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Fast solvers and a posteriori error estimates in
elastoplasticity

P. G. Gruber, J. Kienesberger, U. Langer, J. Schöberl and J.Valdman

Abstract The paper reports some results on computational plasticityobtained within
the Special Research Program “Numerical and Symbolic Scientific Computing” and
within the Doctoral Program “Computational Mathematics” both supported by the
Austrian Science Fund FWF under the grants SFB F013 and DK W1214, respec-
tively. Adaptivity and fast solvers are the ingredients of efficient numerical methods.
The paper presents fast and robust solvers for both 2D and 3D plastic flow theory
problems as well as different approaches to the derivationsof a posteriori error es-
timates. In the last part of the paper higher-order finite elements are used within
a new plastic-zone concentrated setup according to the regularity of the solution.
The theoretical results obtained are well supported by the results of our numerical
experiments.

1 Introduction

The theory of plasticity has a long tradition in the engineering literature. These
classical results on plasticity together with the introduction of the Finite Element
Method (FEM) into engineering computations provides the basis for the modern
computational plasticity (see [56] and the references therein). The rigorous mathe-
matical analysis of plastic flow theory problems and of the numerical methods for
their solution started in the late 70ies and in the early 80ies by the work of C. John-
son [31, 32], H. Matthies [41, 42], V.G. Korneev and U. Langer[40], and others.
Since then many mathematical contributions to Computational Plasticity have been
made. We here only refer to the monographs by J.C. Simo and T.J.R. Hughes [51]
and W. Han and B.D. Reddy[29], to the habilitation theses by C. Carstensen [12]
and C. Wieners [55], to the collection [52], and the references given therein.

Institute of Computational Mathematics, Johannes Kepler University Linz, 4040 Linz, Austria e-
mail: ulanger@numa.uni-linz.ac.at (corresponding author)
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The incremental elastoplasticity problem can be reformulated as a minimization
problem for a convex but not-smooth functional, where the unknowns are the dis-
placementsu and the plastic strainsp. One method to deal with this non-smoothness
relies on regularization techniques which were initially studied in [35]. However,
eliminating the plastic strainsp and using Moreau’s theorem, we see that the re-
duced functional, that is now only a functional in the displacementsu, is actually
continuously Fréchet differentiable. The elimination ofthe plastic strains can be
done locally and with the help of symbolic techniques. Unfortunately, the second
derivative of the reduced functional does not exist. As a remedy, the concept of
slanting functions, introduced by X. Chen, Z. Nashed, and L.Qi in [17], allows us
to construct and analyze generalized Newton methods which show fast convergence
in all our numerical experiments. More precisely, we can proof super-linear conver-
gence of these generalized Newton methods at least in the finite element setting.

The second part of this paper is devoted to the a posteriori error analysis of elasto-
plastic problems. Two different techniques were developed: the first one is exploring
a residual-type estimator respecting certain oscillations, and the second one is based
on functional a posteriori estimates introduced by S. Repin[46].

Finally, we consider spatial discretizations of the incremental plasticity problems
based onhpfinite element techniques. A straightforward application of the classical
h-FEM yields algebraic convergence. However, the regularity results presented in
[6, 39], namelyH2

loc regularity of the displacements in the whole domain, andC∞

regularity apart from plastic zones and the boundary of the computational domain,
justify the application of high order finite element methodsin the elastic part, but
not necessarily in the plastic part. A fewhp-adaptive strategies, as well as a related
technique, the so-called Boundary Concentrated Finite Element Method (BC-FEM)
introduced by B.N. Khoromskij and J.M. Melenk [33], are discussed in this paper.

The rest of the paper is organized as follows: In Section 2, wedescribe the initial-
boundary value problem of elastoplasticity which is studied in this paper. Section 3
is devoted to the incremental elastoplasticity problems and strategies for their so-
lution. In Section 4 we derive a posteriori error estimates which can be used in the
adaptiveh-FEM providing an effective spatial discretization in every incremental
step. Section 5 deals with the use of thehp-FEM in elastoplasticity. Finally, we
draw some conclusions.

