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Fast solversand a posteriori error estimatesin
elastoplasticity

P. G. Gruber, J. Kienesberger, U. Langer, J. Schober| avialdman

Abstract The paper reports some results on computational plastibigined within

the Special Research Program “Numerical and Symbolic 8iteBomputing” and

within the Doctoral Program “Computational Mathematicstlibsupported by the
Austrian Science Fund FWF under the grants SFB F013 and DKI1W2spec-
tively. Adaptivity and fast solvers are the ingredientsffiteent numerical methods.
The paper presents fast and robust solvers for both 2D and&itigflow theory

problems as well as different approaches to the derivattbasposteriori error es-
timates. In the last part of the paper higher-order finitenelets are used within
a new plastic-zone concentrated setup according to thdanitguof the solution.

The theoretical results obtained are well supported byébkalts of our numerical
experiments.

1 Introduction

The theory of plasticity has a long tradition in the engimegiiterature. These
classical results on plasticity together with the intraitut of the Finite Element
Method (FEM) into engineering computations provides thsid&or the modern
computational plasticity (see [56] and the referencesihgrThe rigorous mathe-
matical analysis of plastic flow theory problems and of thenatical methods for
their solution started in the late 70ies and in the early 8biethe work of C. John-
son [31, 32], H. Matthies [41, 42], V.G. Korneev and U. Lanf#], and others.

Since then many mathematical contributions to ComputatiBfasticity have been
made. We here only refer to the monographs by J.C. Simo arid. Hiighes [51]

and W. Han and B.D. Reddy[29], to the habilitation theses b &rstensen [12]
and C. Wieners [55], to the collection [52], and the refeemngiven therein.

Institute of Computational Mathematics, Johannes Keplewéisity Linz, 4040 Linz, Austria e-
mail: ulanger@numa.uni-linz.ac.at (corresponding agtho
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The incremental elastoplasticity problem can be refortedias a minimization
problem for a convex but not-smooth functional, where thkenamvns are the dis-
placements and the plastic strains. One method to deal with this non-smoothness
relies on regularization techniques which were initialydsed in [35]. However,
eliminating the plastic strainp and using Moreau’s theorem, we see that the re-
duced functional, that is now only a functional in the digglaentay, is actually
continuously Fréchet differentiable. The eliminationtbé plastic strains can be
done locally and with the help of symbolic techniques. Unfoately, the second
derivative of the reduced functional does not exist. As aedynthe concept of
slanting functions, introduced by X. Chen, Z. Nashed, an@iLin [17], allows us
to construct and analyze generalized Newton methods whiml fast convergence
in all our numerical experiments. More precisely, we caropsuper-linear conver-
gence of these generalized Newton methods at least in the éleiment setting.

The second part of this paper is devoted to the a posteriori @nalysis of elasto-
plastic problems. Two different techniques were develofielfirst one is exploring
a residual-type estimator respecting certain oscillatiand the second one is based
on functional a posteriori estimates introduced by S. R§fh

Finally, we consider spatial discretizations of the incesal plasticity problems
based orhpfinite element techniques. A straightforward applicatibthe classical
h-FEM yields algebraic convergence. However, the regylaesults presented in
[6, 39], namerH%C regularity of the displacements in the whole domain, @fid
regularity apart from plastic zones and the boundary of treputational domain,
justify the application of high order finite element methaushe elastic part, but
not necessarily in the plastic part. A féwp-adaptive strategies, as well as a related
technique, the so-called Boundary Concentrated Finitmetg Method (BC-FEM)
introduced by B.N. Khoromskij and J.M. Melenk [33], are dissed in this paper.

The rest of the paper is organized as follows: In Section ZJegeribe the initial-
boundary value problem of elastoplasticity which is stddiethis paper. Section 3
is devoted to the incremental elastoplasticity problent strategies for their so-
lution. In Section 4 we derive a posteriori error estimatésciv can be used in the
adaptiveh-FEM providing an effective spatial discretization in evéncremental
step. Section 5 deals with the use of tg-FEM in elastoplasticity. Finally, we
draw some conclusions.

