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Abstract

We report on a method for computing the genus of a plane complex
algebraic curve based on the topology of singular points and on knot
theory. We propose a symbolic-numeric algorithm to be used for plane
complex algebraic curves whose defining polynomials have numeric coef-
ficients. Together with its main functionality to compute the genus, the
algorithm provides also tools for computational operations in knot theory.
We split the main algorithm into several interdependent subalgorithms.
We base some of our subalgorithms on general algorithms from compu-
tational geometry (e.g. Bentley-Ottman). Whenever required, we design
our own subalgorithms for solving the specific problems (e.g. computation
of the Alexander polynomial). We use for the implementation the Axel
algebraic geometric modeler, developed at INRIA, Sophia-Antipolis.

Keywords: Plane complex algebraic curve, singularity, stereographic
projection, algebraic link, Alexander polynomial, delta invariant, genus.

1 Introduction

To raise new questions, new
possibilities, to regard old
problems from a new angle,
requires creative imagination and
marks real advance in science.

Albert Einstein

The genus computation problem is a classical subject in computer algebra.
Presently, several symbolic algorithms are available for computing the genus of
plane algebraic curves over an algebraically closed field, see [16, 18, 31]. There
exist also good implementations for these algorithms in several packages of some
well-known computer algebra systems such as: Maple, Magma, Singular, Ax-
iom. We shortly recall these packages, see [15, 17, 19, 21, 27] for further details:
(i) algcurves package developed at the Florida University, by Mark van Hoeij,

∗The work is supported by the Austrian Science Funds (FWF) under the grant W1214/DK9
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written in Maple; (ii) CASA (Computer algebra system for algebraic geome-
try) package developed at the Research Institute for Symbolic Computation,
Hagenberg Austria, written in Maple; (iii) GHS (Gaundry, Hess, Smart) at-
tack package developed at Berlin University, written in Magma; (iv) normal.lib
package developed at Kaiserslautern University, written in Singular; (v) PAFF
(Package for algebraic function fields in one variable) package developed at
INRIA-Roquencort, by Gaétan Haché, written in Axiom. On the other hand,
there are situations when computing with numerical coefficients is preferable,
for instance when the coefficients are obtained by measurements. At present
no such numerical algorithms are available in the literature. In this paper, we
propose such an algorithm for the computation of the genus of plane complex
algebraic curves which makes use of the advantages of both symbolic and nu-
meric algorithms. The method is based on combinatorial techniques from knot
theory (see [9, 24]), that allow us to successfully analyse the singularities of the
plane complex algebraic curve by computing their topology. Previous research
and results have successfully shown that the topology of the singularities of a
plane complex algebraic curve is mainly determined by their algebraic link, see
[26]. The algebraic link can be uniquely identified by its corresponding Alexan-
der polynomial, see [40]. From the Alexander polynomial we derive a general
formula for the delta-invariant of each singularity of the plane complex algebraic
curve, which allow us to compute the value for the genus of the plane complex
algebraic curve.
We have to pay further attention while formulating the genus computation prob-
lem due to the existence of numeric errors. As expected, we deduce that the
value of the computed genus is highly sensitive to tiny perturbations of the co-
efficients of the defining polynomial of the input complex plane algebraic curve.
Therefore we have to take a decision regarding the interpretation of the results
or the reformulation of the input problem. We intend to use the same approach
proposed by Z. Zeng for solving other numerical problems from algebraic geom-
etry such as: the computation of the greatest common divisors of polynomials,
the computation of the rank of matrices or the computation of the solutions of
systems of polynomial equations, see [11, 41]. Other approaches are also taken
into considerations, see [10, 33]. Further tests in these different directions of
research will guide us in making the best decision.
In this paper we present a symbolic-numeric algorithm for computing the genus
of plane complex algebraic curves. In Section 2 we introduce the genus com-
putation problem and we propose a strategy for solving it. In Section 3 we
describe the steps that solve the genus computation problem. In Section 4 we
present the numerical difficulties for the genus computation problem, that arise
when numerical data are used; we tests several approaches before proposing the
final remedy for these difficulties. We include several tests and experiments in
Section 5, while in Section 6 we outline the conclusions and the future directions
of research.
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2 The Genus Computation Problem

There are no big problems, there
are just a lot of little problems.

Henry Ford

2.1 Genus of plane algebraic curves

The objects of our study are the plane algebraic curves over the field of complex
numbers. We define the plane algebraic curves over an algebraically closed field
in the following way:

Definition 1. Let K be an algebraically closed field, and f(x, y) ∈ K[x, y] a
nonconstant squarefree polynomial in x and y with coefficients in K. A plane
algebraic curve over K is defined as the set of all solutions in K2 of the equation
f(x, y) = 0, i.e. the set C = {(x, y) ∈ K2|f(x, y) = 0}. For the curve C, f
is called the defining polynomial of C. The degree of the polynomial f(x, y) is
called the degree of the curve C.

For a plane complex algebraic curve we are interested in a special type of points
and that is its singularities (or singular points or multiple points). Informally,
the singularities of an algebraic curve are the points where the curve has nasty
behaviour such as a cusp or a point of self-intersection. A cusp is a point at
which two branches of the curve meet such that the tangents at each branch are
equal, while a point of self-intersection (or double point) is a point at which two
branches of the curve meet such that the tangents at each branch are distinct,
see Figure 1.

Cusp of x3-y2 Double point of x3-x2+y2

Figure 1: Cusp and double point in the origin

Formally, we can give the following definition for the singularities of a plane
algebraic curve over an algebraically closed field:

Definition 2. Let K be a field (i.e. the complex numbers) and f(x, y) ∈ K[x, y]
be a polynomial in x and y with coefficients over the field K. Let C = {(x, y) ∈
K2|f(x, y) = 0} be a plane algebraic curve defined over K and (a, b) ∈ C be a
point on the curve, i.e. f(a, b) = 0. The point (a, b) is a singularity of C if and
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only if the x and y partial derivatives of f are both zero at the point (a, b), i.e.(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)
= (0, 0).

In the theory of plane algebraic curves, one is interested in computing their
genus, which is a birational invariant that plays an important role in the rational
parametrization property of plane algebraic curves. From the theory we know
that an irreducible plane algebraic curve is rational parametrizable if and only
if its genus is 0. The main purpose of this paper is to compute the genus of
plane complex algebraic curves.
For algebraic curves with only ordinary singularities we have the following for-
mula for computing the genus:

Theorem 1. Let C be a plane algebraic curve given by its defining polynomial
f(x, y) of degree d. We denote by OrdSing(C) the set of ordinary singular
points of the curve C. For a point P ∈ OrdSing(C) we denoted by mP the
multiplicity of C at the point P. Then the genus of the plane algebraic curve,
denoted with genus(C), is computed using the following formula:

genus(C) :=
1
2

[
(d− 1)(d− 2)−

∑
P∈OrdSing(C)

mP (mP − 1)

]
,

where genus(C) ∈ Z.

We will not focus on the details of this method for computing the genus, as this
is not the purpose of our paper. We advise the reader to consult [6, 14, 32, 38]
for more information on this method.
We can compute the genus of a plane algebraic curve over an algebraically closed
field using the following definition:

Definition 3. Let C be a plane algebraic curve defined over an algebraically
closed field K, Sing(C) the set of singularities of C, and d the degree of C.
Then the genus of the plane algebraic curve, denoted with genus(C), is computed
using the following formula:

genus(C) =
1
2

(d− 1)(d− 2)−
∑

P∈Sing(C)

δ-invariant(P ),

where genus(C) ∈ Z.

We notice that the computation of the genus reduces to the computation of
the δ-invariant of each singularity of the curve. We present the method for
computing the δ-invariant of each singularity in detail in Section 3.
Thus the genus computation problem that we want to solve is the following:
given a plane complex algebraic curve whose defining polynomial contains nu-
meric coefficients, given the degree of the curve and the set of its singularities,
we want to compute the value for the genus of the given plane complex algebraic
curve.

