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Abstract

In this paper, we generalize the results of Ngô and Winkler [18, 20, 21] to the case of

high order non-autonomous algebraic ODE with a birational parametrization of the corre-

sponding algebraic hypersurface. First, we reduce the problem for finding rational general

solutions of non-autonomous n− 1 (n > 2) order ODE to finding rational general solutions

of an associated first order rational system of autonomous ODEs in n indeterminates based

on the parametrization of hypersurface. Next, the correspondence of the rational general

solutions between the original non-autonomous algebraic ODE and the associated system

of autonomous ODEs is proved. Finally, a criterion is presented for existence of rational

general solutions of the associated system of autonomous ODEs if the degree bound of its

rational general solutions is given. Moreover, we give some nice properties of polynomial

system of autonomous ODEs.

Keywords: Rational general solutions, non-autonomous ODE, associated system of au-

tonomous ODEs, hypersurface, parametrization.

1 Introduction

The conversion between implicit and parametric representations of (differential) varieties
is one of the classic and basic topics in (differential) algebraic geometry [8, 16, 22, 29]. Much of
differential algebra or differential algebraic geometry can be regarded as a generalization of the
algebraic geometry theory to the analogous theory for the differential equations. In recent years,
a few relevant methods have been proposed for implicitization and parametrization problems in
the differential case [9–12, 18, 20, 25, 26]. In this paper, we are interested in finding the rational
general solutions for algebraic ODEs, which is motivated by developing efficient algorithms to
the rational parametrization problem for differential varieties.

From an algorithmic point of view, many approaches have been proposed for finding the
solutions of differential equations [3,5–7,28,30,31]. In the linear case, this problem can be traced
back to the work of Liouvillian. Risch [23,24] presented an algorithm to find elementary function
solutions for the simplest differential equation y′ = F (x), and Kovacic [15] proposed an effective
method for finding Liouvillian solutions of second order linear homogeneous differential equa-
tions. The general framework for the Liouvillian solutions for the general linear homogeneous
ODEs was established by Singer [27]. There are also a few studies in the direction of algebraic
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∗This work has been supported by the Austrian Science Foundation (FWF) via the Doctoral Program “Com-
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(nonlinear) differential equations or some special type nonlinear equations. Bronstein [4] gave
an effective method to compute rational solutions of Ricatti equations. Hubert [14] proposed
an approach for computing a basis of the general solutions of first order ODEs and applied it
to study the local behavior of the solutions. Li and Schwarz [17] presented the first method to
find the rational solutions for a class of partial differential equations. In addition, the method
based on rational parametrization of plane curves for computing the rational general solutions
of first order autonomous ODEs was given by Feng and Gao [9,11]. Subsequently, Ngô and Win-
kler [18, 20, 21] presented an approach to compute the rational general solutions of first order
non-autonomous ODEs by using the birational parametrization of the correponding algebraic
surface in 2009.

In this paper, the results of Ngô and Winkler (in [18, 20, 21]) are generalized to the case of
non-autonomous ODEs with order n − 1 (n > 2). Based on the birational parametrization of
algebraic hypersurface, we obtain an associated first order rational system of autonomous ODEs
in n new indeterminates, which has a special structure and some good properties. In addition, we
prove the correspondence of a rational general solution of original higer order non-autonomous
ODE and a rational general solution of the associated first order system of autonomous ODEs.
Furthermore, we present a criterion for existence of rational general solutions of the associated
system of autonomous ODEs provided a degree bound of its rational general solutions, and give
some nice properties of the first order polynomial system of autonomous ODEs.

The rest of this paper is organized as follows. In the next section, some known concepts
and results about differential polynomials and rational general solutions are introduced. In
section 3, it is explained how to derive the associated first order rational system of autonomous
ODEs. Section 4 is devoted to proving the correspondence of rational general solutions between
the original ODE and the associated system of ODEs. In Section 5, we present a criterion for
existence of rational general solutions to the associated system of autonomous ODEs. Section
6 gives some properties of polynomial system of ODEs. This paper is concluded with a brief
summary and some open problems in Section 7.

2 Preliminaries

In the following, let K = Q(x) be the differential field of rational functions in x with
differential operator d

dx and we also use ′ notation for an abbreviation of this derivation. Let
s1, . . . , sn be indeterminates over K. The j-th derivative of si is denoted by sij . The differential
polynomial ring K{s1, . . . , sn} is the ring consisting of all polynomials in si (1 ≤ i ≤ n) and all
their derivatives up to any order. Let U be a universal extension of the differential field K and
Σ a set of differential polynomials in K{s1, . . . , sn}. A set of n elements {η1, . . . , ηn} ∈ Un is a
zero of Σ if all differential polynomials in Σ reduce to zero when each si is replaced by ηi.

Definition 1. Let Σ be a nontrivial prime ideal in K{s1, . . . , sn}. A zero {η1, . . . , ηn} of Σ is
called a generic zero of Σ if for any differential polynomial F ∈ K{s1, . . . , sn}, F (η1, . . . , ηn) = 0
implies that F ∈ Σ.