2 Modeling of elastoplasticity

There are many mathematical models describing the elastiipbehavior of mate-
rials under loading. In this paper we follow the descriptigven by C. Carstensen
in [12, 13, 14, 15]. The classical equations of elastoptagtcan be found in the
standard literature on plasticity, see, e.g., [51, 29].usfirst recall these describ-
ing relations. Le® := [0, T| be a (pseudo) time interval, and @t be a bounded
domain inR3 with a Lipschitz continuous boundafy := dQ. In the quasi-static
case which is considered throughout this paper, the equitibof forces reads as
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follows
—div(a(x,t)) = f(xt) V(xt)eQx0, Q)

whereoa (x,t) € R3*3is called Cauchy’s stress tensor affa, t) € R® represents the
volume force acting at the material pot Q at the timet € O. Letu(x,t) € R®
denote the displacements of the body, and let

g(u) == % (Ou+(Ou)T) (2)

be the linearized Green-St. Venant strain tensor. In giéesticity, the total straig
is additively split into an elastic pagtand a plastic pan, that is,

£=e+p. 3

We assume a linear dependence of the stress on the elastof freg strain, which
is defined by Hooke’s law
o=Ce. 4)

Since we assume the material to be isotropic, the single oosmgs of the elastic
stiffness tenso€ € R3*33*3 are defined byCij 1= A & + U(SkJji + & Oik).
Here,A > 0 andu > 0 denote the Lamé constants, akdthe Kronecker symbol.

Let the boundary be split into a Dirichlet parfp and a Neumann paft; such
thatl” = I'p UTy. We assume the boundary conditions

u=up onfp and o-n=g only, (5)

wheren(x,t) denotes the exterior unit normaip(x,t) € R® denotes a prescribed
displacement and(x,t) € R3 denotes a prescribed traction.pf= 0 in (3), the
system (1) — (5) describes the linear elastic behavior oftimtinuumaQ.

Two more properties, incorporating the admissibility o 8treso with respect
to a certain hardening law and the time evolution of the pastrain p, are re-
quired to describe the plastic behavior of some balyTherefore, we introduce
the hardening parameterand define the generalized stréss a), which we call
admissible if for a given convex yield functionglthe inequality

¢(o,a) <0. (6)
holds. The explicit form ofp depends on the choice of the hardening law, see, e.g.,
formula (9) for isotropic hardening. The second, specifjaallastoplastic, property
addresses the time development of the generalized plastin &, —a) that is de-
scribed by the normality rule

((p,—a), (1,8)—(0,a))r <0 Y (t,B) which satisfyp(t,8) <0, (7)

wherep anda denote the first time derivatives pfanda, respectively. Therefore,
we need initial conditions, which read as follows
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p(x,0) = po(x) and a(x,0) = ap(x) Vxe Q, (8)

with given initial valuespo : @ — R3:3 andag : Q — [0, 00].

Problem 1 (classical formulation). Find (u, p, ), which satisfies (1) — (8).

In this paper we concentrate on the isotropic hardeningddngre the hardening
parameten is a scalar functiom : Q — R and the yield functionap is defined by

[devo|r —oy(1+Ha) if a >0,

9
0 if a<O. ©)

o(o,a) = {

Here, the Frobenius norfiA||r := (A, A>;l:/2 is defined by the matrix scalar product
(A, B)F := yjjaijbij for A= (gj) € R¥3 andB = (bj;) € R3*3. The deviator is
defined for square matrices by dew- A — %I, where the trace of a matrix is de-
fined by trA = (A, I)g andl denotes the identity matrix. The real material constants

oy > 0 andH > 0 are called yield stress and modulus of hardening, resedeti

3 Theincremental elastoplasticity problems and solvers

We turn to the specification of proper function spaces. Foraftimet € ©, let

ueV:=[HYQ)°, peQ:=[L(Q)22, acly(Q).

sym

We define the hyperplang, := {veV | Vi, = up} and the test spadé := {ve
V| Vi, = 0}, and the associated scalar products and norms as follows:

= [ WO D) b = v,
. . 1/2
(Poalo= [ (Pardx  lalo= (0. 98

Starting from Problem 1, one can derive a uniquely solvatrle lependent vari-
ational inequality for unknown displacemant {v € H1(O;V) | Vi, = up} and

plastic strainp € H1(0; Q) (see [29, Theorem 7.3] for details). However, the numer-
ical treatment requires a time discretization of this vi@izal inequality. Therefore,
we pick a fixed number of time ticks 8ty <t < ... <ty, =T out of ©. We
introduce the notation

Uci=U(tk) , p:=p(tk), ax:=a(t), fi:="Ft), ok=09t), ...,
and approximate time derivatives by the backward diffeeequotients

P~ (Pk— Px-1)/ (tk—tk—1) and o~ (o — A1) / (tk —tk_1) -
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Consequently, the time dependent problem is approximagea $equence of
time independent variational inequalities of the secomdi kEach of these varia-
tional inequalities can be equivalently expressed by amiization problem, which
by definition of the set of extended real numbé@s= R U {+o}, reads [14, Exam-
ple 4.5]:

Problem 2. Find (uk, p«) € Vb x Q such thatk(uk, pk) = inf(yq)evp x@ Jk(V; ), where
Jc: Vb x Q — Ris defined by

K%)= 5]1E0) ~ a2+ Ghla) ~ v). (10

with
@) = [ (Cat, @®led  Jdlc = @k, (11
ak(q) = ak-1+oyH[lq— pk-allF, (12)
Q) = {iboo(%ak(Q)z'f‘UyHQ— Pe-1lF) dx Zé;(Q— P1) =0, (13,
(V) ::/ka-vdx+/mgk-vds. (14)

The convex functional, expresses the mechanical energy of the deformed sys-
tem at thekth time step. It is smooth with respect to the displacemenksit not
with respect to the plastic straimgs Notice, that no minimization with respect to
the hardening parameter, is necessary. It is computed in the post-processing by
ax = 0x(pk), with & defined as in (12). A short summary on the modeling of Prob-
lem 2 starting from the classical formulation can be foun{B8]. The problem is
uniquely solvable due to [22, Proposition 1.2 in Chapter 1]

Fig. 1 Example of two-yield plasticity distribution.
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J. Valdman together with M. Brokate and C. Carstensen phddigesults on
the analysis [10] and numerical treatment [11] of multilgielastoplastic models
based on the PhD-thesis of J. Valdman [53] and its exten$io@.main feature of
the multi-yield models is a higher number of plastic strgins . ., py used for more
realistic modeling of the elastoplastic-plastic tramsitilt was possible to prove the
existence and uniqueness of the corresponding variatioeqlalities and design a
FEM based solution algorithm. Since the structure of theimmization functional
in the multi-yield plasticity model remains the same aslfi@rsingle-yield model, it
was possible to prove the existence and uniqueness of thesponding variational
inequalities and design a FEM based solution algorithmelms of a software
development, an existing elastoplasticity package [34}ten as a part of the NET-
GEN/NGSolve software of J. Schoberl, was modified to maledbmputations
of a two-yield elastoplastic problem feasible [37]. Figurdisplays elastic (blue),
first (red) and second (green) plastic deformational zoméiseoshaft model. The
numerical treatment of the two-yield problem requires ohee the plastic-strain
increment matriceB; andP, from a local minimization problem with a convex but
non-smooth functional. Since there are typically milliaafssuch minimizations,
iterative techniques such as alternating minimizatioreytén based methods or
even partially exact analytical solutions were studiedid] |

The first class of algorithms is based on a regularizatiohefabjective, where
the modulus is smoothed for making the object]f[@ twice differentiable. Figure
2 shows the modulup| := ||px — px_1/|r and possible regularizationp|(®) de-
pending on the regularization parameferwhered is here chosen as 16. The
quadratic regularization has a smooth first derivative iwithe interval(—9, d),
but the second derivative is piecewise constant and disazanis. Thus, the local
guadratic convergence of Newton type methods cannot beagiesd. The piece-
wise cubic spline has a piecewise linear continuous secendative. Thus, New-
ton type methods can be applied. As a final choice of regaltio, the cubic spline
function is shifted to the origin, so thit|(®) = 0 holds forp = 0.