4



2.2 Strategy for solving the problem

In order to solve the genus computation problem, we first divide it into several
subproblems (some of which are interdependent), we solve each of these sub-
problems and than we combine the solutions to these subproblems to get the
solution to our original problem. We divide the genus computation problem
into the following subproblems:

1.Plane complex algebraic curve

numericcompute

��
2.Singularities

symboliccompute

��
3.Singularities moved in origin

compute

numeric
// 4.Algebraic Link

numeric-symboliccompute

��
6.δ-invariant(singularities)

symboliccompute

��

5.Alexander Polynomial
symbolic

computeoo

7.GENUS

and that is: (i) we compute the singularities of the plane complex algebraic
curve; (ii) we translate each computed singularity in the origin; (iii) we compute
the algebraic link for each translated singularity; (iv) we compute the Alexander
polynomial for each singularity from the algebraic link; (v) we derive a formula
for the δ-invariant for each singularity from the Alexander polynomial; (vi) we
compute the genus from the δ-invariants of all the singularities.
We use for our implementation the Axel (see [39]) algebraic modeler developed
in the Galaad research team at INRIA, Sophia-Antipolis which provides alge-
braic tools for the manipulation and the computation with implicit curves and
surfaces.
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3 Why Knot? Alternative Solution to the Genus
Computation Problem

Mathematician 1: Okay, so there
are three steps to your algorithm.
Step one is the input and step
three is the output. What is step
two?
Mathematician 2: Step two is
when a miracle occurs.
Mathematician 1: Oh, I see. Uh,
perhaps you could explain that
second step a bit more?

K.O.Geddes, S.R.Czapor,
G.Labahn

3.1 Computing the Singularities of the Algebraic Curve

The first subproblem that we solve is to compute the singularities of the plane
complex algebraic curve C. Given the defining polynomial F (z, w) ∈ C[z, w] of
C with numerical coefficients, we compute the set of all its singularities, that is

the set Sing(C) = {(z0, w0) ∈ C2|F (z0, w0) = 0,
∂F

∂z
(z0, w0) = 0,

∂F

∂w
(z0, w0) =

0}. In order to compute the set Sing(C) we need to solve an overdeterminate
system of polynomial equations in C2:



F (z0, w0) = 0

∂F

∂z
(z0, w0) = 0

∂F

∂w
(z0, w0) = 0

(1)

or equivalently, by replacing F (z, w) = F (x + iy, u + iv) = s(x, y, u, v) +
it(x, y, u, v), an overdeterminate system of polynomial equations in R4:
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

s(x0, y0, u0, v0) = 0
t(x0, y0, u0, v0) = 0

∂s

∂x
(x0, y0, u0, v0) = 0

∂t

∂x
(x0, y0, u0, v0) = 0

∂s

∂u
(x0, y0, u0, v0) = 0

∂t

∂u
(x0, y0, u0, v0) = 0

. (2)

The systems (1), (2) are numerical systems [34, 35]. For solving them, we
presently use subdivision methods introduced by [1, 2, 23, 28] and implemented
in Mathemagix [22] and in Axel [39]. The subdivision algorithms compute the
real solutions for Sing(C). In the future, we intend to use algebraic methods to
compute the complex solutions for Sing(C) as proposed in [7]. We also mention
the work in progress in the same direction of research done in parallel by [4],
and by [25]. Further work in this direction is still required so that we can use
these methods for our systems.
For Sing(C) we compute all distinct singularities both in the affine and in the
projective space. To do this we homogenize the equation of C and dehomogenize
it with respect to different variables. We get three affine open subsets of the
projective curve, and we have to be careful not to return singularities in the
overlaps twice. We give a schematic summary of the algorithm used to compute
the singularities of a plane complex algebraic curve.

Algorithm 1 Singularities of the algebraic curve C SING(F, d)
Input: C = {(z, w ∈ C2|F (z, w) = 0)}, F ∈ C[z, w] has numeric coefficients

d the degree of C
Output: Sing(C)
where Sing(C) is the set of all singularities of C.

1. Homogenize F (z, w) w.r.t. u obtaining F1(z, w, u);

(a) Dehomogenize F2(z, w) := F1(z, w, 1)

(b) Get S1 by solving the system of equations F2 = ∂zF2 = ∂wF2 = 0

(c) Dehomogenize F3(w, u) := F1(1, w, u)

(d) Get S2 by solving the system F3 = ∂wF3 = ∂uF3 = u = 0

(e) Dehomogenize F4(z, u) := F1(z, 1, u)

(f) Get S3 by solving the system F4 = ∂zF4 = ∂uF4 = z = u = 0

2. Sing(C) = S1 ∪ S2 ∪ S3
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3.2 Computing the Algebraic Link of an Isolated Singu-
larity

The second subproblem that we need to solve is to compute the algebraic link for
each isolated singularity of the plane complex algebraic curve. In this subsection
we first present the main reasons for studying the algebraic link of an isolated
singularity of a plane complex algebraic curve, we then define the algebraic link
of an isolated singularity, and we conclude with giving a method for computing
the algebraic link of an isolated singularity.
We consider a plane complex algebraic curve as a real two-dimensional subset
in C2 ∼= R4. We need to study and to understand the topology of these subsets
near their singularities, which can be determined by the corresponding algebraic
link associated to each singularity.
Milnor proved the following important result concerning the topology of complex
hypersurfaces:

Theorem 2. (Milnor[26]) Let V ⊂ Cn+1 be a hypersurface in Cn+1, i.e. an
algebraic variety defined by a single polynomial. Assume ~0 ∈ V and ~0 is an
isolated singularity, i.e. there is no other singularity on a sufficiently small
neighborhood of ~0; Sε is the sphere centered in ~0 and of radius ε; and Dε is the
disk centered in ~0 of radius ε. Then, for sufficiently small ε, K = Sε ∩ V is a
(2n− 1)-dimensional nonsingular set and Dε ∩ V is homeomorphic to the cone
over K.

In the curve case, n = 1 and all singularities are isolated. Next we describe
how one can compute the algebraic link associated to an isolated singularity of
a plane complex algebraic curve. What we also want is to move the computed
algebraic link from R4 to R3, and the stereographic projection allows us to
accomplish this goal.
We compute the algebraic link of an isolated singularity of the plane complex
algebraic curve C in the following way: we consider the curve C which has an
isolated singularity in the origin; we take the sphere centered in the origin and
of a small radius ε; we intersect the curve C with this sphere obtaining a set
in the 4-dimensional space, which based on Theorem 2 is an algebraic link for
sufficiently small radius. Next, we follow Brauner and Heergaard technique [5] to
move the algebraic link from the 4-dimensional space to the 3-dimensional space
using the stereographic projection. The stereographic projection allows us not
only to project the 4-dimensional link into the 3-dimensional space, but actually
preserves all the topological properties of the link from the the 4-dimensional
space into the 3-dimensional space.
In 3-dimensions, the stereographic projection is a certain mapping that projects
a sphere onto a plane. It is constructed in the following way: we take a sphere;
we draw a line from the north pole of the sphere to a point P in the equator
plane to intersect the sphere at a point Q. The stereographic projection of P
is Q. The map is defined at the sphere minus the north pole. In fact, the
stereographic projection gives an explicit homeomorphism from the unit sphere
minus the north pole to the Euclidean plane.
More generally, the stereographic projection may be applied to a n-sphere Sn

in the (n+ 1)-dimensional Euclidean space Rn+1 in the following way:

Definition 4. Consider an n-sphere
Sn = {(x1, x2, ..., xn+1) ⊂ Rn+1|x2

1 + x2
2 + ...+ x2

n+1 = 1} ∈ Rn+1 in the (n+
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1)-dimensional Euclidean space Rn+1, and Q(0, 0, 0, ..., 1) ∈ Sn the north point
of the n-sphere. If H is a hyperplane in Rn+1 not containing Q, then the stere-
ographic projection of the point P ∈ Sn \ Q is the point P

′
of the intersection

of the line QP with H. The stereographic projection is a homeomorphism from
Sn \Q→ Rn.