Let F ∈ K{s1, . . . , sn} be a differential polynomial. The i-th derivative of F is denoted by
F (i). We simply write si instead of si0, or simply write F ′ instead of F (1). The order of F with
respect to si is the greatest j such that sij occurring in F , denoted by ordsi

(F ). For convention
we define ordsi(F ) = −1 if F does not involve any derivative of si.

Definition 2. Let F, G ∈ K{s1, . . . , sn}. Suppose that the indeterminate sp appears effectively
in both of them, where 1 ≤ p ≤ n. F is said to be of higher rank than G(or G of lower rank
than F ) in sp if one of the following conditions holds:

(a) ordsp(F ) > ordsp(G);
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(b) ordsp(F ) = ordsp(G) = q and degspq
(F ) > degspq

(G).

Definition 3. Let A = {sik : i = 1, . . . , n, k ∈ N}. The ord-lex ranking on A is the total order
defined as follows:

(a) si < sj if i < j;

(b) sik < sjl if k < l or k = l and i < j.

For any differential polynomial F ∈ K{s1, . . . , sn}\K, the greatest derivative occurring in
F with respect to ord-lex ranking is called the leader of F . The leading coefficient with respect
to the leader of F is called the initial of F , the partial derivative with respect to the leader of
F is called the separant of F . The initial of any F ∈ K is defined to be itself.

Definition 4. Let F and G be two differential polynomials in K{s1, . . . , sn} with the ord-lex
ranking. G is said to be reduced with respect to F if G is lower rank than F in the indeterminate
defining the leader of F .

Let A ⊂ K{s1, . . . , sn}, the differential polynomial set A is called autoreduced if no elements
of A belongs to K and each elements of A is reduced with respect to all the others.

Definition 5. Let F ∈ K{s1, . . . , sn}. For any G ∈ K{s1, . . . , sn}, there exists a unique repre-
sentation

SkI lG =
∑

i

QiF
(i) + R,

where S is the separant of F , I is the initial of F , Qi ∈ K{s1, . . . , sn}, F (i) is the i-th derivatives
of F , k, l ∈ N and R ∈ K{s1, . . . , sn} is reduced with respect to F . Here, R is called the
differential pseudo remainder of G with respect to F , denoted by prem(G,F ).

Let F ∈ K{s1, . . . , sn}/K be an irreducible polynomial and

ΣF = {G ∈ K{s1, . . . , sn} : SG ∈ {F}},

where S is the separant of F , {F} is the perfect differential ideal generated by F . It is well
known by [22, chap II, sect. 13] that

Lemma 6. ΣF is a prime differential ideal. Furthermore, G ∈ ΣF if and only if prem(G,F ) = 0.

Definition 7. Let F ∈ K{s1, . . . , sn} be an irreducible differential polynomial. A generic zero of
the prime differential ideal ΣF is called a general solution of F = 0. A rational general solution
(s1, . . . , sn) of F = 0 is defined as a general solution with every si has the following form

ak xk + ak−1 xk−1 + · · ·+ a0

xl + bl−1 xl−1 + · · ·+ b0
,

where ai, bj are constants in the universal extension of Q.

As a consequence of Lemma 6, we have

Corollary 8. Let F ∈ K{s1, . . . , sn}/K be an irreducible differential polynomial. If (η1, . . . , ηn)
is a general solution of F = 0, then for any differential polynomial G ∈ K{s1, . . . , sn}, we have

G(η1, . . . , ηn) = 0 ⇐⇒ prem(G,F ) = 0.
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3 Associated first order system of autonomous ODEs

Consider a non-autonomous algebraic ODE

F (x, y, y′, . . . , y(n−1)) = 0, (1)

where F ∈ Q[x, y, y1, . . . , yn−1] is an irreducible polynomial over Q̄. A rational solution y =
f(x) ∈ Q̄(x) of (1) should satisfy the following equation

F (x, f(x), f ′(x), . . . , f (n−1)(x)) = 0. (2)

By regarding x, y, y′, . . . , y(n−1) as independent variables, whose values are in the field Q̄, the
equation F (x, y, y1, . . . , yn−1) = 0 defines an algebraic hypersurface S in the space An+1(Q̄), here
F (x, y, y1, . . . , yn−1) denotes the algebraic polynomial F in n + 1 variables x, y, y1,. . . yn−1. It
follows from the condition (2) that the parametric space curve C = (x, f(x), f ′(x), . . . , f (n−1)(x))
lies on the hypersurface S, where C is called the solution curve of y = f(x).

Assume that the hypersurface S can be parametrized properly by rational functions in
Q̄(s1, . . . , sn):

P(s1, . . . , sn) = (X1(s1, . . . , sn), . . . ,Xn+1(s1, . . . , sn)).

Since P is a birational map An(Q̄) → S ⊂ An+1(Q̄), there exists a birational inverse map P−1

defining on the hypersurface S except finitely many algebraic sets with dimension less than n

(e.g. space curves, points and so on).