2 Modeling of elastoplasticity

There are many mathematical models describing the elastoplastic behavior of mate-
rials under loading. In this paper we follow the descriptiongiven by C. Carstensen
in [12, 13, 14, 15]. The classical equations of elastoplasticity can be found in the
standard literature on plasticity, see, e.g., [51, 29]. Letus first recall these describ-
ing relations. LetΘ := [0,T] be a (pseudo) time interval, and letΩ be a bounded
domain inR3 with a Lipschitz continuous boundaryΓ := ∂Ω . In the quasi-static
case which is considered throughout this paper, the equilibrium of forces reads as
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follows
−div(σ(x,t)) = f (x,t) ∀ (x,t) ∈ Ω ×Θ , (1)

whereσ(x,t) ∈R3×3 is called Cauchy’s stress tensor andf (x,t) ∈R3 represents the
volume force acting at the material pointx ∈ Ω at the timet ∈ Θ . Let u(x,t) ∈ R3

denote the displacements of the body, and let

ε(u) :=
1
2

(

∇u+(∇u)T)

(2)

be the linearized Green-St. Venant strain tensor. In elastoplasticity, the total strainε
is additively split into an elastic parte and a plastic partp, that is,

ε = e+ p. (3)

We assume a linear dependence of the stress on the elastic part of the strain, which
is defined by Hooke’s law

σ = Ce. (4)

Since we assume the material to be isotropic, the single components of the elastic
stiffness tensorC ∈ R3×3×3×3 are defined byCi jkl := λ δi j δkl + µ(δikδ jl + δil δ jk).
Here,λ > 0 andµ > 0 denote the Lamé constants, andδi j the Kronecker symbol.

Let the boundaryΓ be split into a Dirichlet partΓD and a Neumann partΓN such
thatΓ = ΓD ∪ΓN. We assume the boundary conditions

u = uD onΓD and σ ·n = g onΓN , (5)

wheren(x,t) denotes the exterior unit normal,uD(x,t) ∈ R3 denotes a prescribed
displacement andg(x,t) ∈ R

3 denotes a prescribed traction. Ifp = 0 in (3), the
system (1) – (5) describes the linear elastic behavior of thecontinuumΩ .

Two more properties, incorporating the admissibility of the stressσ with respect
to a certain hardening law and the time evolution of the plastic strain p, are re-
quired to describe the plastic behavior of some bodyΩ . Therefore, we introduce
the hardening parameterα and define the generalized stress(σ ,α), which we call
admissible if for a given convex yield functionalφ the inequality

φ(σ ,α) ≤ 0. (6)

holds. The explicit form ofφ depends on the choice of the hardening law, see, e.g.,
formula (9) for isotropic hardening. The second, specifically elastoplastic, property
addresses the time development of the generalized plastic strain (p,−α) that is de-
scribed by the normality rule

〈(ṗ,−α̇) , (τ,β )− (σ ,α)〉F ≤ 0 ∀(τ,β ) which satisfyφ(τ,β ) ≤ 0, (7)

whereṗ andα̇ denote the first time derivatives ofp andα, respectively. Therefore,
we need initial conditions, which read as follows
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p(x,0) = p0(x) and α(x,0) = α0(x) ∀x∈ Ω , (8)

with given initial valuesp0 : Ω → R3×3
sym andα0 : Ω → [0,∞[.

Problem 1 (classical formulation). Find (u, p,α), which satisfies (1) – (8).

In this paper we concentrate on the isotropic hardening law,where the hardening
parameterα is a scalar functionα : Ω → R and the yield functionalφ is defined by

φ(σ ,α) :=

{

‖devσ‖F −σy(1+Hα) if α ≥ 0,

+∞ if α < 0.
(9)

Here, the Frobenius norm‖A‖F := 〈A, A〉1/2
F is defined by the matrix scalar product

〈A, B〉F := ∑i j ai j bi j for A = (ai j ) ∈ R3×3 andB = (bi j ) ∈ R3×3. The deviator is
defined for square matrices by devA = A− trA

tr I I , where the trace of a matrix is de-
fined by trA= 〈A, I〉F andI denotes the identity matrix. The real material constants
σy > 0 andH > 0 are called yield stress and modulus of hardening, respectively.

3 The incremental elastoplasticity problems and solvers

We turn to the specification of proper function spaces. For a fixed timet ∈Θ , let

u∈V :=
[

H1(Ω)
]3

, p∈ Q := [L2(Ω)]3×3
sym , α ∈ L2(Ω) .

We define the hyperplaneVD := {v∈ V | v|ΓD
= uD} and the test spaceV0 := {v∈

V | v|ΓD
= 0}, and the associated scalar products and norms as follows:

〈u, v〉V :=
∫

Ω

(

uT v+ 〈∇u, ∇v〉F
)

dx, ‖v‖V := 〈v, v〉1/2
V ,

〈p, q〉Q :=
∫

Ω
〈p, q〉F dx, ‖q‖Q := 〈q, q〉1/2

Q .

