of important consequences, see e. g. [5, 25, 26, 32, 34].

Apparently, the constants cV and c̃D, and thus also the bound (2.9), depend heavily on
the choice of the norm in H1/2(Γ) that appears in the estimates (2.2) and (2.7). However,
the constant c0 itself is independent of that choice; it depends only on the domain Ωint. To
the best of our knowledge, an explicit dependency has not been known, except for special
domains, e. g., balls or ellipses, cf. [27, 28].

An inspection of the proof of (2.2) and (2.3) (see e. g. [33, Sect. 6.6.1] or [23, Theorem 7.6,
Theorem 8.2]) reveals that the constants cV , cD depend on the constants in both the interior
and the exterior trace inequality, and on the definition of the (semi-)norms for H±1/2(Γ). In
order to track the dependency of these constants on the shape of the domain, we introduce an
alternative norm ‖ · ‖?,H1/2(Γ) in H1/2(Γ). For a function v ∈ H1/2(Γ), the norm ‖v‖?,H1/2(Γ)

equals (up to some scaling) the H1-norm of the harmonic extension of v from Γ to Ωint.
Furthermore, we will work with the dual norm ‖ · ‖?,H−1/2(Γ) and a semi-norm | · |?,H1/2(Γ).

Also, we use two geometric parameters. On the one hand we have the Jones parameter, cf.
[16] and Section 3. On the other hand, we use the constant in Poincaré’s inequality, which
can be tracked back to the constant in the isoperimetric inequality, see [21, 22]. Typically, the
Jones parameter deteriorates when the aspect ratio gets small, and the Poincaré parameter
deteriorates when two parts of a domain are linked only via a narrow channel. Nevertheless,
both parameters may stay bounded when the domain has quite a rough boundary, cf. [8, 18].

Using these geometric parameters and our alternative norms, we prove the following results.
Let BR a ball of radius R > 0 with

Ωint ⊂ BR and dist(∂BR, Γ) ≥ 1
2 diam(Ωint),

and set ΩR := BR \ Ωint (cf. Figure 1). Then in three dimensions, there exist constants c?V ,
c?D, and C∗P depending only on the Jones parameters and the Poincaré constants of Ωint and
the auxiliary domain ΩR such that

c?V ‖w‖2?,H−1/2(Γ)
≤ 〈w, V w〉 ≤ (1 + 2C∗P ) ‖w‖2

?,H−1/2(Γ)
∀w ∈ H−1/2(Γ) ,

c?D |v|2?,H1/2(Γ)
≤ 〈Dv, v〉 ≤ |v|2

?,H1/2(Γ)
∀v ∈ H1/2(Γ) .

Since our norm ‖ · ‖?,H1/2(Γ) is defined via an H1-norm, we get in a certain sence explicit
equivalence relations between ‖ · ‖H1(Ωint), | · |H1(Ωint) and the (semi-)norms induced by V −1

and D. Also,

〈Dv, v〉 ≥
c?D

1 + C∗P
‖v‖2

?,H1/2(Γ)
∀v ∈ H1/2

∗ (Γ) .

Using our results, we obtain the bound

c0 ≥
c?V c

?
D

1 + C∗P
,

which shows that c0 is rather insensitive to rough boundaries. In two dimensions, similar
results hold. However, not in all estimates explicit constants are obtained, and we will
comment on this in Remark 6.10. The focus of the paper is on three-dimensionional case.
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3. Extension results and Poincaré’s inequality

3.1. Jones’ extension result. In [16] Jones introduced the notion of (ε, δ)-domains. The
following definition is equivalent to that of an (ε, ∞)-domain.

Definition 3.1 (Uniform domain). A bounded and connected set Ω ⊂ Rd is called a uniform
domain if there exists a constant CU (Ω) such that any pair of points x1 ∈ Ω and x2 ∈ Ω can
be joined by a rectifiable curve γ(t) : [0, 1] → Ω with γ(0) = x1 and γ(1) = x2, such that
the Euclidean arc length of γ is bounded by CU (Ω) |x1 − x2| and

min
i=1,2

|xi − γ(t)| ≤ CU (Ω) dist(γ(t), ∂Ω) ∀t ∈ [0, 1] .

Any Lipschitz domain is also a uniform domain. Due to Jones [16], Sobolev spaces on
uniform domains can be extended to the whole of Rd and the extension operator is bounded.
He even proved that uniform domains are the largest class in two dimensions for which such
extensions exist. We remark that Rogers [29] recently found a degree-independent extension
operator which has both the properties of Jones’ operator and of the one by Stein [31,
Chap. 6]. In the present paper, however, we do not make use of this fact. The following
theorem can be derived from Jones’ result [16, Theorem 1].

Theorem 3.2 (Jones). Let Ω ⊂ Rd be a bounded, uniform domain with diam(Ω) = 1. Then
there exists a bounded linear operator

E : H1(Ω)→ H1(Rd) , (E w)|Ω = w ∀w ∈ H1(Ω) ,

and a positive constant CE(Ω) depending only on CU (Ω) and the dimension d such that

‖E w‖H1(Rd) ≤ CE(Ω) ‖w‖H1(Ω) .

Theorem 3.2 also holds if diam(Ω) ≥ 1. But if the diameter tends to zero, the Sobolev
norms would have to be re-scaled. In the sequel of the current paper we use scaling-invariant
norms whenever possible. Hence, the above result is sufficient for our purpose. Note that the
Jones parameter CU (Ω) itself remains invariant when re-scaling the coordinates. Therefore,
in the general case, the statement of Theorem 3.2 holds true with the estimate replaced by(
|E w|2H1(Rd) +

1
diam(Ω)2

‖E w‖2L2(Rd)

)1/2
≤ CE(Ω)

(
|w|2H1(Ω) +

1
diam(Ω)2

‖w‖2L2(Ω)

)1/2
.

3.2. Poincaré’s inequality. In order to access the constant in Poincaré’s inequality, we
make use of the following result by Maz’ja [21] and Federer and Fleming [10], which implies
a version of Poincaré’s inequality.