Definition 9. A solution y = f(x) of the equation F (x, y, y′, . . . , y(n−1)) = 0 is parametrizable
by P if the solution curve C is almost contained in im(P)∩dom(P−1), where im(P) is the image
of P, dom(P−1) is the domain of P−1. Here “almost” means except for finitely many points.

Proposition 10. Let F (x, y, y1, . . . , yn−1) = 0 be a rational hypersurface with a proper parametriza-
tion

P(s1, . . . , sn) = (X1(s1, . . . , sn), . . . ,Xn+1(s1, . . . , sn)).

Then F (x, y, y′, . . . , y(n−1)) = 0 has a rational solution, which is parametrizable by P, if and
only if there exist rational functions s1(x),. . .,sn(x) such that





X1(s1(x), . . . , sn(x)) = x
dX2(s1(x),...,sn(x))

dx = X3(s1(x), . . . , sn(x))
...

dXn(s1(x),...,sn(x))
dx = Xn+1(s1(x), . . . , sn(x)).

(3)

Proof. (=⇒) Assume that y = f(x) is a rational solution of the differential equation

F (x, y, y′, . . . , y(n−1)) = 0,

which is parametrizable by P. Then let

(s1(x), . . . , sn(x)) = P−1(x, f(x), f ′(x), . . . , f (n−1)(x)).

It follows that

P(s1(x), . . . , sn(x)) = P(P−1(x, f(x), f ′(x), . . . , f (n−1)(x)))

= (x, f(x), f ′(x), . . . , f (n−1)(x)),

which means




X1(s1(x), . . . , sn(x)) = x

X2(s1(x), . . . , sn(x)) = f(x)
...

Xn+1(s1(x), . . . , sn(x)) = f (n−1)(x).
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Moreover, (s1(x), . . . , sn(x)) is a rational curve because P−1 is a birational map and the coor-
dinate functions of (x, f(x), f ′(x), . . . , f (n−1)(x)) are also rational functions in x.

(⇐=) If rational functions s1 = s1(x), . . . , sn = sn(x) satisfy the system (3), then it
is obvious that y = X2(s1(x), . . . , sn(x)) is a rational solution of the differential equation
F (x, y, y′, . . . , y(n−1)) = 0.

Suppose that s1 = s1(x), . . . , sn = sn(x) are n rational functions satisfying the system (3).
We can get the following system by differentiating the first equation of (3) and expanding the
remaining equations of (3)





∂X1(s1(x),...,sn(x))
∂s1

· s′1(x) + · · ·+ ∂X1(s1(x),...,sn(x))
∂sn

· s′n(x) = 1
∂X2(s1(x),...,sn(x))

∂s1
· s′1(x) + · · ·+ ∂X2(s1(x),...,sn(x))

∂sn
· s′n(x) = X3(s1(x), . . . , sn(x))

...
∂Xn(s1(x),...,sn(x))

∂s1
· s′1(x) + · · ·+ ∂Xn(s1(x),...,sn(x))

∂sn
· s′n(x) = Xn+1(s1(x), . . . , sn(x)).

If

det




∂X1(s1(x),...,sn(x))
∂s1

· · · ∂X1(s1(x),...,sn(x))
∂sn

...
. . .

...
∂Xn(s1(x),...,sn(x))

∂s1
· · · ∂Xn(s1(x),...,sn(x))

∂sn


 6= 0, (4)

then (s1(x), . . . , sn(x)) is a solution of the following system of differential equations




s′1(x) = M1(s1,...,sn)
N(s1,...,sn)

...
s′n(x) = Mn(s1,...,sn)

N(s1,...,sn) ,

(5)

where

Mi = det




∂X1
∂s1

· · · ∂X1
∂si−1

1 ∂X1
∂si+1

· · · ∂X1
∂sn

∂X2
∂s1

· · · ∂X2
∂si−1

X3
∂X2

∂si+1
· · · ∂X2

∂sn

...
. . .

...
...

...
. . .

...
∂Xn

∂s1
· · · ∂Xn

∂si−1
Xn+1

∂Xn

∂si+1
· · · ∂Xn

∂sn




,

N = det




∂X1
∂s1

· · · ∂X1
∂sn

...
. . .

...
∂Xn

∂s1
· · · ∂Xn

∂sn


 .

If the determinant (4) is equal to 0, then (s1(x), . . . , sn(x)) is a solution of the system




M̄1(s1, . . . , sn) = 0
...

M̄n−1(s1, . . . , sn) = 0
N̄(s1, . . . , sn) = 0,

where M̄i(s1, . . . , sn) and N̄(s1, . . . , sn) are numerators of Mi(s1, . . . , sn) (1 ≤ i ≤ n − 1) and
N(s1, . . . , sn) respectively.

Definition 11. The system (5) is called associated system of autonomous ODEs of the non-
autonomous ODE (1) with respect to P(s1, . . . , sn).