Starting from Problem 1, one can derive a uniquely solvable time dependent vari-
ational inequality for unknown displacementu ∈ {v ∈ H1(Θ ;V) | v|ΓD

= uD} and

plastic strainp∈H1(Θ ;Q) (see [29, Theorem 7.3] for details). However, the numer-
ical treatment requires a time discretization of this variational inequality. Therefore,
we pick a fixed number of time ticks 0= t0 < t1 < .. . < tNΘ = T out of Θ . We
introduce the notation

uk := u(tk) , pk := p(tk) , αk := α(tk) , fk := f (tk) , gk := g(tk) , . . . ,

and approximate time derivatives by the backward difference quotients

ṗk ≈ (pk− pk−1)/(tk− tk−1) and α̇k ≈ (αk−αk−1)/(tk− tk−1) .
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Consequently, the time dependent problem is approximated by a sequence of
time independent variational inequalities of the second kind. Each of these varia-
tional inequalities can be equivalently expressed by a minimization problem, which
by definition of the set of extended real numbers,R := R∪{±∞}, reads [14, Exam-
ple 4.5]:

Problem 2. Find(uk, pk)∈VD×Qsuch thatJk(uk, pk)= inf(v,q)∈VD×QJk(v,q), where
Jk : VD ×Q→ R is defined by

Jk(v,q) :=
1
2
‖ε(v)−q‖2

C + ψk(q)− lk(v) , (10)

with

〈q1 , q2〉C :=
∫

Ω
〈Cq1(x) , q2(x)〉F dx, ‖q‖C := 〈q, q〉

1
2
C

, (11)

α̃k(q) := αk−1 + σyH‖q− pk−1‖F , (12)

ψk(q) :=

{
∫

Ω
(1

2α̃k(q)2 + σy‖q− pk−1‖F
)

dx if tr(q− pk−1) = 0,
+∞ else,

(13)

lk(v) :=
∫

Ω
fk ·v dx+

∫

ΓN

gk ·v ds. (14)

The convex functionalJk expresses the mechanical energy of the deformed sys-
tem at thekth time step. It is smooth with respect to the displacementsv, but not
with respect to the plastic strainsq. Notice, that no minimization with respect to
the hardening parameterαk is necessary. It is computed in the post-processing by
αk = α̃k(pk), with α̃k defined as in (12). A short summary on the modeling of Prob-
lem 2 starting from the classical formulation can be found in[38]. The problem is
uniquely solvable due to [22, Proposition 1.2 in Chapter II].

Fig. 1 Example of two-yield plasticity distribution.
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J. Valdman together with M. Brokate and C. Carstensen published results on
the analysis [10] and numerical treatment [11] of multi-yield elastoplastic models
based on the PhD-thesis of J. Valdman [53] and its extension.The main feature of
the multi-yield models is a higher number of plastic strainsp1, . . . , pN used for more
realistic modeling of the elastoplastic-plastic transition. It was possible to prove the
existence and uniqueness of the corresponding variationalinequalities and design a
FEM based solution algorithm. Since the structure of the minimization functional
in the multi-yield plasticity model remains the same as for the single-yield model, it
was possible to prove the existence and uniqueness of the corresponding variational
inequalities and design a FEM based solution algorithm. In terms of a software
development, an existing elastoplasticity package [34], written as a part of the NET-
GEN/NGSolve software of J. Schöberl, was modified to make the computations
of a two-yield elastoplastic problem feasible [37]. Figure1 displays elastic (blue),
first (red) and second (green) plastic deformational zones of the shaft model. The
numerical treatment of the two-yield problem requires to resolve the plastic-strain
increment matricesP1 andP2 from a local minimization problem with a convex but
non-smooth functional. Since there are typically millionsof such minimizations,
iterative techniques such as alternating minimizations, Newton based methods or
even partially exact analytical solutions were studied in [30].

The first class of algorithms is based on a regularization of the objective, where

the modulus is smoothed for making the objectiveJ(δ )
k twice differentiable. Figure

2 shows the modulus|p| := ‖pk − pk−1‖F and possible regularizations|p|(δ ) de-
pending on the regularization parameterδ , whereδ is here chosen as 10−6. The
quadratic regularization has a smooth first derivative within the interval(−δ ,δ ),
but the second derivative is piecewise constant and discontinuous. Thus, the local
quadratic convergence of Newton type methods cannot be guaranteed. The piece-
wise cubic spline has a piecewise linear continuous second derivative. Thus, New-
ton type methods can be applied. As a final choice of regularization, the cubic spline
function is shifted to the origin, so that|p|(δ ) = 0 holds forp = 0.

For instance, in case of a quadratic regularization (green), we have

|p|δ :=

{

|p| if |p| ≥ δ ,
1

2δ |p|
2 + δ

2 if |p| < δ ,

with a small regularization parameterδ > 0.
The algorithm is based on alternating minimization with respect to the two vari-

ables, and on the reduction of the objective to a quadratic functional with respect to
the plastic strains. This can be interpreted as a linearization of the nonlinear elasto-
plastic problem.