For instance, in case of a quadratic regularization (gree@have

poi {12, o IR0
2P+ § if [p| < 3,

with a small regularization paramet&r> 0.

The algorithm is based on alternating minimization withpess to the two vari-
ables, and on the reduction of the objective to a quadratictfonal with respect to
the plastic strains. This can be interpreted as a line&izaf the nonlinear elasto-
plastic problem.

The minimization problem with respect to the plastic parhef strain is separa-
ble and the analytical solutiopi®) (u) can be calculated in explicit form. Problem 2
formally reduces to

IO () = min 30 (v, p@ (v)). (15)
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Fig. 2 Plot of |p| and its regularizations.

After the finite element (FE) discretization and the elintio@ of plastic strains,
the FE displacement field results from the solution of a lir@éhur complement
system. The solution of this linear system can efficienthcomputed by a multi-
grid preconditioned conjugate gradient solver, see [3}, 36

Using Moreau’s theorem, that is well known in the scope ofvesnanalysis
[44], we can avoid the regularization of the original functal J;. The formula for
minimizing J«(u, p) with respect to the plastic stramfor a given displacementis
explicitly known [2], i. e., we know a functiopy{e(u)), such that there holds

(W) 1= Je(u, Pi(£(u)) = inf J(u, ).

In detail, the plastic strain minimizer reads as follows

Bi(£(v)) = & max{0, || devai(e(V)) | — gﬁ%

+Pk-1,  (16)
with the constan := (1+ o7H 2)71, the trial stresoi(g(v)) := C(€(V) — px_1),
and the deviatoric part dev:= o — (trg/3) . Thus, it remains to solve a mini-
mization problem with respect to one variable only, Jigu) — min. The theorem
of Moreau says, that, due to the specific structur&@f, p), the functionaly(u) is
continuously Fréchet differentiable and strictly convgoreover, the explicit form
of the derivative is also provided. The Gateaux differ@ns given by the relation
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DX(v;w) = (&(v) — Bk(e(V)) , e(w))c — Ik(w).

Hence, it suffices to find such that the first derivative & vanishes. This approach
was first discussed in the master thesis [24] by P.G. Gruleeeral numerical ex-
amples can also be found in [23, 27, 28].

The second derivative @k does not exist. As a remedy, the concept of slanting
functions, introduced by X. Chen, Z. Nashed, and L. Qi in [Eflpws the applica-
tion of the following Newton-like method: Lef® € V be a given initial guess for
the displacement field. Then, fpe=0,1,2, ... and giverv!, findvi*1 € \jp such that

(DJ)° (Vv =V w) = —D (Vs w)
holds for allw € Vg, where the slanting function of § is defined by the identity
(D3)° (v; Wi, w2) = (e(w1) — Bk®((V); €(Wa)), E(W2))c VWi, Wz € Vo.

Here, p° denotes the slanting function gl 716), which, by using the defini-
tion Be(g(v)) := 1— oy ||devak(e(v))||*, and the abbreviatiork(&(v)) := Bx and
ok(g(v)) := ok, reads

. . 0 if Bk <0,
Bic(ev)ia) =1 ¢ (Bk deva+ (1— ) (devar.devae devgk) else

|| devoy|Z

Utilizing this concept, P. G. Gruber and J. Valdman were ablprove the lo-
cal super-linear convergence of the resulting Newtonditder in the spatial dis-
cretized case (see Table 1), and formulate sufficient regulkeonditions which
would guarantee super-linear convergence in the nonatized case [28, 27]. An
extension of the numerical solver to other kinds of timeafefent models with in-
ternal variables, as discussed in [26], is possible anddefuture investigation.