Remark 12. The associated system of autonomous ODEs in new indeterminates s1, . . . , sn is
of order 1 in s1, . . . , sn and degree 1 with respect to s′1, . . . , s

′
n.
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4 Correspondence of rational general solutions between

original ODE and associated system of ODEs

Let Ui, Vi ∈ Q̄[s1, . . . , sn] be the numerator and denominator of Mi(s1,...,sn)
N(s1,...,sn) in the associated

system (5) of autonomous ODEs. The polynomials Ui and Vi (1 ≤ i ≤ n) introduced here will
be used throughout the paper. From now on, we consider the differential polynomial set

A = {A1, . . . , An} ⊂ K{s1, . . . , sn}, Ai = s′iVi − Ui for any 1 ≤ i ≤ n.

According to the definition of autoreduced set and Proposition 1 in [16, chap I, sect. 9], we have

Proposition 13. Let A = {A1, . . . , An}, where Ai = s′iVi − Ui for 1 ≤ i ≤ n. Then A is
an autoreduced set relative to the ord-lex ranking. Furthermore, for any differential polynomial
G ∈ K{s1, . . . , sn}, there exists the following unique representation by consecutive reductions
with respect to A

Sk1
1 · · ·Skn

n I l1
1 · · · I ln

n G =
∑

j

Q1jA
(j)
1 +

∑

j

Q2jA
(j)
2 + · · ·+

∑

j

QnjA
(j)
n + R,

where Si and Ii are the separant and initial of Ai respectively, ki, li ∈ N, A
(j)
i is the j-th

derivatives of Ai, Qij ∈ K{s1, . . . , sn}, i = 1, . . . , n, and R is reduced with respect to A. Here,
R is called the differential pseudo remainder of G with respect to A, denoted by prem(G,A).

Definition 14. A rational solution (s̄1(x), . . . , s̄n(x)) of the associated system (5) of autonomous
ODEs is called a rational general solution, if for any differential polynomial G ∈ K{s1, . . . , sn},

G(s̄1(x), . . . , s̄n(x)) = 0 ⇐⇒ prem(G,A) = 0,

where A = {A1, . . . , An} and Ai = s′iVi − Ui for 1 ≤ i ≤ n.

Remark 15. As the degree of s′i (1 ≤ i ≤ n) is 1, it follows that prem(G,A) ∈ K[s1, . . . , sn] for
any differential polynomial G ∈ K{s1, . . . , sn}.
Proposition 16. Let (s̄1(x), . . . , s̄n(x)) be a rational general solution of the associated system
(5) of autonomous ODEs and G ∈ K[s1, . . . , sn]. If G(s̄1(x), . . . , s̄n(x)) = 0, then G = 0 in
K[s1, . . . , sn].

Proof. Since G ∈ K[s1, . . . , sn], we have prem(G,A) = G. It follows from Definition 14 that
G(s̄1(x), . . . , s̄n(x)) = 0 implies G = 0.

Theorem 17. Let ȳ = f(x) be a rational general solution of non-autonomous differential equa-
tion F (x, y, y′, . . . , y(n−1)) = 0, if ȳ = f(x) is parametrizable by P, then

(s̄1(x), . . . , s̄n(x)) = P−1(x, f(x), f ′(x), . . . , f (n−1)(x))

is a rational general solution of the associated system (5) of autonomous ODEs when

det




∂X1(s̄1(x),...,s̄n(x))
∂s̄1

· · · ∂X1(s̄1(x),...,s̄n(x))
∂s̄n

...
. . .

...
∂Xn(s̄1(x),...,s̄n(x))

∂s̄1
· · · ∂Xn(s̄1(x),...,s̄n(x))

∂s̄n


 6= 0.

Conversely, let (ŝ1(x), . . . , ŝn(x)) is a rational general solution of the associated system (5) of
autonomous ODEs, then

ŷ = X2(ŝ1(x− c), . . . , ŝn(x− c))

is a rational general solution of F (x, y, y′, . . . , y(n−1)) = 0, where c is constant.
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Proof. Obviously, (s̄1(x), . . . , s̄n(x)) is a solution of (5). Suppose that G ∈ K{s1, . . . , sn} is
a differential polynomial such that G(s̄1(x), . . . , s̄n(x)) = 0. Let R = prem(G,A), then R ∈
K[s1, . . . , sn]. Moreover, we have

R(s̄1(x), . . . , s̄n(x)) = R(P−1(x, f(x), f ′(x), . . . , f (n−1)(x))) = 0.

Let

R(P−1(x, y, y1, . . . , yn−1)) =
M(x, y, y1, . . . , yn−1)
N(x, y, y1, . . . , yn−1)

,

then M(x, y, y′, . . . , y(n−1)) is a differential polynomial satisfying the condition

M(x, f(x), f ′(x), . . . , f (n−1)(x)) = 0.