Lemma 3.3 (Isoperimetric inequality). Let Ω ⊂ Rd be a uniform domain and let u be
sufficiently smooth. Then, γ(Ω) > 0 is the smallest constant such that

inf
c∈R

(∫
Ω
|u− c|

d
d−1 dx

) d−1
d ≤ γ(Ω)

∫
Ω
|∇u| dx ∀u ∈ C1(Ω)

holds if and only if γ(Ω) is the smallest constant such that the isoperimetric inequality[
min(|A|, |B|)

] d−1
d ≤ γ(Ω) |∂A ∩ ∂B|

holds for all measurable sets A ⊂ Ω and B = Ω\A with ∂A∩∂B being a measurable surface.
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Note that the parameter γ(Ω) does not depend on diam(Ω), but only on the shape of Ω
and on the dimension d. The following result can be found in [8, 9, 18] with an outline of
the proof. The rigorous proof for the three-dimensional case is due to Hyea Hyun Kim [17].

Lemma 3.4 (Poincaré’s inequality). Let γ(Ω) denote the best constant in the isoperimetric
inequality. Then, for all u ∈ H1(Ω),

inf
c∈R
‖u− c‖L2(Ω) ≤ γ(Ω) |Ω|

1
2 |u|H1(Ω) for d = 2 ,

inf
c∈R
‖u− c‖L2(Ω) ≤ 4

3 γ(Ω) |Ω|
1
3 |u|H1(Ω) for d = 3 .

The infimum is attained at c = uΩ := |Ω|−1
∫

Ω u dx.

Proof. For d = 2 (cf. [8, 18]), Lemma 3.3, Cauchy’s inequality, and a density argument imply(
inf
c∈R

∫
Ω
|u− c|2 dx

)1/2
≤ γ(Ω)

∫
Ω
|∇u| dx ≤ γ(Ω) |Ω|1/2 |u|H1(Ω) ∀u ∈ H1(Ω).

The fact that the infimum is attained at c = uΩ is easily seen from a variational argument.

For d = 3, we first fix u ∈ C1(Ω) and a constant û ∈ R yet to be specified. Introducing

f(x) :=
∣∣u(x)− û

∣∣4/3 sign
(
u(x)− û

)
,

with ∇f(x) = 4
3 |u(x)− û|1/3 sign(u(x)− û)∇u, we obtain a function f ∈ C1(Ω). We have

inf
c∈R
‖u− c‖L2(Ω) ≤ ‖u− û‖L2(Ω) =

(∫
Ω
|f |3/2 dx

)1/2
.(3.1)

For a general function g ∈ C(Ω) we define Kg(t) :=
∫

Ω |g(x) − t|3/2 dx. It is easy to show
that Kg is convex on the whole of R and that

Kg(0) = inf
t∈R

Kg(t) ⇐⇒
∫

Ω
sign

(
g(x)

)
|g(x)|1/2 dx = 0 .(3.2)

Obviously, sign(f(x)) = sign(u(x)− û). We note that the function

F : R→ R : s 7→
∫

Ω
sign

(
u(x)− s

) ∣∣|u(x)− s|4/3
∣∣1/2 dx

is continuous, and that s→ ±∞ =⇒ F (s)→ ∓∞. Thus, there exists û such that F (û) = 0.
Using this particular û, we can conclude from (3.2) and Lemma 3.3 that(∫

Ω
|f |3/2 dx

)1/2
=
(

inf
c∈R

∫
Ω
|f − c|3/2 dx

)3/2
≤ γ(Ω)3/4

(∫
Ω
|∇f | dx

)3/4
.(3.3)

Applying Cauchy’s inequality in a first and Hölder’s inequality (p = 3, q = 3/2) in a second
step, we obtain from the above formula for ∇f that(∫

Ω
|∇f | dx

)3/4
≤
(4

3

)3/4 {(∫
Ω
|u− û|2/3︸ ︷︷ ︸

=|f |1/2

dx
)1/2 (∫

Ω
|∇u|2 dx

)1/2}3/4

≤
(4

3

)3/4 {[(∫
Ω
|f |3/2 dx

)1/3
|Ω|2/3

]1/2
|u|H1(Ω)

}3/4
.

Combining the last two inequalities we can conclude that(∫
Ω
|f |3/2 dx

)1/2
≤
(4

3
γ(Ω)

)3/4 (∫
Ω
|f |3/2 dx

)1/8
|Ω|1/4 |u|3/4

H1(Ω)
.
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Therefore, (∫
Ω
|f |3/2 dx

)3/8
≤
(4

3
γ(Ω)

)3/4
|Ω|1/4 |u|3/4

H1(Ω)
,

and so (∫
Ω
|f |3/2 dx

)1/2
≤ 4

3
γ(Ω) |Ω|1/3 |u|H1(Ω) .

Together with (3.1) and a density argument, we finally arrive at the desired estimate. �

Definition 3.5. Let γ(Ω) be the best constant in the isoperimetric inequality. With

CP (Ω) :=
(4

3

)d−2
γ(Ω)

|Ω|1/d

diam(Ω)
,(3.4)

we have the following version of Poincaré’s inequality with CP (Ω) independent of diam(Ω),

‖u− uΩ‖L2(Ω) ≤ CP (Ω) diam(Ω) |u|H1(Ω) ∀u ∈ H1(Ω) .(3.5)

Remark 3.6. In the following, we will use the constant CP (Ω) in our estimates to track
geometric dependence. Mario Bebendorf [2] showed that for convex domains Ω, Poincaré’s
inequality above holds with CP (Ω) replaced by 1/π. His proof is based on an earlier one by
Payne and Weinberger [24], which contains a mistake for the case d = 3. Explicit estiamtes
for star-shaped domains can, e. g., be found in [35],

3.3. Two new auxiliary extension results. Since the single and double layer potential in
the theory of boundary integral equations are usually not in H1(Ωext), we need to generalize
a bit Jones’ extension result (Theorem 3.2).

Definition 3.7. Let Ω denote either Ωext or the whole of Rd. We set

H1
loc(Ω) :=

{
v ∈ L1

loc(Ω) : v ∈ H1(BR ∩ Ω) ∀R > 0
}
,

H1
loc,∗(Ω) :=

{
v ∈ H1

loc(Ω) :
∫

Ωext

|∇v|2 dx <∞
}
,

where L1
loc(Ω) is the space of functions that are integrable over every compact subset of Ω,

and BR is the d-dimensional ball with radius R > 0 and its center in the origin.