We now describe the method used for computing the algebraic link of an isolated
singularity. For the given algebraic curve C considered as a real two-dimensional
subset in C2 ∼= R4:

C = {(x, y, u, v) ∈ R4|F (x, y, u, v) = 0} ⊂ C2 ∼= R4

for which the origin (0, 0, 0, 0) is a singularity, that is:(
F (0, 0, 0, 0), δFδx

(
0, 0, 0, 0

)
, δFδy

(
0, 0, 0, 0

)
, δFδu

(
0, 0, 0, 0

)
, δFδv

(
0, 0, 0, 0

))
=

= (0, 0, 0, 0, 0)
,

we consider the 3-sphere centrated in the origin and of small radius ε:

S3 = {(z, w) ∈ C2||z|2 + |w|2 = ε2} =
= {(x, y, u, v) ∈ R4|x2 + y2 + u2 + w2 = ε2} ⊂ R4 .

We intersect the given curve with this sphere:

X = C
⋂
S3 = {(x, y, u, v) ∈ R4|F (x, y, u, v) = 0, x2 + y2 + u2 + v2 = ε2} ⊂ R4 ,

obtaining X, a real 1-dimensional set in the 4-dimensional space.
We take a point on the sphere which is not on the curve, that is:

P (0, 0, 0, ε) ∈ S3 \ C(i.e.F (0, 0, 0, ε) 6= 0) ,

and we apply the generalized stereographic projection for projecting the set
X from the 4-dimensional space into the 3-dimensional space. We define the
generalized stereographic projection using the following homeomorphism:

f : S3 \ {P} ⊂ R4 → R3

(x, y, u, v)→ (a, b, c)T = ( x
ε−v ,

y
ε−v ,

u
ε−v ) .

Based on Milnor’s results we know that for sufficiently small ε the image of X
under the stereographic projection f is a link, i.e. f(X) is a link. Next we
compute this set f(X):

f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) ∈ C ∩ S3 : (a, b, c) = f(x, y, u, v)} .

We notice that we can rewrite f(X) in the following way:

f(X) = {(a, b, c) ∈ R3|∃(x, y, u, v) = f−1(a, b, c) ∈ C ∩ S3} ,

since f is an homeomorphism, and so it is a bijection, and therefore f is invertible
and it admits an inverse.
We now need to compute the inverse f−1 of f :

f−1 : R3 → S3 \ {P}
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(a, b, c)→ (x, y, u, v) = ?

A straight-forward computation shows that the formula for the inverse f−1 is:

f−1 : R3 → S3 \ {P}

(a, b, c)→ (x, y, u, v) = ( 2aε
1+a2+b2+c2 ,

2bε
1+a2+b2+c2 ,

2cε
1+a2+b2+c2 ,

−ε+a2ε+b2ε+c2ε
1+a2+b2+c2 ) .

Denoting the denominator of x, y, u, v with n = 1 +a2 + b2 + c2, the formula for
the inverse f−1 becomes:

f−1 : R3 → S3 \ {P}

(a, b, c)→ (x, y, u, v) = (2aε
n , 2bε

n ,
2cε
n ,
−ε+a2ε+b2ε+c2ε

n ) .

Now we can finally compute the set f(X):

=
{

(a, b, c) ∈ R3|f−1(a, b, c) ∈ V (F )
}

=
{

(a, b, c) ∈ R3|(x, y, u, v) ∈ V (F )
}

=

=
{

(a, b, c) ∈ R3|( 2aε
n , 2bε

n ,
2cε
n ,
−ε+a2ε+b2ε+c2ε

n ) ∈ V (F )
}

=

=
{

(a, b, c) ∈ R3|F ( 2aε
n , 2bε

n ,
2cε
n ,
−ε+a2ε+b2ε+c2ε

n ) = 0
}

=

=
{

(a, b, c) ∈ R3|

{
G := Re

(
F ( 2aε

n , 2bε
n ,

2cε
n ,
−ε+a2ε+b2ε+c2ε

n )
)

= 0
H := Im

(
F ( 2aε

n , 2bε
n ,

2cε
n ,
−ε+a2ε+b2ε+c2ε

n )
)

= 0

}
We notice that G and H are two polynomials in (a, b, c) with real coefficients.
Their common zero set in R3 is equal to the algebraic link.
We give a schematic summary of the algorithm used to compute the algebraic
link of an isolated singularity of a plane complex algebraic curve.
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Algorithm 2 Algebraic link of the isolated singularity (0, 0) ALGLINK(F, ε)
Input: F ∈ C[z, w] with (0,0) an isolated singularity , ε ∈ R∗ with ε > 0
Output: G, H ∈ R[a, b, c]
where the common zero set of G,H is the algebraic link of F in (0, 0).

1. Intersect the plane complex algebraic curve:

C : F (z, w) = 0⇔ F (x+ iy, u+ iv) = 0 ,

that has an isolated singularity in the origin (0, 0), with the sphere cen-
trated in the origin and of small radius ε:

S3 : x2 + y2 + u2 + v2 − ε2 = 0 .

2. Obtain X = C ∩ S3 ⊂ R4;

3. Consider P a point on the sphere but not on the curve;

4. Project X into the 3-dimensional space using the generalized stereographic
projection:

f : S3 \ {P} ⊂ R4 → R3 ,

(x, y, u, v)→ (a, b, c) = ( x
ε−v ,

y
ε−v ,

u
ε−v ) .

5. Compute the inverse:

f−1 : R3 → S3 \ {P}

(a, b, c)→ (x, y, u, v) = (2aε
n , 2bε

n ,
2cε
n ,
−ε+a2ε+b2ε+c2ε

n ) ,

where n = 1 + a2 + b2 + c2 .

6. Compute f(X) using the inverse f−1 finding G,H:

f(X) =

{
(a, b, c)|

{
G := Re(F ( 2aε

n , 2bε
n ,

2cε
n ,
−ε+a2ε+b2ε+c2ε

n )) = 0
H := Im(F ( 2aε

n , 2bε
n ,

2cε
n ,
−ε+a2ε+b2ε+c2ε

n )) = 0

}
.

11



3.3 Computing the Alexander Polynomial of an Algebraic
Link

Knot theory and the Alexander polynomial

For our purpose, we distinguish between the following types of knots:

Definition 5. 1. A knot is a piecewise linear or a differentiable simple closed
curve in the 3-dimensional space R3.
2. A link is a finite union of disjoint knots. The individual knots which make
up a link are called the components of the link. A knot will be considered a link
with one component (Figure 2).
3. A link is called algebraic if it arises as the intersection of an algebraic curve
with a sufficiently small sphere, as described in Subsection3.2.

Figure 2: Trefoil knot (figure produced with Mathematica)

In our approach, we approximate a differentiable algebraic link, namely the
intersection of G and H computed in Subsection 3.2, by a piecewise linear
algebraic link. From now on, we only consider piecewise linear links. When we
work with knots, we work with their projection in the 2-dimensional space.

Definition 6. A regular projection is a linear projection for which no three
points on the knot project to the same point, and no vertex projects to the same
point as any other point on the knot. A crossing point is an image of two knot
points of such a regular projection from R3 to R2. Then:
1. A link diagram (or simply diagram) is the image under regular projection,
together with the information on each crossing point telling which branch goes
over and which goes under. Thus we speak about overcrossings and undercross-
ings.
2. A diagram together with an arbitrary orientation of each knot in the link is
called an oriented diagram.

We are interested in the following elements of a diagram:

Definition 7. 1. A crossing is lefthanded if the underpass traffic goes from left
to right or it is righthanded if the underpass traffic goes from right to left. We
denote a lefthanded crossing with −1 and a righthanded crossing with +1.
2. An arc is the part of a diagram between two undercrossings (Figure 3).
Whether lefthanded or righthanded, each crossing is determined by three arcs
and we denote the overgoing arc with i, and the undergoing arcs with j and k
(Figure 4). We notice that the number of arcs in a link diagram is equal to the
number of crossings in the same link diagram.
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1 3

1(-1)

2(-1)

3(-1)

Figure 3: Oriented diagram of the trefoil with 3 arcs and 3 lefthanded crossings
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Figure 4: Types of crossings: lefthanded (-1) and righthanded(+1).