Since f(x) is a rational general solution of F (x, y, y′, . . . , y(n−1)) = 0 and both F and M are the
n− 1 order differential polynomials, we have

IM(x, y, y′, . . . , y(n−1)) = M0F,

where I is the initial of F and M0 is a differential polynomial of order n− 1 in K{y}. Therefore,

R(s1, . . . , sn) = R(P−1(P(s1, . . . , sn)))

=
I(P(s1, . . . , sn))M(P(s1, . . . , sn))
I(P(s1, . . . , sn))N(P(s1, . . . , sn))

=
M0(P(s1, . . . , sn))F (P(s1, . . . , sn))
I(P(s1, . . . , sn))N(P(s1, . . . , sn))

= 0.

According to Definition 14, we know that (s̄1(x), . . . , s̄n(x)) is a rational general solution of (5).
Next, we need to construct a rational general solution of F (x, y, y′, . . . , y(n−1)) = 0 from

a rational general solution of the associated system (5) of autonomous ODEs. Assume that
(ŝ1(x), . . . , ŝn(x)) is a rational general solution of (5). We have X1(ŝ1(x), . . . , ŝn(x)) = x + c by
substituting ŝ1(x), . . . , ŝn(x) into X1(s1, . . . , sn), where c is constant. It follows that X1(ŝ1(x−
c), . . . , ŝn(x − c)) = x. Therefore, ŷ = X2(ŝ1(x − c), . . . , ŝn(x − c)) is a rational solution of
F (x, y, y′, . . . , y(n−1)) = 0. Moreover, it is necessary to prove that ŷ is a rational general solution.
Let G ∈ K{s1, . . . , sn} such that G(ŷ) = 0 and R = prem(G,F ) the differential pseudo remainder
of G with respect to F . Obviously, R(ŷ) = 0. We only need to prove that R = 0. If R 6= 0, then

R(X1(s1, . . . , sn), . . . ,Xn(s1, . . . , sn)) =
U(s1, . . . , sn)
V (s1, . . . , sn)

∈ Q̄(s1, . . . , sn).

As R(X1(ŝ1, . . . , ŝn), . . . ,Xn(ŝ1, . . . , ŝn)) = 0, it follows that U(ŝ1, . . . , ŝn) = 0. By Proposition
16, we have U(s1, . . . , sn) = 0. Hence

R(X1(s1, . . . , sn), . . . ,Xn(s1, . . . , sn)) = 0.

Since F is irreducible and degy(n−1)(R) < degy(n−1)(F ), it follows that R = 0 inQ[x, y, y1, . . . , yn−1].
Therefore, ŷ is a rational general solution of differential equation F (x, y, y′, . . . , y(n−1)) = 0.

5 Criterion for existence of rational general solutions of

associated system of ODEs

It can be seen from Definition 14 that a rational general solution of the associated system
(5) of autonomous ODEs is a generic zero of the following ideal

I = {G ∈ K{s1, . . . , sn} : prem(G,A) = 0},
where A = {A1, . . . , An} and Ai = s′iVi − Ui for 1 ≤ i ≤ n.
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Proposition 18. Let I = {G ∈ K{s1, . . . , sn} : prem(G,A) = 0}, then I is differential prime
ideal in K{s1, . . . , sn}.
Proof. It is easy to prove that [A] : S∞A is a differential prime ideal by an argument similar to
that in [22, chap V, sect. 3], where

S∞A = 〈
∏

i

Ski
i I li

i : Si and Ii are the separant and initial of Ai ∈ A, ki, li ∈ N〉.

In what follows, we claim that I = [A] : S∞A . In fact, the inclusion relation “⊆” is obvi-
ous. We only need to prove I ⊇ [A] : S∞A . For any G ∈ [A] : S∞A , let R = prem(G,A) ∈
K[s1, . . . , sn]. Then there exists G1 =

∏
i Ski

i I li
i ∈ S∞A , such that G1G ≡ 0 mod [A] and

0 6= G1 ∈ K[s1, . . . , sn]. On the other hand, we have G2G ≡ R mod [A], where G2 =
∏

i S
k′i
i I

l′i
i .

Therefore, G1R ≡ G1G2G ≡ 0 mod [A], i.e. G1R ∈ [A]. It follows from G1R ∈ K[s1, . . . , sn]
that G1R = 0. As G1 6= 0 and K[s1, . . . , sn] is integral domain, we have R = 0, which means
G ∈ I. The proposition is proved.

Let

Dn,m(y) =

∣∣∣∣∣∣∣∣∣

C0
n+1 y(n+1) C1

n+1 y(n) · · · Cm
n+1 y(n+1−m)

C0
n+2 y(n+2) C1

n+2 y(n+1) · · · Cm
n+2 y(n+2−m)

...
... · · · ...

C0
n+1+my(n+1+m) C1

n+1+my(n+m) · · · Cm
n+1+my(n+1)

∣∣∣∣∣∣∣∣∣
.