Functions from H1
loc,∗(Ω

ext) do not necessarily decay to zero at infinity, but they have a
finite H1-semi-norm (finite energy).

The following lemma is not really needed for the results that come afterwards, but is
interesting for itself.

Lemma 3.8. There exists a linear extension operator Eint : H1(Ωint) → H1
loc,∗(Rd) such

that

|Eintw|H1(Rd) ≤ CE(Ωint)
√

1 + CP (Ωint)2 |w|H1(Ωint) ∀w ∈ H1(Ωint) .

Proof. Assume first that diam(Ωint) = 1 and let E : H1(Ωint) → H1(Rd) denote Jones’
extension operator. Secondly, we define

Eintw := E(w − wΩint
) + wΩint

,
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Ω
ext

B
R

Ω
R

int

Ω
R

B:=

Ω
int

Figure 1. Sketch of the domains in Lemma 3.9.

where wΩint
:= |Ωint|−1

∫
Ωint w dx. Obviously, Eint is linear and (Eintw)|Ωint = w. Theo-

rem 3.2 and Poincaré’s inequality (3.5) imply

|Eintw|H1(Rd) = |E(w − wΩint
)|H1(Rd) ≤ CE(Ωint) ‖w − wΩint‖H1(Ωint)

≤ CE(Ωint)
√

1 + CP (Ω)2 |w|H1(Ωint) .

The case diam(Ωint) 6= 1 follows from a simple dilation argument. �

The next lemma is fundamental for our paper.

Lemma 3.9. We fix a ball BR with radius R > 0 and its center not necessarily in the origin
such that

Ωint ⊂ BR and dist(∂BR, Γ) ≥ 1
2 diam(Ωint) ,

cf. Figure 1. Then there exists a linear extension operator Eext : H1
loc,∗(Ω

ext) → H1
loc,∗(Rd)

with

|Eextw|H1(Ωint) ≤ CEext |w|H1(Ωext) ,

|Eextw|H1(Rd) ≤ (1 + CEext) |w|H1(Ωext) ,

where the constant CEext is independent of diam(Ωint) and depends only on the Jones pa-
rameter CU (BR \Ωint) and on the constant CP (BR \Ωint) in Poincaré’s inequality (cf. Def-
inition 3.5). Note also that Eext : H1(Ωext)→ H1(Rd).

Proof. As a short hand we define ΩR := BR \Ωint. Let us assume that diam(ΩR) = 2R = 1,
the general case is easily obtained by a simple dilation argument. Let E : H1(ΩR)→ H1(Rd)
denote Jones’ extension operator and define

(Eextw)(x) :=
{
w(x) for x ∈ Ωext ,
E
(
w − wΩR

)
(x) + wΩR for x ∈ Ωint .

(Note that if (E wΩR)|Ωint = wΩR , then Eext = E. However, this is not ensured, at least not
in the statement of Jones’ theorem.) From Theorem 3.2 and Poincaré’s inequality (3.5) we
obtain

|Eextw|H1(Ωint) = |E(w − wΩR)|H1(Ωint) ≤ |E(w − wΩR)|H1(Rd)

≤ CE(ΩR) ‖w − wΩR‖H1(ΩR) ≤ CE(ΩR)
√

1 + CP (ΩR)2 |w|H1(ΩR)

≤ CE(ΩR)
√

1 + CP (ΩR)2 |w|H1(Ωext) ,

which proves the first estimate in the lemma with CEext := CE(ΩR)
√

1 + CP (ΩR)2. The
second estimate follows from the trivial fact that |Eextw|H1(Ωext) = |w|H1(Ωext). �
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We emphasize once more that the constants in Lemma 3.8 and Lemma 3.9 are scaling-
invariant and depend only on Jones parameters and constants in Poincaré’s inequality, where
the latter can be tracked back to isoperimetric parameters.

4. Potentials and boundary integral operators

Using the fundamental solution (2.1) for the Laplace operator, we can define the single
layer potential Ṽ and the double layer potential W̃ , e. g. according to [23]. For smooth
functions v and w we have the representations.

(Ṽ w)(x) =
∫

Γ
U∗(x, y)w(y) dsy ,

(W̃v)(x) =
∫

Γ

∂U∗

∂ny
(x, y) v(y) dsy .

One can show that Ṽ : H−1/2(Γ) → H1
loc(Rd), and W̃ : H1/2(Γ) → H1(Ωint) ∪ H1

loc(Ω
ext).

Furthermore, we have the jump relations

[[γ0Ṽ w]] = 0 , [[γ1Ṽ w]] = −w ∀w ∈ H−1/2(Γ) ,

[[γ0W̃v]] = v , [[γ1W̃v]] = 0 ∀v ∈ H1/2(Γ) ,
(4.1)

see e. g. [23]. Here, [[γ0u]] := γext
0 u− γint

0 u and [[γ1u]] := γext
1 u− γext

0 u. These relations allow
to define the single layer potential operator V and the hypersingular operator D,

V := γ0 Ṽ and D := −γ1 W̃ .

The double layer potential operator K : H1/2(Γ)→ H1/2(Γ) and its adjoint K ′ : H−1/2(Γ)→
H−1/2(Γ) fulfill the relations

γint
0 W̃ = −1

2I +K , γint
1 Ṽ = 1

2I +K ′ .

Recall the definition of the subspaces H−1/2
∗ (Γ) and H1/2

∗ (Γ), as well as the natural density
weq, see (2.4)–(2.6). One easily shows that ker(D) = span{1Γ} and range(D) = H

−1/2
∗ (Γ).

Also

(1
2I −K)1Γ = 1Γ ,(4.2)

ker(1
2I +K) = span{1Γ}, and the operator 1

2I −K is bijective.