The main problem in knot theory is to distinguish between different links and
to establish whether two links are equivalent or not. We define the equivalence
of links by the following definition called (ambient) isotopy:

Definition 8. We define a homeomorphism as a continuous bijective function
with a continuous inverse. Then we say that two links are equivalent if there
exists an orientation-preserving homeomorphism on R3 that maps one link onto
the other.

To prove that two links are not equivalent we use the notion of link invariants:

Definition 9. A link invariant is a function from link diagrams to some discrete
set (Z or Z[t]) which is unchanged under the Reidemeister moves of type I, II
or III (see Figure 5).

Some link invariants are: the tricolorability, the unknotting number, the Jones
polynomial, the Alexander polynomial. For further details the reader can con-
sult [9, 24]. At present, there exists no complete invariant for links.
Still for our purpose we are intersted only in the invariants of the algebraic links.
An important result in this direction of research was proved by Yamamoto
in 1984 (see [40]), who showed that the Alexander polynomial is a complete
invariant for the algebraic links, that is the Alexander polynomial uniquely
defines all the algebraic links up to an (ambient) isotopy.
We now focus our attention on the definition and on the computation of the
Alexander polynomial of a link. The Alexander polynomial was introduced
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↔ ↔ ↔

Figure 5: Reidemeister moves of type I, II, III

by Alexander in 1928 (see [3]). It depends on the fundamental group of the
complement of the link in R3 and we define it as follows:

Definition 10. Let L be a link with m components. The multivariate Alexan-
der polynomial is a Laurent polynomial ∆L ∈ Z[t±1

1 , ..., t±1
m ], which is uniquely

defined for each link up to a factor of ±tk11 ...t
km
m , with ki ∈ Z and up to a

substitution ti :=
1
ti
, for all i ∈ {1, ...,m} ([8]).

We follow [24] in our approach to compute the Alexander polynomial. We distin-
guish three steps when computing the Alexander polynomial ∆L of an oriented
link diagram D(L):

D(L) // Labelling matrix(L) // Prealexander matrix(L) // ∆L

First of all we compute the labelling matrix of D(L) defined as follows:

Definition 11. Let D(L) be an oriented link diagram with m components and
n crossings xq : q ∈ {1, ..., n}. We denote the arcs of D(L) with the labels
{1, ..., n} and separately the crossings of D(L) with the labels {1, ..., n}. We
denote the labelling matrix of D(L) with LM(L) ∈ M(n, 4,Z). We define
LM(L) = (bql)q,l with q ∈ {1, ..., n}, l ∈ {1, ..., 4} row by row for each cross-
ing xq as follows:
-on position bq1 we store the type of the crossing xq (+1 or − 1);
-on position bq2 we store the label of the arc i of the crossing xq in D(L);
-on position bq3 we store the label of the arc j of the crossing xq in D(L);
-on position bq4 we store the label of the arc k of the crossing xq in D(L).

Secondly we compute the prealexander matrix of D(L) defined using the la-
belling matrix LM(L) as follows:

Definition 12. Let D(L) be an oriented link diagram with m components
and n crossings xq : q ∈ {1, ..., n}. We denote the arcs and the crossings of
D(L) as in Definition 11. We consider LM(L) the labelling matrix of D(L)
as in Definition 11. We denote the prealexander matrix of L with PM(L) ∈
M(n, n,Z[t1, t2, ..., tm]). We define PM(L) row by row for each crossing xq
depending on LM(L). For xq we consider the variable ts, where s ∈ {1, ...,m}
is the s-th knot component of D(L), which contains the overgoing arc that de-
termines the crossing xq. Then:
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-if the crossing xq is righthanded, i.e. bq1 = +1 in LM(L) then at position bq2
of PM(L) we store the label 1− ts, at position bq3 we store the label −1 and at
position bq4 we store the label ts;
-if the crossing xq is lefthanded, i.e. bq1 = −1 in LM(L) then at position bq2
of PM(L) we store the label 1 − ts, at position bq3 we store the label ts and at
position bq4 we store the label −1;
-if two or all of the positions bq2, bq3, bq4 have the same value, then we store the
sum of the corresponding labels at the corresponding position;
-all other entries of the matrix are 0.

Finally, we define the Alexander polynomial of D(L) depending on the number
of components in L:

Definition 13. Let D(L) be an oriented link diagram with m components and
n crossings, LM(L) be its labelling matrix as in Definition 11 and PM(L) be
its prealexander matrix as in Definition 12.
1. Univariate case, (L has one component, m = 1, see [24]).
The univariate Alexander polynomial ∆L(t1) ∈ Z[±t1] is the normalized poly-
nomial computed as the determinant of any (n − 1) × (n − 1) minor of the
prealexander matrix of D(L).
2. Multivariate case, (L has more than one component, m ≥ 2, see [8]).
The multivariate Alexander polynomial ∆L(t1, ..., tm) ∈ Z[t±1

1 , ..., t±1
m ] is the

normalized polynomial computed as the greatest common divisor of all the (n−
1)× (n− 1) minor determinants of the prealexander matrix of D(L).

A normalized polynomial is a polynomial in which the term of the lowest degree
is a positive constant.

Example. We compute the Alexander polynomial of the oriented diagram of
the trefoil knot L from Figure 3. We denote the arcs and separately the crossings
of the diagram with the labels {1, 2, 3}. We compute the labelling matrix of L
with Definition 11:

LM(L) =


type labeli labelj labelk

c1 −1 2 1 3
c2 −1 1 3 2
c3 −1 3 2 1


From LM(L) we compute the prealexander matrix of D(L) with Definition 7
and Definition 12. We notice that L has only one knot compoent so s = 1 in
Definition 12:

PM(L) =



labeli labelj labelk
c1 2 1 3
−1 1− t1 t1 −1
c2 1 3 2
−1 1− t1 t1 −1
c3 3 2 1
−1 1− t1 t1 −1


=


1 2 3

c1 t1 1− t1 −1
c2 1− t1 −1 t1
c3 −1 t1 1− t1



From PM(L) we compute the Alexander polynomial with Definition 13:

det
(
Minor33

(
PM(L)

))
= det

(
t1 1− t1

1− t1 −1

)
= −t21 + t1 − 1
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∆L(t1) = Normalize(−t21 + t1 − 1) = t21 − t1 + 1

We note that we apply the same strategy described in this subsection to compute
the Alexander polynomial of an algebraic link L, this being a special case of link.
We give a schematic summary of the algorithm used to compute the Alexander
polynomial of an algebraic link diagram D(L).

Algorithm 3 Alexander polynomial for D(L) ALEXPOLY(D(L),m, n)
Input: D(L) oriented algebraic link diagram with m components, n crossings
Output: ∆L(t1, ..., tm) ∈ Z[t±1

1 , ..., t±1
m ]

where ∆L(t1, ..., tm) is the Alexander polynomial of D(L).

1. Denote the arcs and separately the crossings of D(L) with {1, ..., n};

2. Compute LM(L) the labelling matrix of D(L) ;

3. Compute PM(L) the prealexander matrix of D(L);

4. If m = 1 then:

(a) Compute M any (n− 1)× (n− 1) minor of PM(L);

(b) Compute D the determinant of the minor M ;

(c) ∆L(t1) = Normalize(D);

5. If m ≥ 2 then:

(a) Compute all the (n− 1)× (n− 1) minors of PM(L);

(b) Compute G the greatest common divisor of all the computed minors
in 5.(a);

(c) ∆L(t1, ...tm) = Normalize(G).