In [9, Lemma 2.6], it has been proved that any solution ŷ of the differential equation Dn,m(y) = 0
has the following form

ŷ =
anxn + an−1x

n−1 + ·+ a0

bmxm + bm−1xm−1 + · · ·+ b0
,

where ai, bj are constants. In fact, if Dn,m(ŷ) = 0, then Dmax{n,m},max{n,m}(ŷ) = 0. Further-
more, we have Dl,k(ŷ) = 0 for any l ≥ n, k ≥ m. Therefore, we have the following criterion.

Theorem 19. The associated system (5) of autonomous ODEs has a rational general solution
(s1(x), . . . ,sn(x)) with deg(si(x)) ≤ mi if and only if for all i (1 ≤ i ≤ n), prem(Dmi,mi(si),A) =
0.

Proof. Suppose that (s1(x), . . . , sn(x)) with deg(si) ≤ mi is a rational general solution of the
associated system (5) of autonomous ODEs. According to Definition 14 and the above discussion,
there exist n differential polynomials Dm1,m1(s1), . . . ,Dmn,mn

(sn) such that (s1(x), . . . , sn(x))
is a solution of them. It follows that prem(Dmi,mi(si),A) = 0 for all i (1 ≤ i ≤ n).

If prem(Dmi,mi
(si),A) = 0 holds, then Dmi,mi

(si) ∈ I for all i (1 ≤ i ≤ n), where I is the
differential prime ideal as defined in Proposition 18. As every prime ideal has a generic zero, it
follows that I has a generic zero (s1(x), . . . , sn(x)). According to Definition 1, (s1(x), . . . , sn(x))
is a zero of differential polynomials Dm1,m1(s1), . . . , Dmn,mn(sn). By the results in [9], these
differential polynomials have only rational solutions and deg(si(x)) ≤ mi for all i (1 ≤ i ≤ n).
Therefore, the generic zero (s1(x), . . . , sn(x)) of I must be rational, i.e. the associated system
(5) of ODEs has a rational general solution (s1(x), . . . , sn(x)) with deg(si(x)) ≤ mi.

Theorem 19 gives a criterion for existence of rational general solutions of the associated
system (5) of autonomous ODEs if the degree bound of rational solutions of this system is given.
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6 Polynomial system of autonomous ODEs

In the section, some good properties of the first order polynomial system of autonomous
ODEs is studied. First, we consider the first order linear system of ODEs:





s′1 = c1,1s1 + · · ·+ c1,nsn + c1,n+1

...

s′n = cn,1s1 + · · ·+ cn,nsn + cn,n+1,

(6)

where ci,j (1 ≤ i ≤ n, 1 ≤ j ≤ n + 1) are constants. It is a special case of polynomial systems of
ODEs.

Proposition 20. Every rational solution of the first order linear system (6) of ODEs is a
polynomial solution.

Proof. Assume that s1(x) = K1
pm1L1

, . . . , sn(x) = Kn

pmn Ln
, where p is an irreducible polynomial

with respect to x, Ki, Li have no factor of p for all i (1 ≤ i ≤ n). If there exists mi > 0, then

ordp(s′i(x)) = mi + 1.

In this case, let k be an index of max{mi : i = 1, . . . , n}. In particular,

ordp(s′k(x)) = mk + 1.

On the other hand, we have

ck,1s1 + · · ·+ ck,nsn + ck,n+1 = ck,1
K1

pm1L1
+ · · ·+ ck,n

Kn

pmnLn
+ ck,n+1,

Hence,
ordp(ck,1s1 + · · ·+ ck,nsn + ck,n+1) ≤ max{m1, . . . , mn} = mk.

If follows that
ordp(ck,1s1 + · · ·+ ck,nsn + ck,n+1) ≤ mk < ordp(s′k(x)),

which is impossible. Therefore, mi = 0 for all i (1 ≤ i ≤ n). From the conclusion we have
proved, we know that for any rational solution of linear system (6) of ODEs

ŝ1(x) =
K̂1

L̂1

, . . . , ŝn(x) =
K̂n

L̂n

,

L̂i has no irreducible factors with respect to x for any i ∈ {1, . . . , n}, i.e. all ŝi are polynomials.

Proposition 21. Every rational general solution of the first order linear system (6) is n poly-
nomials of degree at most n.

Proof. The linear system (6) can be written in the following form



s′1
...

s′n


 = M ·




s1

...
sn


 +




c1,n+1

...
cn,n+1


 ,

where

M =




c1,1 · · · c1,n

...
. . .

...
cn,1 · · · cn,n


 .
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It follows that 


s
(m+1)
1

...
s
(m+1)
n


 = Mm+1




s1

...
sn


 + Mm




c1,n+1

...
cn,n+1


 .

By Theorem 19 and Proposition 20, we know that the first order linear system (6) of ODEs has
a polynomial general solution of degree m (m > n) if and only if





prem(s(m+1)
1 ,B) = 0

...
prem(s(m+1)

n ,B) = 0,

where B = {B1, . . . , Bn} and Bi = s′i − ci,1s1 − · · · − ci,nsn − ci,n+1 for all i (1 ≤ i ≤ n), i.e.