Another important issue is the behavior of the two surface potentials at infinity. According
to [23, p. 261] (see also [6]), we have

(Ṽ w)(x) =

{
1

2π 〈w, 1Γ〉 log(|x|−1) +O(|x|−1) if d = 2,

O(|x|−1) if d = 3,

}
as |x| → ∞ .(4.3)

Furthermore, if d = 3, or if d = 2 and w ∈ H−1/2
∗ (Γ), then Ṽ w ∈ H1

loc,∗(Rd). The double
layer potential fulfills

(W̃v)(x) = O(|x|1−d) as |x| → ∞ ,(4.4)

i. e., W̃v ∈ H1
loc,∗(Ω

ext), see [23].
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5. Alternative trace norms and related inequalities

In the following we define alternative trace norms for H±1/2(Γ) using the H1(Ωint)-norm.
This way we can avoid the trace constants on whose values we have no or only little infor-
mation. Instead, the constant from the extension result in Lemma 3.9 will appear, which
depends on Jones and isoperimetric parameters only.

Definition 5.1. For a function v ∈ H1/2(Γ) we define the semi-norm

|v|?,H1/2(Γ) := infev∈H1(Ωint)ev|Γ=v

|ṽ|H1(Ωint) .

In fact, the infimum is attained at the harmonic extension of v, denoted by

Hintv := argminev∈H1(Ωint)ev|Γ=v

|ṽ|H1(Ωint) .

We define the full norm

‖v‖?,H1/2(Γ) :=
{
|v|2

?,H1/2(Γ)
+

1
diam(Ωint)2

‖Hintv‖2L2(Ωint)

}1/2
,

and its associated dual norm

‖w‖?,H−1/2(Γ) := sup
v∈H1/2(Γ)

|〈w, v〉|
‖v‖?,H1/2(Γ)

.

From the literature, it is known that the trace operators γint
0 : H1(Ωint) → H1/2(Γ) and

γext
0 : H1

loc,∗(Ω
ext) → H1/2(Γ) are well-defined, linear, and bounded. The following lemma

gives precise bounds.

Lemma 5.2. We have the trace inequalities

(i) |γint
0 v|?,H1/2(Γ) ≤ |v|H1(Ωint) ∀v ∈ H1(Ωint) ,

(ii) |γext
0 v|?,H1/2(Γ) ≤ CEext |v|H1(Ωext) ∀v ∈ H1

loc,∗(Ω
ext) ,

with CEext being the constant in Lemma 3.9.

Proof. The first inequality is easily seen from the fact that our alternative norm is the
minimal extension with respect to the H1(Ωint)-semi-norm and that v extends γint

0 v,

|γint
0 v|?,H1/2(Γ) = |Hintγ0v|H1(Ωint) ≤ |v|H1(Ωint) .

For the exterior part, we use that Eext v extends γext
0 v to Ωint and so Lemma 3.9 yields

|γext
0 v|?,H1/2(Γ) = |Hintγext

0 v|H1(Ωint) ≤ |Eext v|H1(Ωint) ≤ CEext |v|H1(Ωext) .

�

The following lemma is a slightly modified version of [23, Lemma 4.3] and it provides a
generalized definition of the normal derivative for harmonic H1-functions. For u ∈ H1(Ωint)
we say that ∆u = 0 weakly in Ωint if∫

Ωint

∇u · ∇ϕdx = 0 ∀ϕ ∈ D(Ωint) ,

where D(Ωint) are the C∞ functions with compact support in Ωint. The analogous definition
can be applied for u ∈ H1

loc,∗(Ω
ext).
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Lemma 5.3. (i) For each function u ∈ H1(Ωint) with ∆u = 0 weakly in Ωint, there
exists a unique functional γint

1 u ∈ H−1/2(Γ) such that

〈γint
1 u, γint

0 ṽ〉 =
∫

Ωint

∇u · ∇ṽ dx for ṽ ∈ H1(Ωint) .

(ii) For each function u ∈ H1
loc,∗(Ω

ext) with ∆u = 0 weakly in Ωext, there exists a unique
functional γext

1 u ∈ H−1/2(Γ) such that

〈γext
1 u, γext

0 ṽ〉 = −
∫

Ωext

∇u · ∇ṽ dx ∀ṽ ∈ H1(Ωext) .

For smooth functions u, γint
1 u = ∂u

∂n and γext
1 u = ∂u

∂n (recall that n is inward to Ωext).

Proof. The proof is found in [23] and Case (ii) can easily be generalized to H1
loc,∗(Ω

ext). To
give a sketch, we note that e. g., the functional γext

1 u is defined by

〈γext
1 u, v〉 = −

∫
Ωint

∇u · ∇Eextv dx for v ∈ H1/2(Γ) ,

where Eext : H1/2(Γ)→ H1(Ωext) is an arbitrary bounded extension. �

From the sketch in the above proof one can see that the operator γext
1 is linear, and so is

γint
1 . Both operators are also bounded, and the following lemma gives precise estimates.

Lemma 5.4. We have the dual trace inequalities

(i) ‖γint
1 u‖?,H−1/2(Γ) ≤ |u|H1(Ωint) ∀u ∈ H1(Ωint), ∆u = 0 ,

(ii) ‖γext
1 u‖?,H−1/2(Γ) ≤ CE(Ωint) |u|H1(Ωext) ∀u ∈ H1

loc,∗(Ω
ext), ∆u = 0 ,

with the CE(Ωint) depending only on the Jones parameter of Ωint (cf. Theorem 3.2).

Proof. (i) Let v ∈ H1/2(Γ) be arbitrary but fixed. By Cauchy’s inequality, using the defining
property of γint

1 , and setting ṽ := Hintv we obtain that

〈γint
1 u, v〉 =

∫
Ωint

∇u · ∇Hintv dx ≤ |u|H1(Ωint) |Hintv|H1(Ωint) = |u|H1(Ωint) |v|?,H1/2(Γ)

From the definition of the dual norm we conclude that

‖γint
1 u‖?,H−1/2(Γ) ≤ sup

v∈H1/2(Γ)

|u|H1(Ωint) |v|?,H1/2(Γ)

‖v‖?,H1/2(Γ)

≤ |u|H1(Ωint) .

(ii) Assume first that diam(Ωint) = 1. Let E : H1(Ωint) → H1(Rd) denote Jones’ extension
operator. Choosing ṽ = EHintv with v ∈ H1/2(Γ) we have

|ṽ|H1(Ωext) ≤ CE(Ωint) ‖Hintv‖H1(Ωint) = CE(Ωint) ‖v‖?,H1/2(Γ) ∀v ∈ H1/2(Γ) .