The minimization problem with respect to the plastic part ofthe strain is separa-
ble and the analytical solutionp(δ )(u) can be calculated in explicit form. Problem 2
formally reduces to

J(δ )
k (u) = min

v
J(δ )

k (v, p(δ )(v)). (15)
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Fig. 2 Plot of |p| and its regularizations.

After the finite element (FE) discretization and the elimination of plastic strains,
the FE displacement field results from the solution of a linear Schur complement
system. The solution of this linear system can efficiently becomputed by a multi-
grid preconditioned conjugate gradient solver, see [37, 36].

Using Moreau’s theorem, that is well known in the scope of convex analysis
[44], we can avoid the regularization of the original functionalJk. The formula for
minimizingJk(u, p) with respect to the plastic strainp for a given displacementu is
explicitly known [2], i. e., we know a function ˜pk(ε(u)), such that there holds

Jk(u) := Jk(u, p̃k(ε(u))) = inf
q

Jk(u,q) .

In detail, the plastic strain minimizer reads as follows

p̃k(ε(v)) = ξ max{0,‖devσk(ε(v))‖F −σy}
devσk(ε(v))

‖devσk(ε(v))‖F
+ pk−1 , (16)

with the constantξ :=
(

1+ σ2
y H2

)−1
, the trial stressσk(ε(v)) := C(ε(v)− pk−1),

and the deviatoric part devσ := σ − (trσ/3) I . Thus, it remains to solve a mini-
mization problem with respect to one variable only, i.e.Jk(u) → min. The theorem
of Moreau says, that, due to the specific structure ofJk(u, p), the functionalJk(u) is
continuously Fréchet differentiable and strictly convex. Moreover, the explicit form
of the derivative is also provided. The Gâteaux differential is given by the relation
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DJk(v;w) = 〈ε(v)− p̃k(ε(v)) , ε(w)〉C − lk(w) .

Hence, it suffices to findu such that the first derivative ofF vanishes. This approach
was first discussed in the master thesis [24] by P.G. Gruber. Several numerical ex-
amples can also be found in [23, 27, 28].

The second derivative ofJk does not exist. As a remedy, the concept of slanting
functions, introduced by X. Chen, Z. Nashed, and L. Qi in [17], allows the applica-
tion of the following Newton-like method: Letv0 ∈ VD be a given initial guess for
the displacement field. Then, forj = 0,1,2, ... and givenv j , findv j+1 ∈VD such that

(DJk)
o (v j ;v j+1−v j ,w) = −DJk(v

j ;w)

holds for allw∈V0, where the slanting function of DJk is defined by the identity

(DJk)
o (v; w1,w2) = 〈ε(w1)− p̃k

o(ε(v) ; ε(w1)) , ε(w2)〉C ∀w1,w2 ∈V0 .

Here, ˜pk
o denotes the slanting function of ˜pk (16), which, by using the defini-

tion βk(ε(v)) := 1−σy‖devσk(ε(v))‖−1
F , and the abbreviationsβk(ε(v)) := βk and

σk(ε(v)) := σk, reads

p̃k
o(ε(v) ; q) =

{

0 if βk ≤ 0,

ξ
(

βk devq+(1−βk)
〈devσk ,devq〉F

‖devσk‖
2
F

devσk

)

else.

Utilizing this concept, P. G. Gruber and J. Valdman were ableto prove the lo-
cal super-linear convergence of the resulting Newton-likesolver in the spatial dis-
cretized case (see Table 1), and formulate sufficient regularity conditions which
would guarantee super-linear convergence in the non-discretized case [28, 27]. An
extension of the numerical solver to other kinds of time-dependent models with in-
ternal variables, as discussed in [26], is possible and leftfor future investigation.

The slant Newton method is tested on a benchmark problem in computational
plasticity [52]. The left plot of Figure 3 shows the mesh for the right upper quarter of
a plate with geometry(−10,10)×(−10,10)×(0,2)and a circular hole of the radius
r = 1 in the middle. One elastoplastic time step is performed, where a surface load
g with the intensity|g|= 450 is applied to the plate’s upper and lower edge in outer
normal direction. Due to the symmetry of the domain, the solution is calculated on
one quarter of the domain only. Thus, homogeneous Dirichletboundary conditions
in the normal direction (gliding conditions) are considered for both symmetry axes.
The material parameters are set to

λ = 1.1074∗105, µ = 8.0194∗104, σy = 450
√

2/3, H = 0.5.