Mm+1 = 0 and Mm




c1,n+1

...
cn,n+1


 = 0. (7)

We will prove that (7) holds if and only if

Mn = 0.

In fact, the “if” is obvious. Conversely, since Mm+1 = 0 (m > n), there exists an invertible
matrix P , such that

M = P−1NP,

where

N =




0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
0 0 · · · 0 0




n×n

is the Jordan form of M and Nn = 0. It follows that

Mn = (P−1NP )n = P−1NnP = 0.

The proposition is proved.

In the following, we consider the first order polynomial system of ODEs:




s′1 = P1(s1, . . . , sn)
...

s′n = Pn(s1, . . . , sn),

(8)

where Pi ∈ Q̄[s1, . . . , sn] and gcd(P1, . . . , Pn) = 1.
Let (s1(x), . . . , sn(x)) be a rational solution of the first order polynomial system (8) of

ODEs, then it defines a parametric space curve C. Let

ID = {K ∈ K[s1, . . . , sn] : K(s1(x), . . . , sn(x)) = 0}
be the implicit ideal determined by C. It is clear that ID is a prime ideal. According to the
results in [13, sects. 3 and 4], we can compute a basis H of ID under the lexicographical order
s1 < · · · < sn by the theory of Gröbner bases, where

H = {H1(s1, s2),H2(s1, s2, s3), . . . , Hn−1(s1, . . . , sn)}, (9)

i.e. ID = 〈H〉 = 〈H1, . . . , Hn−1〉.
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Proposition 22. Let (s1(x), . . . , sn(x)) be a rational solution of the first order polynomial sys-
tem (8) of ODEs and H = {H1(s1, s2), . . . , Hn−1(s1, . . . , sn)} the basis of the implicit ideal
ID under the lexicographical order s1 < · · · < sn determined by the parametric space curve
(s1(x), . . . , sn(x)). Then there exist (n−1)2 polynomials Wi,1(s1, . . . , sn), . . . , Wi,n−1(s1, . . . , sn),
where 1 ≤ i ≤ n− 1, such that

His1P1 + · · ·+ Hisi+1Pi+1 = H1Wi,1 + · · ·+ Hn−1Wi,n−1, i = 1, . . . , n− 1,

where Hisj
is the partial derivative of Hi with respect to sj for 1 ≤ j ≤ n.

Proof. Suppose that the first order polynomial system (8) of ODEs has a rational solution
(s1(x), . . . , sn(x)). Let H = {H1(s1, s2), . . . , Hn−1(s1, . . . , sn)} be the basis of the implicit prime
ideal ID determined by parametric space curve (s1(x), . . . , sn(x)). Since Hi ∈ ID, we have

Hi(s1(x), . . . , si+1(x)) = 0,

for all i (1 ≤ i ≤ n− 1). By differentiating the above equation with respect to x, we have

His1(s1(x), . . . , si+1(x)) · s′1(x) + · · ·+ Hisi+1(s1(x), . . . , si+1(x)) · s′i+1(x) = 0.

It follows that

His1(s1(x), . . . , si+1(x)) · P1(s1(x), . . . , sn(x)) + · · ·
+ Hisi+1(s1(x), . . . , si+1(x)) · Pi+1(s1(x), . . . , sn(x)) = 0,

i.e. His1P1 + · · · + Hisi+1Pi+1 ∈ ID. Therefore, there exist polynomials Wi,1, . . . , Wi,n−1 ∈
K[s1, . . . , sn] such that

His1P1 + · · ·+ Hisi+1Pi+1 = H1Wi,1 + · · ·+ Hn−1Wi,n−1

holds for all i (1 ≤ i ≤ n− 1). The proposition is proved.

Proposition 23. Let Hi(s1, . . . , si+1) be the polynomial such that

His1P1 + · · ·+ Hisi+1Pn = H1Wi,1 + . . . + Hn−1Wi,n−1

for some Wi,j(s1, . . . , sn), where i = 1, . . . , n− 1, j = 1, . . . , n− 1. If

Hi(0, . . . , 0) = His1(0, . . . , 0) = · · · = Hisi+1(0, . . . , 0) = 0

and

det




His1s1(0, . . . , 0) · · · His1si+1(0, . . . , 0)
...

. . .
...

His1si+1(0, . . . , 0) · · · Hisi+1si+1(0, . . . , 0)


 6= 0, (10)

then Pk(0, . . . , 0) = 0 for all k (1 ≤ k ≤ i + 1).

Proof. From the Taylor expansion of Hi(s1, . . . , si+1) at (0, . . . , 0) and the assumption Hi(0, . . . , 0) =
His1(0, . . . , 0) = · · · = Hisi+1(0, . . . , 0) = 0, we have

Hi(s1, . . . , si+1) =
1
2!