Alexander polynomial and computational geometry

In Subsection 3.3 we noticed that in order to compute the Alexander polynomial
of an algebraic link L we need to compute the diagram of L denoted with D(L).
We compute L using the stereographic projection method described in Subsec-
tion 3.2 and Axel system [39] for the actual implementation. We remember that
for the plane complex algebraic curve C with F (z, w) ∈ C[z, w], ε ∈ R∗, ε > 0
and (0, 0) an isolated singularity, we compute two polynomials G,H ∈ R[a, b, c].
We have shown that the algebraic link L of (0, 0) is the zero common set of
G,H, that is L is a smooth implicit curve in R3 given as the intersection of two
implicit surfaces in R3 whose defining polynomials are G,H. Axel uses certified
algorithms to compute a piecewise linear approximation L

′
for L, which is iso-

topic to L[23]. L
′

is computed as a graph G = 〈P, E〉, where P is a set of points
together with their euclidean coordinates and E is a set of edges connecting
them. From now on we denote L

′
:= Graph(L).

Example 1 (Compute algebraic link with Axel).
For C4 = {(z, w) ∈ C2|z3 − w2 = 0} ⊂ R4 with (0, 0) isolated singularity and
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ε = 1 we get L, the algebraic link of (0, 0) by the stereographic projection
method proposed in Subsection 3.2:

f(C4 ∩ S) := L = {(a, b, c) ∈ R3|G := ReF (...) = 0, H := ImF (...) = 0}

and with Axel we get Graph(L) as the intersection of the two surfaces G,H:

Graph(L) = 〈V, E〉, V = {p = (m,n, q) ∈ R3}, E = {(i, j)|i, j ∈ V}

such that Graph(L) ∼=isotopic L, see Figure 6.

Figure 6: Algebraic link as intersection of surfaces in Axel

Now from the ouput computed by Axel, Graph(L), we need to compute D(L),
the diagram of the algebraic link L. We then useD(L) to compute the Alexander
polynomial of L with the algorithm proposed in Subsection 3.3.
We compute the elements of D(L), i.e. the arcs of the diagram and the number
of knot components in the diagram, plus for each knot component its cross-
ings with their types. We develop new computational algorithms for computing
D(L) given Graph(L). The main idea is that all these algorithms are operating
on the data structure of Graph(L) returned by Axel. Each point in the graph is
given as a 4-tuple p(index, x, y, z), where index is an integer that uniquely iden-
tifies each point, and (x, y, z) ∈ R3 are the euclidean coordinates of p. We use
xyzcoord(index) for denoting the x, y, z coordinates of index, xycoord(index)
for denoting the x, y coordinates of index, xcoord for denoting the x coordinate
of index, and ycoord for denoting the y coordinate of index. Each edge in the
graph is given by a pair e(source, destination), where source is the index of
the source point of e, and destination is the index of the destination point of
e. For simplicity reasons, we denote the pair e(source, destination) := e(s, d).
We consider the edges of Graph(L) to be ”small” edges, i.e. the projection of
any edge of Graph(L) has at most one crossing point. Here we shortly describe
these computational algorithms, for more information the reader can consult
[20].
The first algorithm is an adapted version of the Bentley-Ottman algorithm
[12]. For Graph(L) ∈ R3 with the set of points pi = (xi, yi, zi) ∈ R3 we consider
its projection in R2 with the set of points pi = (xi, yi) ∈ R2. We also consider
no vertical edges in the projection. This algorithm computes the intersection
points of all the edges of the projection of Graph(L) and some extra information:
(i) for each intersection point p the pair of edges (ei, ej) that contains p; (ii) and
each pair of edges (ei, ej) is ordered, i.e. ei is under ej in R3. These intersection
points together with the extra information coincide with the crossings of D(L).
Our adapted Bentley-Ottman algorithm operates as follows:

• the edges of the projection of Graph(L) are oriented from left to right
and they are ordered in a list E = {e0, ..., eN} as follows: (1) by the x-
coordinates of their source points; (2) if the x-coordinates of the source
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points of two edges coincide, then the two edges are ordered by the two
slopes of their supporting lines; (3) if the x-coordinates of the source points
and the slopes of two edges coincide, then the two edges are ordered by the
y-coordinates of their destination points. The ordering criteria is necessary
for the correctness of the algorithm.

• we consider a vertical sweep line l that sweeps the plane from left to right.
While l moves, it intersects several edges from E. The list of edges that
intersect l at one point during the sweeping procees, denoted SW , is called
the sweep list. SW changes while l sweeps the plane. The algorithm is
based on the key observation that SW is updated only at certain points
of the edges from E called event points. The sweep list SW is ordered in
this algorithm by the y-coordinates of the intersections of the edges of E
with the sweep line L.

• we notice that in E each index appears two times in E. Due to this
property, we can manage SW in a simpler way in our adapted Benttley-
Ottman algorithm than in the original version.

• while we traverse E, we insert the current edge em(sm, dm) from E in
SW in the right position and that is: (1) we search for an edge en(sn, dn)
in SW such that its destination coincide with the source of em ∈ E,
i.e. dn = sm; if we find such an en ∈ SW we replace it with em ∈
E; (2) if such an edge en ∈ SW does not exist, we insert em in SW
depending on its position against the current edges from SW . We assume
SW = {ei1 , ei2 , ei3 , ..., eik}, with eiq ∈ E for all q ∈ {1, ..., k}. There
exists a unique index j with 0 ≤ j ≤ k such that ycoord(sm) is larger
than the y-coordinates of all the intersections of ei1 , ..., eij with l and
smaller than the y-coordinates of all the intersections of eij+1 , ..., eik with
l. This index j can be found by checking all the signs of the determinants
det
[(
xycoord(sm), 1

)
,
(
xycoord(sij ), 1

)
,
(
xycoord(dij ), 1

)]
. Then we insert

em in SW between the two edges eij and eij+1 and we obtain SW =
{ei1 , ei2 , ..., eij , em, eij+1 , ..., eik}. When we insert an edge from E into SW
on the right position we have to additionally update SW depending on
the event points encountered:

– we test each inserted edge in SW against its two neighbors for in-
tersection. If an intersection point p is found we report it together
with the ordered pair of edges that contains it. In addition we swap
the edges that intersect in SW . As opposed to the original Bentley-
Ottman algorithm after swaping the edges in SW , we do not test
the edges against their new neighbors for intersections because we
consider only ”small” edges.

– we test each inserted edge in SW against its two neighbors for com-
mon destination. In addition, when two edges are swapped in SW
after reporting their intersection point, we test them against their
new neighbors for common destination. Whenever we find two con-
secutive edges with common destinations we erase them from SW .
As opposed to the original Bentley-Ottman algorithm after deleting
edges from SW , we do not test the new neighbors for intersection
because we consider only ”small” edges.
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The second algorithm constructs the knot components of the diagram from
the projection of Graph(L). It also returns the total number of knot compo-
nents. We consider E as in the previous algorithm. We denote a positive edge in
R2 with e(s, d), and its corresponding negative edge with −e(d, s). The positive
edges are oriented from left to right, while the negative ones are oriented from
right to left. We denote the knots with Ki, i ∈ N. All Ki have the proper-
ties: (1) for each edge ek(sk, dk) ∈ Ki there exists ek+1(sk+1, dk+1) ∈ Ki with
dk = sk+1; (2) for Ki = {e0(s0, d0), ..., en(sn, dn)}: dn = s0. As opposed to the
list E which contains only positive edges oriented from left to right, each list Ki

contains both positive and negative edges. We initialize the first knot K0 with
the first edge e0(s0, d0) from E. Next we look for the edge en in E which has a
common index, either source or destination, with d0. If we find en(d0, dn) ∈ E
then we insert en(d0, dn) in K0 as a positive edge. If we find en(sn, d0) ∈ E
then we insert −en(d0, sn) in K0 as a negative edge. After we insert en in K0

we erase it from E. We will always find such an edge en in E, because each
index such as d0 appears two times in E. We continue with inserting edges in
K0 from E until the destination of an inserted edge coincide with s0 the source
of the first edge from K0. We apply the same strategy to constructs all the
knots Ki of D(L) until E is empty, increasing i each time a new knot starts
being constructed. At the end of the algorithm, the index i returns the total
number of knot components of D(L).
The third algorithm constructs the arcs for each knot component of the
link. It also decides the type of crossings (righthanded or lefthanded) for each
knot component. For constructing the arcs, we consider E as in the previ-
ous algorithms. This algorithm operates on the outputs of the previous two
algorithms, i.e. the list of intersection points I together with the list of or-
dered pairs of edges EI , and the lists of edges for all the knot components
Ki, i ∈ N. The key point of the algorithm is to search in Ki all the undergoing
edges from EI and to splitt them in two parts. For instance, we assume that for
E = {e0, ..., en, em, ..., el, ek..., et, es, ..., elast}, we compute the following outputs
with the previous two algorithms:

I = {(x1, y1), (x2, y2), (x3, y3)}, EI = {(−en, em), (el, ek), (es,−et)}

K0 = {e0, ..., ek, ..., es, ..., em, ..., el, ...,−et, ...,−en, ...,−e1}

We search the three undergoing edges −en, el, es one by one in K0 and we replace
them with −en → (−edn,−eun), el → (edl , e

u
l ), es → (eds , e

u
s ) obtaining:

K
′

0 = {e0, .., ek, .., eds , eus , .., em, .., edl , eul , ..,−et, ..,−edn,−eun, ..,−e1}.