Using the defining property of γext
1 u, we obtain from Cauchy’s inequality and the estimate

above that

−〈γext
1 u, v〉 =

∫
Ωext

∇u · ∇ṽ dx ≤ |u|H1(Ωext) |ṽ|H1(Ωext) ≤ |u|H1(Ωext)CE(Ωint) ‖v‖?,H1/2(Γ) .

Estimate (ii) follows then immediately from the definition of the dual norm. The estimate
for diam(Ωint) 6= 1 can be shown using a simple dilation argument. �
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6. Estimates for boundary integral operators

6.1. Coercivity estimates. We now present our alternative version of the V -coercivity.

Lemma 6.1 (partial coercivity of V ). We have

〈w, V w〉 ≥ c̃ ?V ‖w‖2?,H−1/2(Γ)
, ∀w ∈ H−1/2

∗ (Γ) ,

with c̃ ?V := 1
2 CE(Ωint)−2 depending only on the Jones parameter CU (Ωint). In case d = 3,

the same estimate holds for all w ∈ H−1/2(Γ) with the same constant.

Proof. The proof is essentially the one in [33, Sect. 6.6.1] but uses our alternative norms and
auxiliary results. We set u := Ṽ w, and thus ∆u = 0 in Ωint and Ωext, separately. Then, with
the defining property of the trace operator γint

1 we get

〈γint
1 u, γint

0 u〉 =
∫

Ωint

|∇u|2 dx .(6.1)

For the exterior part, even though u 6∈ H1(Ωext), we obtain

〈γext
1 u, γext

0 u〉 = −
∫

Ωext

|∇u|2 dx ,(6.2)

due to the decay behavior (4.3) of u = Ṽ w at infinity; see also [23, Theorem 8.12]. Using
the jump relations (4.1), we easily obtain that

〈w, V w〉 = 〈w, γ0 u〉 = −〈[[γ1u]], γ0u〉 = |u|2H1(Ωint) + |u|2H1(Ωext) .(6.3)

By Lemma 5.4 and using the jump relations again, we can conclude from (6.1)–(6.3) that

〈w, V w〉 ≥ ‖γint
1 u‖2

?,H−1/2(Γ)
+ CE(Ωint)−2 ‖γext

1 u‖2
?,H−1/2(Γ)

≥ 1
2 min

(
1, CE(Ωint)−2

)
‖ γint

1 u− γext
1 u︸ ︷︷ ︸

=w

‖2
?,H−1/2(Γ)

.

Obviously, CE(Ωint) ≥ 1, which finishes the proof. �

Corollary 6.2 (full coercivity of V ). If d = 3 or if d = 2 and V weq > 0,

〈w, V w〉 ≥ c?V ‖w‖2?,H−1/2(Γ)
∀w ∈ H−1/2(Γ) ,

with

c?V :=

{
1
2 min

(
c̃ ?V ,

V weq

‖weq‖2
?,H−1/2(Γ)

)
if d = 2 ,

c̃ ?V if d = 3 ,

and c̃ ?V according to Lemma 6.1.

Proof. We only need to show the estimate for d = 2, and its proof is analogous to [33,
Theorem 6.23]. It is easily seen that there exists the unique decomposition

w = w̃ + αweq , w̃ ∈ H−1/2
∗ (Γ) , α = const .
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Using the fact that the decomposition is orthogonal with respect to 〈·, V ·〉 and that 〈weq, V weq〉 =
V weq, we can conclude from the previous lemma that

〈w, V w〉 = 〈w̃, V w̃〉+ α2 〈weq, V weq〉

≥ c̃ ?V ‖w̃‖2?,H−1/2(Γ)
+

V weq

‖weq‖2?,H−1/2(Γ)

‖αweq‖2?,H−1/2(Γ)

≥ 1
2

min
(
c̃ ?V ,

V weq

‖weq‖2?,H−1/2(Γ)

)
‖w‖2

?,H−1/2(Γ)
.

That concludes our proof. �

Remark 6.3. One can show that in two dimensions, the expression ‖weq‖?,H−1/2(Γ) remains
invariant when we re-scale the coordinates. In two as well as in three dimensions, we can
choose v = 1Γ in the definition of the dual norm and obtain the lower bound

‖weq‖2?,H−1/2(Γ)
≥ 〈weq, 1Γ〉2

‖1Γ‖2?,H1/2(Γ)

=
diam(Ωint)2

|Ωint|
.

An upper bound would be desirable. However, we have only succeeded doing so in three
dimensions, see the proof of Lemma 6.9 as well as Remark 6.10.

The following result can be obtained using standard duality techniques in Hilbert spaces.

Corollary 6.4 (Boundedness of V −1). Let d = 3 then

〈V −1v, v〉 ≤ (c̃ ?V )−1 ‖v‖2
?,H1/2(Γ)

∀v ∈ H1/2(Γ) .

If d = 2 let V −1 : H1/2
∗ (Γ) → H

−1/2
∗ (Γ) denote the well-defined inverse of the restriction of

V to H
−1/2
∗ (Γ); then, the same estimate holds for all v ∈ H1/2

∗ (Γ). If d = 2 and V weq > 0,
the same estimate holds for all v ∈ H1/2(Γ) if c̃ ?V above is replaced by c?V .

By similar techniques as in the proof of Lemma 6.1, we obtain the semi-coercivity of D
with respect to our alternative H−1/2-semi-norm.

Lemma 6.5 (Semi-coercivity of D). For all v ∈ H1/2(Γ) we have

〈Dv, v〉 ≥ c?D |v|2?,H1/2(Γ)
, with c?D = 1

2(CEext)−2 ,

where CEext is the constant from Lemma 3.9.

Proof. We set u := W̃ v. Then, ∆u = 0 in Ωint and Ωext separately. Due to the decay behav-
ior of u at infinity, one can show that the identities (6.1), (6.2) hold, cf. [23, Theorem 8.21].
By the jump relations (4.1) we can conclude that

〈Dv, v〉 = 〈−γ1u, [[γ0u]]〉 = −〈γext
1 u, γext

0 u〉+ 〈γint
1 u, γint

0 u〉 = |u|2H1(Ωint) + |u|2H1(Ωext) .