The slant Newton method is tested on a benchmark problemmpuatational
plasticity [52]. The left plot of Figure 3 shows the mesh toe tight upper quarter of
a plate with geometry—10,10) x (—10,10) x (0,2) and a circular hole of the radius
r =1 in the middle. One elastoplastic time step is performedreta surface load
g with the intensitylg| = 450 is applied to the plate’s upper and lower edge in outer
normal direction. Due to the symmetry of the domain, the tsafuis calculated on
one quarter of the domain only. Thus, homogeneous Dirididaenhdary conditions
in the normal direction (gliding conditions) are considefer both symmetry axes.
The material parameters are set to

A =11074¢10°, p=80194x10°, oy =450,/2/3, H=05.

Differently to the original problem in [52], the modulus cditdeningH is nonzero,

i. e. hardening effects are considered. The numericaltefaurlthe original problem
(H=0) can be found in [23]. The two plots in Figure 3 show tharsest tetrahedral
FE-mesh with the applied tractian(left), and the Frobenius norm of the plastic
strain field p (right) on a finer mesh for this three dimensional problenbldal
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outlines the convergence of the slant Newton method, whrerénitial values for
the displacement are chosen to be zero at each level of refimeM/e observe
super-linear convergence with respect to a Cauchy test amhstant number of
iterations at each refinement level. The implementationdeae in C++ using the
NETGEN/NGSolve software package developed by J. Schit@l

0, 000e+00 G, E9de-032 1,13%e-02

Fig. 3 Coarsest triangulation (left) and the Frobenius norm ofllastic strain fieldp (right).

dof: 717 5736 45888 367104

0-1/1.000e+00 1.000e+00 1.000e+00 1.000e+00
1-2/ 1.013e-01 1.254e-01 1.367e-01 1.419e-01
2-3| 7.024e-03 6.919e-03 7.159e-03 6.993e-03
3-4| 1.076e-04 9.359e-05 1.263e-04 1.176e-04
4-5| 2.451e-08 6.768e-07 1.744e-06 1.849e-06
5-6| 7.149e-15 6.887e-12 4.874e-09 1.001e-08
6-7 4.298e-13 2.368e-14

Table1 Convergence behavior of the slant Newton method for differefinement levels.

4 Adaptive h-FEM and a posteriori error estimatesfor
elastoplasticity

The efficient numerical treatment of problems with poor tagty of the solution
can be realized with adaptive mesh refinement techniqueslitoasa posteriori error
estimators. Arh—finite element adaptive algorithm consists of successiopdmf
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the form
SOLVE — ESTIMATE — MARK — REFINE a7

designed to produce more efficient meshes by targeted leftabments with less
computational effort. The a posteriori error analysis af)(@tarted with the pioneer-
ing work of [4] for a two-point elliptic boundary value pragh and with the step
MARK realized by the max refinement rule. This marking rule cutyeemployed in
the engineering literature consists in looking at the eleavith the largest error
and refining these in order to achieve a better accuracyjtet sy ng denote a
typical reliable error estimator with local contributiomg associated with an edge,
face, or elemern¥ in the current mesh, the max refinement rule marks a sul#set
according to
Le.# ifandonlyifn. > @mMang (18)

with 0 < @ < 1. The analysis of [4], however, does not provide informato the
convergence rate and its extension to higher dimensidheestiains unsolved. It is
only after the contribution of Dorfler [20] with the introdtion of a new marking
strategy for error reduction (hereafter referred to as lotllerion or fixed fraction
criterion) that the convergence analysis of AFEMs has egpeed significant de-
velopment. With such criterion, one defines the.gétof the marked objects using
the rule
S na=0n’ (19)
Me.#

with 0 < © < 1. The condition (19) together with local discrete efficigpstimates,
and the Galerkin orthogonality yields a linear error rethrcrate for the energy
norm towards a preassigned toleraiid@®L in finite steps for the Poisson problem.

In [16], a proof of convergence of AFEM with indication of thate of conver-
gence for the primal formulation of plasticity is provideadder the application of the
bulk criterion (19). Applications include several plagianodels: linear isotropic-
kinematic hardening, linear kinematic hardening, multiface plasticity as model
for nonlinear hardening laws, and perfect plasticity. Bijrig properties of a non-
differentiable energy functiondl, and the reliability of a new edge-based residual
error estimate, we obtain the following results:

(i) Energy reductionfor some data oscillations ogsg 0 and positive constants
Pe, C with pg < 1 there holds

I(Wer1) —I(W) < pe(I(wy) —I(W)) +Cosg .