From Definition 7, we conjecture that an arc contains the list of edges from a
modified knot component K

′

i , i ∈ N starting with an edge of type euj , j ∈ N from
K

′

i and ending with the next consecutive edge of type edk, k ∈ N from K
′

i . While
we insert the edges from K

′

i into the list of edges representing the arcs we erase
them from K

′

i . Thus from the modified loop K
′

0 we compute the following three
arcs until K

′

0 is empty:

K
′

0 = {e0, .., ek, .., eds ,(((((((
[eus , .., em, .., e

d
l ], e

u
l , ..,−et, ..,−edn,−eun, ..,−e1}

arc0 = {eus , ..., em, ..., edl }
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K
′

0 = {e0, .., ek, .., eds ,(((((((((
[eul , ..,−et, ..,−edn],−eun, ..,−e1}

arc1 = {eul , ..,−et, ..,−edn}

K
′

0 = {(((((((
[e0, .., ek, .., eds ],(((((([−eun, ..,−e1]}

arc2 = {eun, ..,−e1, e0, .., ek, .., eds}

For deciding the type of crossings, we observe that in each knot component
for a positive edge ei(si, di) : xcoord(si) < xcoord(di) and for a negative edge
−ej(sj , dj) : xcoord(sj) > xcoord(dj). Each type of crossing depends on the
pair of edges (eunder, eover) that contains the corresponding intersection point,
and that is: (i) on the orientation of eunder, and eover, i.e. whether they are
oriented from left to right (positive) or from right to left (negative); (ii) on
the comparison relation between the slope of eunder and the slope of eover.
Depending on these three parameters, we have 23 possible cases for deciding
the type of crossings. For instance, we consider a crossing c determined by the
pair of ordered edges

(
− el(sl, dl), ek(sk, dk)

)
, for which −el is the undergoing

edge and ek is the overgoing edge in R3. We have xcoord(sl) > xcoord(dl) for
the negative undergoing edge el, and xcoord(sk) < xcoord(dk) for the positive
overgoing edge ek. If additionally we suppose that slope(el) < slope(ek), then
c is a lefthanded crossing.
We give the schematic algorithm for the computation of the diagram D(L) of a
differentiable algebraic link L computed as in Subsection 3.2 and approximated
by a piecewise linear algebraic link Graph(L).

Algorithm 4 Diagram of piecewise linear links DIAGRAM(Graph(L))
Input: Graph(L) = 〈P, E〉 piecewise linear algebraic link which approximates

L a differentiable algebraic link as computed in Subsection3.2
P set of points with their euclidean coordinates
E set of edges connecting them

Output: D(L)
where D(L) is the diagram of Graph(L) ∼=isotopic L.

1. Compute the crossings of D(L);

(a) Compute I the intersections of the edges of E;

(b) Compute EI the pairs of ordered edges containing each intersection;

2. Compute Ki, i ∈ N the lists of edges from E for all the knots of D(L);

3. Compute the arcs of D(L) and the type of crossings in D(L).

3.4 Computing the delta-Invariant of an Isolated Singu-
larity

We use Milnor results for computing the δ-invariant of the isolated singularity
(0, 0). Following [26]:

• we consider µ a positive integer that measures the amount of degeneracy
at the critical point (0, 0) of the complex polynomial F (z, w). In fact, µ
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is the Milnor number. It is shown that µ is the degree of the character-
istic polynomial ∆ of the link L = V ∩ Sε determined by V = F−1(0).
The characteristic polynomial ∆ coincides with the Alexander polynomial

∆L(t) if L has one knot component, and ∆ =
(t− 1)
±ti

∆L(t, ..., t) if L has

more than one knot components. We observe that µ is the degree of the
characteristic polynomial ∆. Based on this observation we deduce that µ
is the degree of the Alexander polynomial if L has one knot component,
and µ is the degree of the Alexander polynomial +1 if L has more than
one knot components.

• we consider r the number of local analytic branches of V = F−1(0) with
L = V ∩ Sε passing through origin. That is r is the number of knot
components in the link L determined by V , i.e. r is the number of variables
in the Alexander polynomial of the link L.

We base our algorithm for the computation of the δ-invariant on the following
theorem proved by Milnor:

Theorem 3. Suppose that r branches of the curve V = F−1(0) pass through
the origin s = (0, 0), which is an isolated singularity for V . Then the delta-
invariant of the isolated singularity s = (0, 0) denoted with δs is related to the
Milnor number µ by the equation 2δs = µ+ r− 1 ([26]). It is always an integer.

We give the schematic algorithm for the computation of the δ-invariant of the
isolated singularity (0, 0).

Algorithm 5 Delta-invariant of the isolated singularity (0, 0) DELTA(∆L, µ, r)
Input: ∆L(t1, ..., tm) the Alexander polynomial of L

L the algebraic link of the isolated singularity s = (0, 0),
d the degree of ∆L, m the number of variables in ∆L

Output: δs ∈ Z∗+
where δs is the delta-invariant of s = (0, 0).

1. If m = 1 then δs =
d

2

2. If m ≥ 2 then δs =
d+m

2

3.5 Computing the Genus of the Algebraic Curve

We now give the schematic algorithm for computing the genus of a plane com-
plex algebraic curve whose defining polynomial has numeric coefficients. The
computed genus is the approximate genus, which is defined as the lowest possi-
ble genus of a curve defined by a nearby polynomial. We discuss the notion of
approximate genus in detail in Section 4.
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Algorithm 6 Genus of a plane complex algebraic curve GENUS(F, d, ε)
Input: C = {(z, w) ∈ C2|F (z, w) = 0},

F (z, w) ∈ C[z, w] with numeric coefficients,
d the degree of C, ε ∈ R∗, ε > 0

Output: genus(C) ∈ Z
where genus(C) is the approximate genus of C.

1. sumDeltaInv = 0;

2. Compute Sing(C) = SING(F, d);

3. For each si = (zi, wi) ∈ Sing(C) do:

(a) Move si in (0, 0) : C = {(z + zi, w+wi) ∈ C2|F (z + zi, w+wi) = 0}
(b) Compute L = ALGLINK(F, ε) (L is approximated by Graph(L));

(c) Compute D(L) = DIAGRAMLINK(Graph(L));

(d) Compute ∆L(t1, ..., tm) = ALEXPOLY(D(L),m, n);

(e) Compute δsi = DELTA(∆L, µ, r);

(f) sumDeltaInv = sumDeltaInv + δsi ;

4. genus(C) =
(d− 1)(d− 2)

2
− sumDeltaInv.

4 What precisely means
“approximate computation”?

It is the mark of an instructed
mind to rest satisfied with the
degree of precision to which the
nature of the subject admits and
not to seek exactness when only
an approximation of the truth is
possible.

Aristotle

In this section we introduce a theory for describing approximate algorithms for
computing discrete information from continuous data. We do not claim original-
ity for this theorem, as it is based on regularization theory (see [13]) and general
principles that are commonly used in approximate algebraic computation (see
[36, 41]). For a probabilistic foundation of the theory, we refer to [30].
In the second part of the section, we apply the theory to our problem of com-
puting Alexander polynomials for equations with numeric coefficients.