(His1s1(0, . . . , 0)s2
1 + · · ·+ Hisi+1si+1(0, . . . , 0)s2

i+1)

+ His1s2(0, . . . , 0)s1s2 + · · ·+ His1si+1(0, . . . , 0)s1si+1

+ His2s3(0, . . . , 0)s2s3 + · · ·+ His2si+1(0, . . . , 0)s2si+1

+ · · ·+ Hisisi+1(0, . . . , 0)sisi+1 + higher order.
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It follows that

Hisj
(s1, . . . , si+1) =

i+1∑
m=1

Hisjsm
(0, . . . , 0)sm + higher order, j = 1, . . . , i + 1.

Let
Pk(s1, . . . , sn) = pk,0 + pk,1s1 + · · ·+ pk,nsn + higher order, k = 1, . . . , n,

then

His1P1 + · · ·+ Hisi+1Pi+1 =
i+1∑

l=1

(pl,0

i+1∑
m=1

Hislsm
(0, . . . , 0)sm) + higher order

=
i+1∑
m=1

(
i+1∑

l=1

pl,0Hislsm
(0, . . . , 0))sm + higher order.

According to the Taylor expansion of His1,...,si+1 , we have H1Wi,1 + . . .+Hn−1Wi,n−1 is of order
at least 2. Therefore,





p1,0His1s1(0, . . . , 0)+ · · ·+ pi+1,0His1si+1(0, . . . , 0) = 0
...

p1,0His1si+1(0, . . . , 0)+ · · ·+ pi+1,0Hisi+1si+1(0, . . . , 0) = 0.

It follows from the assumption (10) that

pk,0 = 0, k = 1, . . . , i + 1,

i.e. Pk(0, . . . , 0) = 0 for all k (1 ≤ k ≤ i + 1), where i = 1, . . . , n− 1.

7 Conclusion and future work

In this paper, we studied the rational general solutions of n−1 (n > 2) order non-autonomous
ODEs. The main strategy is to reduce the problem for finding the rational general solutions of
high order non-autonomous ODEs to that of finding the rational general solutions of the first
order rational system of autonomous ODEs. Moreover, it is proved that the rational general
solutions between the original non-autonomous ODE with order n − 1 and the associated first
order system of autonomous ODEs are corresponding. Furthermore, a criterion for existence of
rational general solutions of the associated system of autonomous ODEs is presented, and some
nice properties of the first order polynomial system of autonomous ODEs are introduced.

The following are several open problems on determining the rational general solutions of
high order non-autonomous ODEs.

(a) When n = 2, each solution curve is corresponding to a plane curve, which is an invariant
algebraic curve of the polynomial system (8) of ODEs in the sense that its defining equation
H(s1, s2) = 0 satisfies

Hs1P1 + Hs2P2 = HW,

for some polynomial W ∈ Q̄[s1, s2] and Hsi is the partial derivative of H with respect to
si for i = 1, 2. When n > 2, e.g n = 3, the solution curves are now space curves. Let

{H1(s1, s2),H2(s1, s2, s3)}
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be a basis of implicit ideal {K ∈ K[s1, s2, s3] : K(s1(x), s2(x), s3(x)) = 0} determined by
the rational solution (s1(x), s2(x), s3(x)) of





s′1 = P1(s1, s2, s3)

s′2 = P2(s1, s2, s3)

s′3 = P3(s1, s2, s3).

We have the following relationship between H1,H2 and P1, P2, P3:
{

H1s1P1 + H1s2P2 = H1W1,1 + H2W1,2

H2s1P1 + H2s2P2 + H2s3P3 = H1W2,1 + H2W2,2,

where Hisj
is the partial derivative of Hi with respect to sj for j = 1, 2, 3, and Wi,j ∈

Q̄[s1, s2, s3]. The problem is how to compute Hi? Can we do this by the method of
undetermine coefficients with some upper bound on the degree of H1 and H2 which is
similar to that in [19]?

(b) Suppose that

H = {H1(s1, s2),H2(s1, s2, s3), . . . , Hn−1(s1, . . . , sn)} ⊆ K[s1, . . . , sn]

is a basis of implicit ideal

ID = {K ∈ K[s1, . . . , sn] : K(s1(x), . . . , sn(x)) = 0}

determined by the parametric space curve (s1(x), . . . , sn(x)) under the lexicographical or-
der s1 < · · · < sn, and (s1(x), . . . , sn(x)) is a rational solution of the first order polynomial
system (8) of ODEs. How do we parametrize the implicit variety (i.e. space curve Z(H))
rationally? As we all know, this problem can be done (e.g. [1, 2]). Moreover, the space
curve also can be parametrized by proper parametrization.

(c) Assume that H is the basis of implicit ideal ID and (s1(x), . . . , sn(x)) is a rational
parametrization of Z(H). When is (s1(x), . . . , sn(x)) a solution of the polynomial sys-
tem (8) of ODEs? Are all rational solutions of (8) proper?

(d) Can we find the rational general solutions of (8) from a family of Hi?

It would be very interesting to develop some methods for solving the above problems in the near
future.
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