Differently to the original problem in [52], the modulus of hardeningH is nonzero,
i. e. hardening effects are considered. The numerical results for the original problem
(H=0) can be found in [23]. The two plots in Figure 3 show the coarsest tetrahedral
FE-mesh with the applied tractiong (left), and the Frobenius norm of the plastic
strain field p (right) on a finer mesh for this three dimensional problem. Table 1
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outlines the convergence of the slant Newton method, where the initial values for
the displacement are chosen to be zero at each level of refinement. We observe
super-linear convergence with respect to a Cauchy test and aconstant number of
iterations at each refinement level. The implementation wasdone in C++ using the
NETGEN/NGSolve software package developed by J. Schöberl[49].

Fig. 3 Coarsest triangulation (left) and the Frobenius norm of theplastic strain fieldp (right).

dof: 717 5736 45888 367104
0-1 1.000e+00 1.000e+00 1.000e+00 1.000e+00
1-2 1.013e-01 1.254e-01 1.367e-01 1.419e-01
2-3 7.024e-03 6.919e-03 7.159e-03 6.993e-03
3-4 1.076e-04 9.359e-05 1.263e-04 1.176e-04
4-5 2.451e-08 6.768e-07 1.744e-06 1.849e-06
5-6 7.149e-15 6.887e-12 4.874e-09 1.001e-08
6-7 4.298e-13 2.368e-14

Table 1 Convergence behavior of the slant Newton method for different refinement levels.

4 Adaptive h-FEM and a posteriori error estimates for
elastoplasticity

The efficient numerical treatment of problems with poor regularity of the solution
can be realized with adaptive mesh refinement techniques based on a posteriori error
estimators. Anh−finite element adaptive algorithm consists of successive loops of
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the form
SOLVE → ESTIMATE → MARK → REFINE (17)

designed to produce more efficient meshes by targeted local refinements with less
computational effort. The a posteriori error analysis of (17) started with the pioneer-
ing work of [4] for a two-point elliptic boundary value problem and with the step
MARK realized by the max refinement rule. This marking rule currently employed in
the engineering literature consists in looking at the elements with the largest error
and refining these in order to achieve a better accuracy. Letη2 := ∑M η2

M denote a
typical reliable error estimator with local contributionsηM associated with an edge,
face, or elementM in the current mesh, the max refinement rule marks a subsetM

according to
L ∈ M if and only if ηL ≥Θ max

M
ηM (18)

with 0≤Θ ≤ 1. The analysis of [4], however, does not provide information on the
convergence rate and its extension to higher dimensions still remains unsolved. It is
only after the contribution of Dörfler [20] with the introduction of a new marking
strategy for error reduction (hereafter referred to as bulkcriterion or fixed fraction
criterion) that the convergence analysis of AFEMs has experienced significant de-
velopment. With such criterion, one defines the setM of the marked objects using
the rule

∑
M∈M

η2
M ≥Θ η2 (19)

with 0≤Θ ≤ 1. The condition (19) together with local discrete efficiency estimates,
and the Galerkin orthogonality yields a linear error reduction rate for the energy
norm towards a preassigned toleranceTOL in finite steps for the Poisson problem.

In [16], a proof of convergence of AFEM with indication of therate of conver-
gence for the primal formulation of plasticity is provided under the application of the
bulk criterion (19). Applications include several plasticity models: linear isotropic-
kinematic hardening, linear kinematic hardening, multi-surface plasticity as model
for nonlinear hardening laws, and perfect plasticity. Exploiting properties of a non-
differentiable energy functionalJ, and the reliability of a new edge-based residual
error estimate, we obtain the following results:

(i) Energy reduction: for some data oscillations osc2
ℓ ≥ 0 and positive constants

ρE, C with ρE < 1 there holds

J(wℓ+1)−J(w) ≤ ρE(J(wℓ)−J(w))+Cosc2ℓ .

Here,J(w) denotes a minimal energy andJ(wℓ) andJ(wℓ+1) are energies on refined
triangulationsTℓ andTℓ+1.

(ii) R−linear convergence for the stresses: up to oscillation terms there holds

‖|σ −σℓ|‖C−1;Ω ≤ αℓ for ℓ = 0,1,2· · · ,



Fast solvers and a posteriori error estimates in elastoplasticity 11

with αℓ → 0 and linear convergent, and‖| · |‖
C−1;Ω the energy norm induced by the

Hook tensorC. Here,σ denotes the stress on an exact solution andσℓ ist approxi-
mation on the triangulationTℓ.