Let D be a metric space. For any x ∈ D and ε > 0, we define the open ball
Bε(x) := {y ∈ D | dist(x, y) < ε}. Let V be a partially ordered set. Let
f : D → V be an upper semicontinuous function, with respect to the discrete
topology on V . A regularization of f is a function F : (D × R+) → V such
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that there exists a pair of continuous and bijective and increasing functions
d1, d2 : R+ → R+ such that

∀x ∈ D ∀ε > 0 ∀y ∈ Bd1(ε)(x) : f(y) ≤ F (x, ε), (3)

∀x ∈ D ∀ε > 0 ∃y ∈ Bd2(ε)(x) : f(y) = F (x, ε). (4)

We say that the function Fε : D → V : x 7→ F (x, ε) “approximates f at level
ε”. The functions d1 and d2 are called “upper and lower error bound”. The
quotient d2/d1 is a kind of quality measure for the regularization.

Example 1. The simplest nontrivial upper semicontinuous function is the zero
test function z : R→ Z defined by z(0) = 1 and z(x) = 0 for x 6= 0.
A possible regularization is Fε(x) = 1 for |x| < ε and Fε(x) = 0 otherwise. The
error bounds are d1(ε) = d2(ε) = ε, and this is the best possible ratio of upper
and lower error bound.

For any upper semicontinuous functions, it is possible (and actually not very
difficult) to define a regularization with d1 = d2. However, if the function
is more complicated, then it is computationally much cheaper to compute a
regularization such that d1 < d2.
For all regularizations of f , the approximations converge pointwise to f , and
they are eventually continuous at any fixed input x. Here is the precise state-
ment:

Theorem 1. Let F be a regularization of f .
a) For any x ∈ D, we have limε→0 Fε(x) = f(x).
b) For any x ∈ D, there exists ε > 0 such that for any ε′ < ε, Fε′ is constant in
some neighborhood of x.

Proof. Let x ∈ D be arbitrary. We define

β := sup{α | ∀y ∈ Bα(x) : f(y) ≤ f(x)}.

Then we claim that Fε(x) = f(x) for all ε < d−1
2 (β). Indeed, (3) implies

f(x) ≤ Fε(x) (for any ε), and (4) implies the existence of y ∈ Bd2(ε)(x) ⊆ Bβ(x)
such that Fε(x) = f(y) ≤ f(x). This shows (a).
For any x, we choose ε := d−1

2

(
β
2

)
. Then for any ε′ < ε, we choose δ as the

minimum of β
2 and d1(ε′). Then we claim that Fε′(y) = f(x) for all y ∈ Bδ(x),

which shows (b).
By (3), we obtain f(x) ≤ Fε′(y). We assume, indirectly, that Fε′(y) > f(x). By
(4), there exists z ∈ Bd2(ε′)(y) such that f(z) = Fε′(y) > f(x). It follows that

dist(x, z) ≤ dist(x, y) + dist(y, z) < δ + d2(ε′) ≤ β

2
+
β

2
= β,

and this is a contradiction to the definition of β.

The Alexander polynomial of a given equation can be formulated as an upper
semicontinuous function in the following way. First, we fix a finite set E ⊂ Z2.
Then the set of polynomials with exponents in E form a finite-dimensional lin-
ear space. We take D as the subset of all polynomials with norm 1. Second, the
set V is the set of classes multivariate Laurent polynomials over the integers,
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where the equivalence relation is generated by multiplying with monomials and
substitution of variables by their multiplicative inverses. In order to introduce
a partial order on V which makes the Alexander polynomial an upper semicon-
tinuous function, we use a well-known theorem from singularity theory.

Theorem 2. 1) The Milnor number is an upper semicontinuous function of the
coefficients.
2) In every connected subset in coefficient space where the Milnor number is
constant, the topological type is also constant.

Proof. For the proof of the first assumption the reader can consult [37] and for
proof of the second one [29].

Remark 3. The δ-invariant is also upper semicontinuous, but it does not satisfy
statement (2) in the above theorem. For example, there exist a sequence of nodes
degenerating to a cusp, but both the cusp and the node have both δ-invariant
equal to 1.

The Alexander polynomial determines µ, the Milnor number, by: µ is the degree
of the Alexander polynomial if L has one knot component, and µ is the degree
of the Alexander polynomial plus 1 if L has more than one knot components as
deduced in Subsection 3.4. We denoted with L the algebraic link of a singularity
as described in Subsection 3.2. We define now the partial order on V as: P1 < P2

if and only the Milnor number of P1 is less than the Milnor number of P2 .
We think that the algorithm described in Subsection 3.3 computes a regular-
ization of the Alexander polynomial. The precise proof and the analysis of the
error bounds is still under construction.

5 Numerical Experiments

There is no such thing as a failed
experiment, only experiments with
unexpected outcomes.

R. B. Fuller

In this paper, we will give some experimental evidence for the statement that our
algorithm satisfies the conclusion of Theorem 1. All the experiments, numerical
and symbolical, are done with the software, GENOM3CK -Symbolic numeric
techniques for GEN us cOM putation of C omplex algebraiC C urves using K not
theory. GENOM3CK is implemented and included as a library in the free system
Axel [39], written in C++ with Qt Script for Applications (QSA).
As evidences for the convergency property we consider an input polyno-
mial F (x, y) ∈ C[x, y] with both exact and inexact coefficients and we compute
Aε(F (x, y)) with the approximate algorithm Aε. We compute Aε(F (x, y)) with
the approximate algorithm for different values of the parameter ε. We obtain
several outputs such as: the singularities of the input curve defined by F (x, y),
the algebraic link of each singularity (i.e. the topology of the singularity), the
Alexander polynomial of each algebraic link, the delta-invariant of each singular-
ity, and the genus of the curve. The computation of the Alexander polynomial,
delta-invariant and the genus depends on the computation of the algebraic link
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of each singularity. From the experiments, we observe that the approximate
solution computed with Aε converges to the exact solution as ε tends to 0.

Example 1. We consider F (x, y) = x2−x∗y−y3. We notice that x2−x∗y =
x(x − y) thus F (x, y) has a vertical tangent x = 0 in C4. In order to assure a
valid stereographic projection in R3 we make the substitution {x → y, y → x}
in F (x, y) obtaining the polynomial F (x, y) = −x3 − x ∗ y + y2, and thus we
consider this polynomial as the input of the problem. We use Arnold’s results
concerning the analysis of curve singularities and we deduce that the algebraic
link of the singularity (0, 0) of the polynomial x2− x ∗ y− y3 is the same as the
algebraic link of the singularity (0, 0) of the polynomial x2 − x ∗ y which is the
Hopf link, and which represents the exact solution for the algebraic link of the
singularity (0, 0) of F (x, y). We notice that the approximate solution converges
to the exact solution as ε tends to 0.

Equation and ε Link Alexander, δ invariants, genus
−x3 − xy + y2 1.00 Trefoil

knot
∆(t1) = t21 − t1 + 1 δ = 1 g = 0

−x3 − xy + y2 0.5 Trefoil
knot

∆(t1) = t21 − t1 + 1 δ = 1 g = 0

−x3 − xy + y2 0.25 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

−x3 − xy + y2 0.14 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

We can consider the input polynomial with both exact and inexact coefficients,
such as F (x, y) = −x3−x∗y+y2−0.01. We observe again that the approximate
solution converges to the exact solution when ε tends to 0.