Here,J(w) denotes a minimal energy ad@n,) andJ(w, 1) are energies on refined
triangulations7; and.7; 1.

(i) R—linear convergence for the stressep to oscillation terms there holds

llo—oilllc-1.0 <a; fort=0,1,2---,
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with a, — 0 and linear convergent, afidl- ||| 1., the energy norm induced by the
Hook tensorC. Here,o denotes the stress on an exact solution @nist approxi-
mation on the triangulatior;.

In [48], the framework introduced in the book [45] is appliecelastoplasticity,
where the estimates are derived by the analysis of the iarétproblem and its
dual counterpart. A computable upper bound of the error tainkd on a purely
functional level without exploitation of specific propediof the approximation or
the method used for its computation. Estimates of such aaygeften called “func-
tional a posteriori estimates”. Application to linear isgtic hardening allows us to
express another reliability estimate

1
SHw=Vl|[> <.#(v.1,4) (20)

which bounds an error of a discrete solutigni.e. its distance from the exact
solutionw by an expression on the right-hands side called a functioragbrant
A (v, T,A). The functional majorant can be generally minimized withpect to
free parameters, A to keep the estimate (20) as sharp as possible. Numeridtd ver
cation of this estimate will be the topic of the forthcomiraper, where it should be
profited from the experience in problems with nonlinear lmtarg conditions [47]
and an application of a multigrid preconditioned solver tma@orant computation
[54].

5 High order FEM for elastoplasticity: hp-FEM and BC-FEM

In nowadays computer simulations of elastoplasticitypsisiah-FEM (as presented
in Section 4) is probably the most propagated and well knoiscretization tech-
nique. However, as computers become faster, and paratielizis no longer just a
scientific topic, the mixture of low and high order finite elem methodsi{p-FEM)
becomes more and more attractive in daily practice. Apglymigh order method
means to increase the polynomial degree of the shape fuisabio an element in-
stead of refining it. The major drawback of a high order metisoithe expensive
assembling of the system matrix. As long as this handicapbeasettled (e.g., by
finding recurrences via symbolic computation [5, 8, 9]), #pplication of such
methods are definitely worth their price. The ideah@fFEM [3, 50] is to increase
the polynomial degree locally on elements, where the swiutias high regularity.
In such areas of the domain we can expect local exponentigbecgence of the ap-
proximate towards the solution. On other elements, i. eratiee regularity is low,
mesh refinement is applied, which locally yields algebraiovergence. Moreover,
by choosing propehp-adaptive refinement strategies, an exponential conveegen
rate can be achieved globally [3].

In elastoplasticity, the solution in each time step is knowhe inH2_(Q), and,

loc
moreover, analytic in balls where the plastic straimanishes [39, 6]. Thus, the
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application of arhp-FEM is a natural choice. In those parts of the interior domai

where the material reacts purely elastic, the polynomigiekeis increased, whereas

the mesh is refined in plastic areas and towards rough boyddéa or geometry.
The basichp-adaptive algorithm reads as follows:

Algorithm 1 Thehp-adaptive Algorithm:

Require: A mesh.7, a polynomial degree vectdpk )k~ a Finite Element Solutiooge.
Ensure: A refined meshZt, a new polynomial degree vectOpk )ke -

. Determine which elements to refire .

: Determine where the polynomial degree should be inctease?),.

: Obtain a preliminary refined mesh .7;.

. Elimination of hanging nodes> .

. Increase the polynomial degr@e = px + 1 for all elementK € Jet N p. In particular:
Elements to which ah-refinement is applied inherit the polynomial degree froeirtfather.