Finally, Lemma 5.2 and the jump relations imply that

〈Dv, v〉 ≥ |γint
0 u|2

?,H1/2(Γ)
+ C−2

Eext |γext
0 u|2

?,H1/2(Γ)

≥ 1
2 min(1, C−2

Eext)︸ ︷︷ ︸
=C−2

Eext

| γint
0 u− γext

0 u︸ ︷︷ ︸
=−v

|2
?,H1/2(Γ)

,

which concludes the proof. �
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6.2. Auxiliary capacity results. We have learned that the constant V weq plays a principal
role in our investigation. For d = 3, we know that V weq > 0 and we can define by

CapΓ :=
1

V weq
= 〈V −11Γ, 1Γ〉(6.4)

the capacity of Γ, cf. [23, p. 263ff]. In the same reference we find the upper bound

CapΓ ≤ 4π diam(Γ),

which implies that V weq is always strictly positive. Another upper bound for the capacity
can be obtained from Corollary 6.4,

CapΓ = 〈V −11Γ, 1γ〉 ≤ (c̃ ?V )−1 ‖1Γ‖2?,H1/2(Γ)
≤ (c̃ ?V )−1 |Ωint|

diam(Ωint)2
.

Remark 6.6. For d = 2, the logarithmic capacity is defined by

CapΓ := e−2π V weq ,

cf. [23, 33]. If Γ is the circle of radius R, then CapΓ = R. From potential theory (see e. g.
[12]) one knows that if Ω1 ⊂ Ω2 then Cap∂Ω1

≤ Cap∂Ω2
. Let r > 0 such that Br ⊂ Ωint.

Then, r ≤ CapΓ ≤ 1
2 diam(Ωint), and so we obtain the upper and lower bounds

− 1
2π

log
(diam(Ωint)

2

)
≤ V weq ≤ −

1
2π

log(r).

We see that if diam(Ωint) < 2 then V weq > 0.

The next lemma gives a lower bound for the capacity in three dimensions.

Lemma 6.7. For d = 3 we have
1

V weq
= CapΓ ≥

(
48π2 |Ωint|

)1/3 ≥ |Ωint|1/3 .

Proof. First, we give another characterization of the capacity. The exterior Steklov-Poincaré
operator is defined by

Sext := D + (1
2I −K

′)V −1(1
2I −K) ,

see e. g. [5, 33], and one can show that for any v ∈ H1/2(Γ)

Sextv = −γext
1 u

whenever u ∈ H1
loc(Ω

ext) fulfills

∆u = 0 weakly in Ωext ,

γext
0 u = v ,

u(x) = O(|x|−1) as |x| → ∞ .

The last condition (the radiation condition) can be characterized by the norm

‖u‖2H1
∗∗(Ω

ext) :=
(∫

Ωext

|∇u(x)|2 +
|u(x)|2

1 + |x|2
dx
)1/2

.

In can be shown that the space

H1
∗∗(Ω

ext) := {u ∈ H1
loc(Ω

ext) : ‖u‖H1
∗∗(Ω

ext) <∞}
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equipped with the above norm is a Hilbert space, C∞0 (Ωext) is dense in that space, and the
norm ‖ · ‖H1

∗∗(Ω
ext) is equivalent to the H1-semi-norm. By a variational principle, we have

〈Sextv, v〉 = min
u∈H1

∗∗(Ω
ext)

γext
0 u=v

|u|2H1(Ωext) .

We come back to the capacity. Using formula (4.2) and the fact that D 1Γ = 0, we see that

CapΓ = 〈V −11Γ, 1Γ〉 = 〈Sext1Γ, 1Γ〉 = min
u∈H1

∗∗(Ω
ext)

γext
0 u=1Γ

|u|2H1(Ωext) .

Next we make use of a result by Maz’ja [22, Chapter 2]. There, another definition of the
capacity of Ωint is used,

C̃apΓ := inf
{∫

Rd

|∇u|2 dx : u ∈ C∞0 (Rd) and u(x) ≥ 1 ∀x ∈ Ωint
}
.

Exploiting that C∞0 (Rd) is dense in H1
∗∗(Rd), we easily show that CapΓ ≥ C̃apΓ. Maz’ja

gives the following lower bound for d = 3:

C̃apΓ ≥ (4π)2/3 31/3 |Ωint|1/3 .
This concludes the proof. �

6.3. Boundedness. We start with the boundedness of D with respect to our alternative
semi-norm.

Lemma 6.8. For all v ∈ H1/2(Γ),

〈Dv, v〉 ≤ |v|2
?,H1/2(Γ)

,

‖Dv‖?,H−1/2(Γ) ≤ |v|?,H1/2(Γ) .

Proof. Let Sint = V −1(1
2I +K) denote the Steklov-Poincaré operator, then

Sint = D + (1
2I +K ′)V −1(1

2I +K) , 〈Sintv, v〉 = |v|2
?,H1/2(Γ)

∀v ∈ H1/2(Γ) .

Since V −1 is H1/2
∗ (Γ)-coercive and range(1

2I +K) = H
1/2
∗ (Γ),

|v|2
?,H1/2(Γ)

= 〈Sintv, v〉 = 〈Dv, v〉+ 〈V −1(1
2I +K)v, (1

2I +K)v〉 ≥ 〈Dv, v〉 .

Let us now fix v ∈ H1/2
∗ (Γ). On this space, D is coercive and defines an inner product. By

duality, Cauchy’s inequality, and the estimate from above we obtain

‖Dv‖?,H−1/2(Γ) = sup
y∈H1/2(Γ)

〈Dv, y〉
‖y‖?,H1/2(Γ)

= supey∈H1/2
∗ (Γ)

y0∈R

〈Dv, ỹ〉(
|ỹ|2

?,H1/2(Γ)
+ 1

diam(Ωint)2 ‖Hint(ỹ + y0)‖2L2(Ωint)︸ ︷︷ ︸
≥0

)1/2
≤ supey∈H1/2

∗ (Γ)

〈Dv, v〉1/2〈D ỹ, ỹ〉1/2

|ỹ|?,H1/2(Γ)

≤ |v|?,H1/2(Γ) .