Equation and ε Link Alexander, δ invariants, genus
−x3−xy+y2−0.01 1.00 Trefoil

knot
∆(t1) = t21 − t1 + 1 δ = 1 g = 0

−x3−xy+y2−0.01 0.5 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

−x3−xy+y2−0.01 0.25 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

−x3−xy+y2−0.01 0.22 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

Example 2. We consider F (x, y) = x2 − y2 − y3. We use Arnold’s results
concerning the analysis of curve singularities and we deduce that the algebraic
link of the singularity (0, 0) of F (x, y) is the same as the algebraic link of the
singularity (0, 0) of the polynomial x2 − y2 which is the Hopf link, and which
represent the exact solution for the algebraic link of the singularity (0, 0) of
F (x, y). We notice that the approximate solution converges to the exact solution
as ε tends to 0.
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Equation and ε Link Alexander, δ invariants, genus
x2 − y2 − y3 1.00 1 sin-

gularity
curve

− − −

x2 − y2 − y3 0.7 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

x2 − y2 − y3 0.5 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

x2 − y2 − y3 0.19 Hopf
link

∆(t1, t2) = 1 δ = 1 g = 0

As evidences for the continuity property we consider an input curve defined
by the polynomial F (x, y) ∈ C[x, y] with exact and inexact coefficients and
we compute Aε(F (x, y)) with the approximate algorithm Aε. The continuity
property of Aε states that small changes in the input polynomial F (x, y) produce
constant output for the computed solution. To observe this we proceed in the
following way:

• we consider a polynomial p(x, y) ∈ C[x, y] which contains only exact coef-
ficients;

• for σ ∈ R∗, we slightly perturbed the coefficients of the polynomial p(x, y)
obtaining some new polynomials denoted with pσ(x, y) that we call per-
turbations of the polynomial p(x, y). We call σ the perturbation of the
exact polynomial p(x, y).

• we consider several values for the parameter ε. For each of these values,
we execute the approximate algorithm Aε on the perturbed polynomi-
als pσ(x, y) for different values of σ ∈ R∗. The perturbed polynomials
pσ(x, y) represent the input polynomials F (x, y) with exact and inexact
coefficients, i.e. F (x, y) = pσ(x, y), for σ ∈ R∗.

We distinguish between two types of perturbations:

1. Perturbations of type I: For these types of perturbations, pσ(x, y) is of the
following form: pσ(x, y) = p(x, y)+σ, where p(x, y) is the exact polynomial
and σ ∈ R∗ is a real number different from 0.

2. Perturbations of type II: For these types of perturbations, pσ(x, y) is of
the following form: pσ(x, y) = p(x, y)+σq(x, y), where p(x, y) is the exact
polynomial, σ ∈ R∗ and q(x, y) ∈ C[x, y] is an arbitrary exact polynomial.

From the experiments, we observe that for the perturbed polynomials the ap-
proximate computed solution is preserved, that is for small changes of the input
data we obtain constant output for the computed solution.

Example 1. For the exact polynomial p(x, y) = −x3 − x ∗ y + y2, we con-
sider perturbations on type I of the form pσ(x, y) = −x3 − x ∗ y + y2 − σ, with
σ ∈ {10−2, ..., 10−10}.
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Perturbations I and ε σ = 10−e, e ∈
N∗

Link Invariants

−x3−xy+y2−10−e 0.5 {10−2, ..., 10−10} Trefoil
knot

∆(t1) = t21−t1+1
δ = 1 g = 0

−x3−xy+y2−10−e 0.25 {10−2, ..., 10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0

For the perturbations of type II we consider the exact polynomial p(x, y) =
−x3 − xy + y2, the arbitrary exact polynomial q(x, y) = −x3 − 2xy + y2 and
σ ∈ {10−1, ..., 10−10}, obtaining the perturbed polynomials pσ(x, y) = p(x, y) +
σq(x, y) = −x3 − xy + y2 + σ(−x3 − 2xy + y2) = −(1 + σ)x3 − (1 + 2σ)xy +
(1 + σ)y2. For σ = 0.1 we obtain the perturbed polynomial pσ←0.1 = −1.1x3 −
1.2xy + 1.1y2; for σ = 0.01 we obtain the perturbed polynomial pσ←0.01 =
−1.01x3 − 1.02xy + 1.01y2; for σ = 0.001 we obtain the perturbed polynomial
pσ←0.001 = −1.001x3 − 1.002xy + 1.001y2, etc.

Perturbations II and ε σ = 10−e, e ∈
N∗

Link Invariants

−(1+10−e)x3−(1+2·10−e)xy+
(1 + 10−e)y2

0.15 {10−1, ...10−10} Hopf
link

∆(t1, t2) =
1
δ = 1 g = 0

−(1+10−e)x3−(1+2·10−e)xy+
(1 + 10−e)y2

0.14 {10−1, ...10−10} Hopf
link

∆(t1, t2) =
1
δ = 1 g = 0

Example 2. For the exact polynomial p(x, y) = x2 − y2 − y3, we consider
perturbations on type I of the form pσ(x, y) = x2 − y2 − y3 − σ, with σ ∈
{10−1, ..., 10−10}.

Perturbations I and ε σ = 10−e, e ∈
N∗

Link Invariants

x2 − y2 − y3 − 10−e 0.5 {10−1, ..., 10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0

x2 − y2 − y3 − 10−e 0.14 {10−1, ..., 10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0

For the perturbations of type II we consider the exact polynomial p(x, y) =
x2 − y2 − y3, the arbitrary exact polynomial q(x, y) = x2 − 3y2 − 4y3 and
σ ∈ {10−1, ..., 10−10}, obtaining the perturbed polynomials pσ(x, y) = p(x, y) +
σq(x, y) = x2−y2−y3 +σ(x2−3y2−4y3) = (1+σ)x2− (1+3σ)y2− (1+4σ)y3.
For σ = 0.1 we obtain the perturbed polynomial pσ←0.1 = 1.1x2−1.3y2−1.4y3;
for σ = 0.01 we obtain the perturbed polynomial pσ←0.01 = 1.01x2 − 1.03y2 −
1.04y3; for σ = 0.001 we obtain the perturbed polynomial pσ←0.001 = 1.001x2−
1.003y2 − 1.004y3, etc.

Perturbations II and ε σ = 10−e, e ∈
N∗

Link Invariants

(1+10−e)x2−(1+3·10−e)y2−
(1 + 4 · 10−e)y3

0.25 {10−1, ...10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0

(1+10−e)x2−(1+3·10−e)y2−
(1 + 4 · 10−e)y3

0.14 {10−1, ...10−10} Hopf
link

∆(t1, t2) = 1
δ = 1 g = 0
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6 Conclusion and Future Work

If I have seen further than others,
it is by standing upon the
shoulders of giants.

Isaac Newton

For each input plane complex algebraic curve C defined by the polynomial
F (z, w) with numeric coefficients, GENOM3CK performs the following compu-
tational operations: (i) it computes the set of all distinct real singularities of
C; (ii) it computes and visualize the algebraic link L of each singularity of the
input curve C in the three-dimensional space; for each algebraic link L, which
is a smooth, implicitly defined closed curve in R3, it computes and visualize
the two implicit surfaces that define the algebraic link L. In fact these surfaces
represent the Milnor fibration; (iii) it computes the diagram of each algebraic
link L; (iv) it computes the Alexander polynomial of each algebraic link L; (v) it
computes the δ-invariant of each singularity; (vi) it computes the genus of the
curve C; (vii) it also computes the time needed for performing each of these
operations.
We have reported on a symbolic-numeric algorithm for genus computation of
plane complex algebraic curves whose defining polynomials have coefficients of
limited accuracy, i.e the coefficients of the polynomial are both exact and in-
exact data. We have successfully realized a complete automatization for the
steps of the proposed symbolic-numeric algorithm in the GENOM3CK library
using Axel, an algebraic geometric modeller. The library allows us to compute
several invariants of an input plane complex algebraic curve, such as: the alge-
braic link, the Alexander polynomial and the delta-invariant of each singularity
of the curve. In addition, the library allows us to analyse the performace of
the proposed symbolic-numeric algorithm. The test experiments indicate the
efficiency of the proposed symbolic-numeric algorithm. Moreover, we use the
library to offer practical evidences for the convergency and the continuity prop-
erties of the proposed symbolic-numeric algorithm. These tests also indicate
that the proposed symbolic numeric algorithm can be described using prici-
ples from regularization theory and approximate algebraic computation. Using
these principles, we intend to give a precise meaning to the notion of approxi-
mate genus of the input plane complex algebraic curve computed also using the
proposed symbolic-numeric algorithm.
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