In [48], the framework introduced in the book [45] is appliedto elastoplasticity,
where the estimates are derived by the analysis of the variational problem and its
dual counterpart. A computable upper bound of the error is obtained on a purely
functional level without exploitation of specific properties of the approximation or
the method used for its computation. Estimates of such a typeare often called “func-
tional a posteriori estimates”. Application to linear isotropic hardening allows us to
express another reliability estimate

1
2
|||w−v|||2 ≤ M (v,τ,λ ) (20)

which bounds an error of a discrete solutionv, i.e. its distance from the exact
solutionw by an expression on the right-hands side called a functionalmajorant
M (v,τ,λ ). The functional majorant can be generally minimized with respect to
free parametersτ,λ to keep the estimate (20) as sharp as possible. Numerical verifi-
cation of this estimate will be the topic of the forthcoming paper, where it should be
profited from the experience in problems with nonlinear boundary conditions [47]
and an application of a multigrid preconditioned solver to amajorant computation
[54].

5 High order FEM for elastoplasticity: hp-FEM and BC-FEM

In nowadays computer simulations of elastoplasticity, adaptiveh-FEM (as presented
in Section 4) is probably the most propagated and well known discretization tech-
nique. However, as computers become faster, and parallelization is no longer just a
scientific topic, the mixture of low and high order finite element methods (hp-FEM)
becomes more and more attractive in daily practice. Applying a high order method
means to increase the polynomial degree of the shape functions on an element in-
stead of refining it. The major drawback of a high order methodis the expensive
assembling of the system matrix. As long as this handicap canbe settled (e.g., by
finding recurrences via symbolic computation [5, 8, 9]), theapplication of such
methods are definitely worth their price. The idea ofhp-FEM [3, 50] is to increase
the polynomial degree locally on elements, where the solution has high regularity.
In such areas of the domain we can expect local exponential convergence of the ap-
proximate towards the solution. On other elements, i. e. where the regularity is low,
mesh refinement is applied, which locally yields algebraic convergence. Moreover,
by choosing properhp-adaptive refinement strategies, an exponential convergence
rate can be achieved globally [3].

In elastoplasticity, the solution in each time step is knownto be inH2
loc(Ω), and,

moreover, analytic in balls where the plastic strainp vanishes [39, 6]. Thus, the
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application of anhp-FEM is a natural choice. In those parts of the interior domain,
where the material reacts purely elastic, the polynomial degree is increased, whereas
the mesh is refined in plastic areas and towards rough boundary data or geometry.

The basichp-adaptive algorithm reads as follows:

Algorithm 1 Thehp-adaptive Algorithm:
Require: A meshT , a polynomial degree vector(pK)K∈T , a Finite Element SolutionuFE.
Ensure: A refined meshTref, a new polynomial degree vector(pK)K∈Tref.

1: Determine which elements to refine→ Th.
2: Determine where the polynomial degree should be increased → Tp.
3: Obtain a preliminary refined mesh→ T ′

ref.
4: Elimination of hanging nodes→ Tref.
5: Increase the polynomial degreepK = pK + 1 for all elementsK ∈ Tref ∩Tp. In particular:

Elements to which anh-refinement is applied inherit the polynomial degree from their father.

Note, that Items 3–5 are straight forward, whereas, one still has to decide on
the exact realization of Items 1 and 2. In general, the set of all adaptive strategies
divides into two classes: strategies which are problem dependent, and those which
are not. In problem dependent strategies, the decision whether to refine inh, or in
p, or not at all, relies on the evaluation of problem dependentquantities, typically
the error estimator. Algorithms of this class can be found, e.g., in [1, 21]. Problem
independent algorithms, such as discussed in [18, 19], estimate the regularity of the
solution without using problem dependent quantities.

Due to the lack of a reliable and efficient error estimator forelastoplasticity, the
use of problem independent algorithms is a natural choice. The application of an
algorithm presented in [21] to elastoplastic problems in two dimensions is discussed
in [25]. This adaptive algorithm is based on the following idea:

Expressing the solutionu to the (elastoplastic) problem as an expansion with
respect to orthogonal Legendre polynomials

u = ∑
p,q∈N0

upqψpq (21)

results in a sequence of coefficientsupq, which decays exponentially if and only if
the solutionu is analytic:

Proposition 1. Define on the reference trianglêK the L2(K̂)-orthogonal basisψpq,
p,q∈ N0 by

ψpq = ψ̃pq◦D−1 , ψ̃pq = P(0,0)
p (η1)

(

1−η2

2

)p

P(2p+1,0)
q (η2) ,

where P(α ,β )
p is the (well known) p-th Jacobi polynomial with respect to the weight

η 7→ (1−η)α(1+ η)β and D the Duffy transformation. Let u∈ L2(K̂) be written
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as in (21). Then u is analytic on̂K if and only if there exist constants C,b > 0 such
that |upq| ≤Ce−b(p+q) for all p,q∈ N0.