O WNPFP

Note, that Items 3-5 are straight forward, whereas, onehstd to decide on
the exact realization of ltems 1 and 2. In general, the setll afdaptive strategies
divides into two classes: strategies which are problem migget, and those which
are not. In problem dependent strategies, the decisionhehé&t refine inh, or in
p, or not at all, relies on the evaluation of problem dependeantities, typically
the error estimator. Algorithms of this class can be foungl, én [1, 21]. Problem
independent algorithms, such as discussed in [18, 19mattithe regularity of the
solution without using problem dependent quantities.

Due to the lack of a reliable and efficient error estimatordiastoplasticity, the
use of problem independent algorithms is a natural choibe. dpplication of an
algorithm presented in [21] to elastoplastic problems io tiimensions is discussed
in [25]. This adaptive algorithm is based on the followingad

Expressing the solution to the (elastoplastic) problem as an expansion with
respect to orthogonal Legendre polynomials

U= 3 Upqpq (21)

p.aeNg

results in a sequence of coefficientg, which decays exponentially if and only if
the solutioru is analytic:

Proposition 1. Define on the reference triangke the Ly(K)-orthogonal basigpg,
p,q € No by

_ 1- P
Wpa= PpqoD L, Ppq=PL? (1) ( 202) PP (),

where %mﬁ) is the (well known) p-th Jacobi polynomial with respect te tireight
n — (1—n)%(1+n)# and D the Duffy transformation. Leta L,(K) be written
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as in(21). Then u is analytic ol if and only if there exist constants > 0 such
that |upg| < Ce PP+9 for all p,q € No.

Proof. See [43].

Since the true solution is not available, the idea for tHep-adaptive algorithm is
to estimate the decay of the coefficieng, of the expansion of the finite element
solutionUggk o Fx = 3 pqUpqWpq instead. If the decay is exponentially, then the
polynomial degree will be increased, otherwise, the mesh will be refined:

Algorithm 2 Realization of ltems 1 and 2 in Algorithm 1:

Require: A mesh.7, a polynomial degree vectdpk )xc.7, @ parameteb > 0, a Finite Element
Solutionugg.
Ensure: The marked elements, and .

1: For all element& € .7 compute the expansion coefficients
Uij k= (111 e, (Urer o Fic i),k

for0<i+j < pk.
2: Estimate the decay coefficielnt by a least squares fit of

In\uij‘K| %CK —bK(i+j).

3: DetermineZ, = {K € 7 | bx > b} and 7, = {K € 7 | by <b}.

Additionally to the presented adaptive strategy in Aldaritl, a different dis-
cretization approach applied to elastoplasticity is itigesed in [25]. This approach
is still of anhp-adaptive Finite Element type, but with a slightly diffetamm: Con-
sidering a general boundary value problem, where the ragut# the solution is
known to be low at the boundary and high in the interior of tbendin, the param-
etersh and p are chosen to be small in a neighborhood of the boundary ahd to
growing towards the interior of the domain. This growth isidén a manner, such
that

e the convergence rate is of the same order dsHEM,
e and the number of total unknowns is proportional to the nurobanknowns on
the boundary (such as in BEM).

Due to the second property, the method is called a Boundang&drated Finite
Element Method (BC-FEM) [33]. The method exploits the knesge about the
regularity of the solution in a way, that it searches for thealiest (and sparse)
system which allows for the same convergence rate as isnglstan a classical
h-FEM.

In elastoplasticity, BC-FEM can be applied for the purelgsgic region, where
the solution is known to be analytic [6], whereas the plastgion, where the so-
lution is known to be ir‘H%C [39], is discretized by using-FEM. However, the
interface between plastid || > 0) and elastic|(p|| = 0) parts of the domain is not
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known in advance, since the calculation of the plastic stfigld p relies on the
displacement field, as it is pointed out in equation (16).s[lane has to estimate,
which parts of the domain will be plastic at the next step diheament. This task
can be again handled by Algorithm 2, due to the knowledgethetsolutions reg-
ularity in the elastic and plastic parts of the domain. Treultng method has the
same accuracy as a classitaFEM, i.e. the errof|u — un||y1 o) = O(h), but the
number of degrees of freedom is significantly smaller: Gadesngh-FEM in two
dimensionsd = 2), the number degrees of freedom is rougb(iN?), with N = h—1
denoting the number of nodes on the boundary of the domaiere®s in BC-FEM
itis O(Ng) +O(N3), whereNg is the number of nodes on the boundary of the purely
elastic sub-domain, arde the number of nodes on the boundary of the plastic sub-
domain (compare Table 2). It is possible to generalize timaadrand dual domain
decomposition solvers proposed in [7] for solving integfmoncentrated finite ele-
ment equations to the plastic-zone concentrated finite@i¢equations which we
have to solve at each incremental step.