Since Dv, 〈Dv, v〉, and |v|?,H1/2(Γ) remain invariant if we add a constant v0 to v, the same
estimate holds for all v ∈ H1/2(Γ). �
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Before we can show a bound of V w in terms of w with respect to our alternative norms,
we first need a Poincaré type inequality in H

1/2
∗ (Γ).

Lemma 6.9. In two and three dimensions the Poincaré type inequality
1

diam(Ωint)2
‖Hintv‖2L2(Ωint) ≤ C∗P |Hintv|2H1(Ωint) ∀v ∈ H1/2

∗ (Γ)

holds with

C∗P := 2
{
CP (Ωint)2 +

(
1 + CP (Ωint)2

) |Ωint|
diam(Ωint)2

‖weq‖2?,H−1/2(Γ)

}
.

In three dimensions, we have the bound

C∗P ≤ 2
{
CP (Ωint)2 + (c̃ ?V )−1

(
1 + CP (Ωint)2

)}
,

i. e., C∗P depends only on the Jones parameter CU (Ωint) and the constant CP (Ωint) in the
standard Poincaré inequality, but not on diam(Ωint).

Proof. Our proof uses a Bramble-Hilbert type argumentation. Recall that V weq = const and

that 〈weq, 1Γ〉 = 1. We set v := Hintv
Ωint

and find that 〈weq, v〉 = v. Using the definition of
the dual norm we obtain(

v − 〈weq, v〉
)2 = 〈weq, v − v〉2 ≤ ‖weq‖2?,H−1/2(Γ)

‖v − v‖2
?,H1/2(Γ)

.

Since the operator Hint is linear and Hintv = v, we can conclude from Lemma 3.4 that

‖v − v‖2
?,H1/2(Γ)

= |Hintv|2H1(Ωint) +
1

diam(Ωint)2
‖Hintv − v‖2L2(Ωint)

≤
(
1 + CP (Ωint)2

)
|Hintv|2H1(Ωint) .

Combining the last two estimates yields(
v − 〈weq, v〉

)2 ≤ (
1 + CP (Ωint)2

)
‖weq‖2?,H−1/2(Γ)

|Hintv|2H1(Ωint) .(6.5)

Now, we fix v ∈ H
1/2
∗ (Γ) which means that 〈weq, v〉 = 0. From the standard Poincaré

inequality and estimate (6.5), we can conclude that

1
diam(Ωint)2

‖Hintv‖2L2(Ωint) ≤ 2
{ 1

diam(Ωint)2
‖Hintv − v‖2L2(Ωint) +

|Ωint|
diam(Ωint)2

v2
}

≤ 2
{
CP (Ωint)2 |Hintv|2H1(Ωint) +

|Ωint|
diam(Ωint)2

(
v − 〈weq, v〉

)2}
≤ 2

{
CP (Ωint)2 +

|Ωint|
diam(Ωint)2

(
1 + CP (Ωint)2

)
‖weq‖2?,H−1/2(Γ)

}
|Hintv|2H1(Ωint) .

In three dimensions V −1 defines an inner product. Thus, Cauchy’s inequality, formula (6.4),
and Corollary 6.4 imply that for all v ∈ H1/2(Γ),

〈weq, v〉2 = (V weq)2 〈V −11Γ, v〉2 ≤ (V weq)2 〈V −11Γ, 1Γ〉 〈V −1v, v〉
≤ V weq (c̃ ?V )−1 ‖v‖2

?,H1/2(Γ)
.

In other words, ‖weq‖2?,H−1/2(Γ)
≤ (c̃ ?V )−1 V weq. Finally, we use Lemma 6.7 to see that

V weq |Ωint|
diam(Ωint)2

≤ |Ωint|
|Ωint|1/3 diam(Ωint)2

≤ 1 .
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This finishes the proof. �

Remark 6.10. Using the same technique as in the above proof in two dimensions yields
only the trivial bound

‖weq‖2?,H−1/2(Γ)
≤ V weq

c?V
= 2 max

{V weq

c̃ ?V
, ‖weq‖2?,H−1/2(Γ)

}
.

At least, we know that ‖weq‖?,H−1/2(Γ) remains invariant when we re-scale the coordinates,
and so C∗P is independent of diam(Ωint). In the following we sketch how a direct upper
bound could be obtained. The equilibrium density is given by weq = t̃ + |Γ|−11Γ, where
t̃ ∈ H−1/2

∗ (Γ) fulfills the variational equation

〈τ, V t̃〉 = −|Γ|−1 〈τ, V 1Γ〉 ∀τ ∈ H−1/2
∗ (Γ),

cf. e. g. [33]. Using the V -coercivity on H−1/2
∗ (Γ), the lemma by Lax and Milgram yields the

estimate ‖t̃‖?,H−1/2(Γ) ≤ (c̃ ?V )−1 |Γ|−1 ‖V 1Γ‖?,H1/2(Γ), and so we have

‖weq‖?,H−1/2(Γ) ≤ |Γ|
−1
[
(c̃ ?V )−1 ‖V 1Γ‖?,H1/2(Γ) + ‖1Γ‖?,H−1/2(Γ)

]
.

The first term can be bounded by

‖V 1Γ‖?,H1/2(Γ) ≤ ‖Ṽ 1Γ‖H1(Ωint) ≤
|Γ|
2π

∫
Ωint

∫
Γ

(
log |x− y|

)2 + |x− y|−2 dsy dx ,

assuming that diam(Ωint) = 1. Using the defining property of Jones’ parameter might lead
to an explicit bound for this integral. For the second term, we could use that

‖1Γ‖?,H−1/2(Γ) ≤ sup
v∈H1/2(Γ)

|Γ| ‖v‖L2(Γ)

‖v‖?,H1/2(Γ)

.

This means we would need an explicit Poincaré or trace inequality of the type

‖ṽ‖L2(Γ) ≤ C ‖ṽ‖H1(Ωint) ∀ṽ ∈ H1(Ωint),

for diam(Ωint) = 1 with C being explicit in Ωint. Maz’ja gives an estimate of this type (cf.
[22, Sect. 4.11.4]). However, the dependence of the constant C on Ωint seems much more
complicated than in the standard Poincaré inequality.