Proof. See [43].

Since the true solutionu is not available, the idea for thehp-adaptive algorithm is
to estimate the decay of the coefficientsupq of the expansion of the finite element
solutionuFE|K ◦FK = ∑p,qupqψpq instead. If the decay is exponentially, then the
polynomial degreep will be increased, otherwise, the mesh will be refined:

Algorithm 2 Realization of Items 1 and 2 in Algorithm 1:
Require: A meshT , a polynomial degree vector(pK)K∈T , a parameterb > 0, a Finite Element

SolutionuFE.
Ensure: The marked elementsTp andTh.

1: For all elementsK ∈ T compute the expansion coefficients

ui j ,K = ‖ψi j ‖
−2
L2(K̂)

〈uFE|K ◦FK , ψi j 〉L2(K̂)

for 0≤ i + j ≤ pK .
2: Estimate the decay coefficientbK by a least squares fit of

ln|ui j ,K| ≈CK −bK(i + j) .

3: DetermineTp = {K ∈ T | bK ≥ b} andTh = {K ∈ T | bK < b}.

Additionally to the presented adaptive strategy in Algorithm 1, a different dis-
cretization approach applied to elastoplasticity is investigated in [25]. This approach
is still of anhp-adaptive Finite Element type, but with a slightly different aim: Con-
sidering a general boundary value problem, where the regularity of the solution is
known to be low at the boundary and high in the interior of the domain, the param-
etersh and p are chosen to be small in a neighborhood of the boundary and tobe
growing towards the interior of the domain. This growth is done in a manner, such
that

• the convergence rate is of the same order as inh-FEM,
• and the number of total unknowns is proportional to the number of unknowns on

the boundary (such as in BEM).

Due to the second property, the method is called a Boundary Concentrated Finite
Element Method (BC-FEM) [33]. The method exploits the knowledge about the
regularity of the solution in a way, that it searches for the smallest (and sparse)
system which allows for the same convergence rate as is obtained in a classical
h-FEM.

In elastoplasticity, BC-FEM can be applied for the purely elastic region, where
the solution is known to be analytic [6], whereas the plasticregion, where the so-
lution is known to be inH2

loc [39], is discretized by usingh-FEM. However, the
interface between plastic (‖p‖ > 0) and elastic (‖p‖ = 0) parts of the domain is not
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known in advance, since the calculation of the plastic strain field p relies on the
displacement field, as it is pointed out in equation (16). Thus, one has to estimate,
which parts of the domain will be plastic at the next step of refinement. This task
can be again handled by Algorithm 2, due to the knowledge about the solutions reg-
ularity in the elastic and plastic parts of the domain. The resulting method has the
same accuracy as a classicalh-FEM, i.e. the error‖u−uh‖H1(Ω) = O(h), but the
number of degrees of freedom is significantly smaller: Consideringh-FEM in two
dimensions (d = 2), the number degrees of freedom is roughlyO(N2), with N = h−1

denoting the number of nodes on the boundary of the domain, whereas in BC-FEM
it is O(NE)+O(N2

P), whereNE is the number of nodes on the boundary of the purely
elastic sub-domain, andNP the number of nodes on the boundary of the plastic sub-
domain (compare Table 2). It is possible to generalize the primal and dual domain
decomposition solvers proposed in [7] for solving interface-concentrated finite ele-
ment equations to the plastic-zone concentrated finite element equations which we
have to solve at each incremental step.

Finally, we present the results of following two numerical experiments:

• A plate with a hole {x∈ [−10,10]2 : ‖x‖ ≥ 1} is torn on the top and the bot-
tom edge in normal direction with a traction of intensity|g| = 450. Due to the
symmetry of the problem, only the top right quarter is considered in the numeri-
cal simulation. The material parameters are chosen as follows: Young’s modulus
E = 20690, Poisson ratioν = 0.29, yield stressσy = 450

√

2/3, and modulus of
hardeningH = 0.1. On the left of Figure 4 one can see the mesh after 5 steps of
BC-refinement. The elements are colored from blue to red, indicating its polyno-
mial degree. On the right of Figure 4, the elastic (blue) and plastic (red) zones are
plotted. A zoom (Figure 5) shows the adaptive refinement towards the boundary
and the elastoplastic interface. Plastic zones are red, elastic zones are blue.

• A screw wrench sticks on a screw (homogeneous Dirichlet condition) and is
pressed down at its handheld in normal direction with an intensity |g|= 1e6. The
material parameters are chosen as follows: Young’s modulusE = 2e8, Poisson
ratio ν = 0.3, yield stressσy = 1e6, modulus of hardeningH = 0.01. On top
of Figure 6, one can see the mesh after 5 steps of BC-refinement. The elements
are colored from blue to red, indicating its polynomial degree. On bottom of
Figure 6, the elastic (blue) and plastic (red) zones are plotted.