Finally, we present the results of following two numericgberiments:

e A platewith ahole {x € [-10,10 : |x| > 1} is torn on the top and the bot-
tom edge in normal direction with a traction of intensjty = 450. Due to the
symmetry of the problem, only the top right quarter is coasgd in the numeri-
cal simulation. The material parameters are chosen asfallgoung’s modulus
E = 20690, Poisson ratie = 0.29, yield stresy, = 450,/2/3, and modulus of
hardeningH = 0.1. On the left of Figure 4 one can see the mesh after 5 steps of
BC-refinement. The elements are colored from blue to red;atitig its polyno-
mial degree. On the right of Figure 4, the elastic (blue) dadtfx (red) zones are
plotted. A zoom (Figure 5) shows the adaptive refinementitdsvthe boundary
and the elastoplastic interface. Plastic zones are resticcianes are blue.

e A screw wrench sticks on a screw (homogeneous Dirichlet condition) and is
pressed down at its handheld in normal direction with amisitg |g| = 1€6. The
material parameters are chosen as follows: Young's modtilas2e8, Poisson
ratio v = 0.3, yield stressoy = 16, modulus of hardeningl = 0.01. On top
of Figure 6, one can see the mesh after 5 steps of BC-refinefieaelements
are colored from blue to red, indicating its polynomial dsgron bottom of
Figure 6, the elastic (blue) and plastic (red) zones argqalot

Table 2 shows the number of degrees of freedom for both exesmiplcase of an
h-FEM and a BC-FEM discretization.

DOFsatLevell 2 3 4 5 6
Plate with Hole i-FEM)[2018 7810 30722 121858 485378 1937410
Plate with Hole (BC-FEM)2018 5010 14658 37874 103050 307330
Screw Wrenchi{-FEM)(474 1778 6882 27074 107394 427778
Screw Wrench (BC-FEM}#74 1618 4266 10290 24490 58474

Table2 Comparison of the degrees of freedom at each numerical égamp
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1.,000e+00 2,250e+00 3.5008+00 4,750e+00 6.0002+00 0. 0002+00 2,5008-21 5.000e-21 7.5008-21 1.000e-20

Fig. 4 Plate with a hole: polynomial order (left) and plastic zo(rght).

Fig. 5 Plate with a hole: adaptive refinement.

6 Conclusion

We presented two strategies to deal with the non-smootlufiéiss functional aris-
ing at each incremental step in elastoplasticity. The fingt oses traditional regu-
larization techniques whereas the second one makes userefils theorem for
the reduced functional. Generalized Newton-methods aiigedband analyzed on
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1, 000e+00 2,260e+00 Z,800e+00 4, 7RO+ 00 G, 000e+00

0, 000+ 00 2,500e-21 5, 000e-21 7, 800e-21 1, 000e-20

Fig. 6 Screw Wrench: polynomial order (top) and plastic zonest@oay.

the basis of the concept of slanting functions. Furthermeeeproposed residual-
based and functional-based a posteriori error estimatesldstoplastic problems
which can be used in an AFEM. In some cases the convergenhe &fREM can
be shown. Finally, we studied the use of higher-order finenents in elastoplas-
ticity. The approximation quality of higher-order eleme&strongly depends on the
local regularity of the solution. The new plastic-zone camtcated finite element
approximation used low-order elements in the plastic zamesboundary or, more
precisely, interface concentrated finite element apprations in the elastic zone
where higher and higher order finite elements are used inndigpee on the dis-
tance to the elastic-plastic interface and the boundarguR€ty detectors can be
used to predict the elastic-plastic interface at each mergal step.
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