Lemma 6.11. Assume that V weq > 0 (which is always true in three dimensions). Then,

‖V w‖?,H1/2(Γ) ≤ C ?
V ‖w‖?,H−1/2(Γ)

〈w, V w〉 ≤ C ?
V ‖w‖2?,H−1/2(Γ)

}
∀w ∈ H−1/2(Γ) ,

where

C ?
V :=

{
max

(
(1 + 2C∗P ), 2 |Ω

int|V weq

diam(Ωint)2

)
if d = 2 ,

(1 + 2C∗P ) if d = 3 ,
with C∗P defined according to Lemma 6.9. The same estimate also holds on the subspace
H
−1/2
∗ (Γ) with C ?

V replaced by the enhanced constant C̃ ?
V := (1 + 2C∗P ).

Proof. We fix w ∈ H−1/2(Γ). By standard arguments one shows that there exists the unique
decomposition

w = w̃ + w0 , with w̃ ∈ H−1/2
∗ (Γ) and w0 = 〈w, 1Γ〉weq .(6.6)
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Consequently, 〈w̃, V w0〉 = 0 and

〈w, V w〉 = 〈w̃, V w̃〉+ 〈w0, V w0〉 = 〈w̃, V w̃〉+ 〈w, 1Γ〉2 V weq .(6.7)

We set u := Ṽ w, thus γ0u = V w. Also,

γ0u = V w̃ + 〈w, 1Γ〉V weq , with V w̃ ∈ H1/2
∗ (Γ) .

From the definition of our alternative norm, the fact that V w0 = const, and using that Hint

is linear, we can conclude that

‖V w‖2
?,H1/2(Γ)

= |V w̃|2
?,H1/2(Γ)

+ 1
diam(Ωint)

‖HintV w‖2L2(Ωint)

≤ |V w̃|2
?,H1/2(Γ)

+ 2
diam(Ωint)2

{
‖HintV w̃‖2L2(Ωint) + ‖HintV w0‖2L2(Ωint)

}
.

Since Hint extends a constant function on Γ to the same constant in Ωint,

‖HintV w0‖2L2(Ωint) = |Ωint| 〈w, 1Γ〉2 (V weq)2 .

Using this identity, the estimate above, the fact that V w̃ ∈ H1/2
∗ (Γ), and Lemma 6.9, we

obtain

‖V w‖2
?,H1/2(Γ)

≤ (1 + 2C∗P ) |V w̃|2
?,H1/2(Γ)

+ 2 |Ωint|V weq

diam(Ωint)2 〈w, 1Γ〉2 V weq .(6.8)

By identity (6.3), we see that

|V w̃|2
?,H1/2(Γ)

= |HintV w̃|2H1(Ωint) ≤ |Ṽ w̃|
2
H1(Ωint)

≤ |Ṽ w̃|2H1(Ωint) + |Ṽ w̃|2H1(Ωext) = 〈w̃, V w̃〉 .

Combining this estimate with (6.8) and (6.7) yields

‖V w‖2
?,H−1/2(Γ)

≤ (1 + 2C∗P ) 〈w̃, V w̃〉+ 2 |Ωint|V weq

diam(Ωint)2 〈w0, V w0〉 .

In three dimensions, we see from the proof of Lemma 6.9 that V weq |Ωint|
diam(Ωint)2 ≤ C∗P . Altogether,

this implies the estimates

‖V w‖2
?,H−1/2(Γ)

≤ C̃?V 〈w, V w〉 ∀w ∈ H−1/2
∗ (Γ) ,

‖V w‖2
?,H−1/2(Γ)

≤ C?V 〈w, V w〉 ∀w ∈ H−1/2(Γ) .

The second estimate in the statement of Lemma 6.11 can be obtained by standard duality
arguments. �

By standard duality arguments, the operator V −1 exhibits certain coercive properties
where the coercivity constant is (C ?

V )−1 or (C̃ ?
V )−1, similary to Corollary 6.2,

6.4. Estimates for the constant c0 and the contraction constant cK .

Corollary 6.12 (H1/2
∗ -coercivity of D). We have that

〈Dv, v〉 ≥
c?D

1 + C∗P
‖v‖2

?,H1/2(Γ)
∀v ∈ H1/2

∗ (Γ) ,

with the constant C∗P defined according to Lemma 6.9.
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Proof. By our Poincaré type inequality in H
1/2
∗ (Γ), we easily obtain that for v ∈ H1/2

∗ (Γ),

‖v‖2
?,H1/2(Γ)

≤ (1 + C∗P ) |v|2
?,H1/2(Γ)

.

An application of Lemma 6.5 finally proves the statement. �

Corollary 6.13. In case that V is not fully coercive, let V −1 denote the well-defined inverse
of V restricted to the space H−1/2

∗ (Γ). Then,

c0 := inf
v∈H1/2

∗ (Γ)

〈Dv, v〉
〈V −1 v, v〉

≥
c̃ ?V c

?
D

1 + C∗P
.

Proof. The proof follows immediately from Corollary 6.4 and Lemma 6.5. �

Remark 6.14. The above corollary states that in three dimensions, the constant c0 depends
only on the Jones parameters and Poincaré constants of Ωint and BR \ Ωint. Consequently,
the contraction constant cK only depends on these constants. In two dimensions, we have
not given an explicit bound for the constant C∗P ; we have only sketched how such one might
be obtained, cf. Remark 6.10.

Remark 6.15. Assume that V weq > 0 and let Sint := D + (1
2I + K ′)V −1(1

2I + K) denote
the interior Steklov Poincaré operator. For a triangulation Th of Γ, denote Zh the space of
piecewise constant function with respect to Th, and define the (symmetric) approximation
S̃intv := Dv + (1

2I + K ′)wh where 〈τh, V wh〉 = 〈τh, (1
2I + K)v〉 for all τh ∈ Zh. One can

show that
c0

cK
〈Sintv, v〉 ≤ 〈S̃intv, v〉 ≤ 〈Sintv, v〉 ∀v ∈ H1/2(Γ),

cf. [32]. This means we have a shape-explicit spectral equivalence between the original and
the approximated operator. It can be used in the analysis of domain decomposition methods
[14, 19, 20, 25, 26] and of BEM-based finite element methods [3].
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very grateful to Hyea Hyun Kim (Chonnam National University, Korea) for providing and
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