Table 2 shows the number of degrees of freedom for both examples in case of an
h-FEM and a BC-FEM discretization.

DOFs at Level1 2 3 4 5 6
Plate with Hole (h-FEM) 2018 7810 30722 121858 485378 1937410

Plate with Hole (BC-FEM)2018 5010 14658 37874 103050 307330
Screw Wrench (h-FEM) 474 1778 6882 27074 107394 427778

Screw Wrench (BC-FEM)474 1618 4266 10290 24490 58474

Table 2 Comparison of the degrees of freedom at each numerical example.
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Fig. 4 Plate with a hole: polynomial order (left) and plastic zones(right).

Fig. 5 Plate with a hole: adaptive refinement.

6 Conclusion

We presented two strategies to deal with the non-smoothnessof the functional aris-
ing at each incremental step in elastoplasticity. The first one uses traditional regu-
larization techniques whereas the second one makes use of Moreau’s theorem for
the reduced functional. Generalized Newton-methods are derived and analyzed on
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Fig. 6 Screw Wrench: polynomial order (top) and plastic zones (bottom).

the basis of the concept of slanting functions. Furthermore, we proposed residual-
based and functional-based a posteriori error estimates for elastoplastic problems
which can be used in an AFEM. In some cases the convergence of the AFEM can
be shown. Finally, we studied the use of higher-order finite elements in elastoplas-
ticity. The approximation quality of higher-order elements strongly depends on the
local regularity of the solution. The new plastic-zone concentrated finite element
approximation used low-order elements in the plastic zonesand boundary or, more
precisely, interface concentrated finite element approximations in the elastic zone
where higher and higher order finite elements are used in dependence on the dis-
tance to the elastic-plastic interface and the boundary. Regularity detectors can be
used to predict the elastic-plastic interface at each incremental step.
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42. Matthies, H.: Finite element approximations in thermo-plasticity. Numer. Funct. Anal. Optim.

1(2), 145–160 (1979)
43. Melenk, J.M.:hp-finite element methods for singular perturbations,Lecture Notes in Mathe-

matics, vol. 1796. Springer, Berlin (2002)
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49. Schöberl, J.: Netgen - an advancing front 2d/3d-mesh generator based on abstract rules. Com-
put.Visual.Sci1, 41–52 (1997)

50. Schwab, C.: P- and hp- finite element methods: theory and applications in solid and fluid
mechanics. Oxford University Press (1998)

51. Simo, J.C., Hughes, T.J.R.: Computational inelasticity, Interdisciplinary Applied Mathemat-
ics, vol. 7. Springer-Verlag, New York (1998)

52. Stein, E.: Error-controlled Adaptive Finite Elements in Solid Mechanics. Wiley, Chichester
(2003)

53. Valdman, J.: Mathematical and numerical analysis of elastoplastic material with multi-surface
stress-strain relation. Ph.D. thesis, Christian-Albrechts-Universität zu Kiel (2002)

54. Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on
H(div) multigrid-preconditioned CG method. Advances in Numerical Analysis (2009). DOI
10.1155/2009/164519. (online)

55. Wieners, C.: Multigrid methods for finite elements and the application to solid mechanics.
Theorie und Numerik der Prandtl-Reuß Plastizität (2000).Habilitationsschrift, Universität
Heidelberg

56. Zienkiewicz, O.: The finite element method, 3rd expanded& rev. ed. edn. McGraw-Hill (1977)



Technical Reports of the Doctoral Program

“Computational Mathematics”

2009

2009-01 S. Takacs, W. Zulehner: Multigrid Methods for Elliptic Optimal Control Problems with Neu-
mann Boundary Control October 2009. Eds.: U. Langer, J. Schicho

2009-02 P. Paule, S. Radu: A Proof of Sellers’ Conjecture October 2009. Eds.: V. Pillwein, F. Winkler
2009-03 K. Kohl, F. Stan: An Algorithmic Approach to the Mellin Transform Method November 2009.

Eds.: P. Paule, V. Pillwein
2009-04 L.X.Chau Ngo: Rational general solutions of first order non-autonomous parametric ODEs

November 2009. Eds.: F. Winkler, P. Paule
2009-05 L.X.Chau Ngo: A criterion for existence of rational general solutions of planar systems of

ODEs November 2009. Eds.: F. Winkler, P. Paule
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2009-07 M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, A.V. Vuong: Swept Volume
Parameterization for Isogeometric Analysis November 2009. Eds.: J. Schicho, W. Zulehner
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