
Computational geometry and

combinatorial algorithms for the genus

computation problem

Mădalina Hodorog Josef Schicho

DK-Report No. 2010-07 09 2010

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria

Editorial Board: Bruno Buchberger
Bert Jüttler
Ulrich Langer
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Veronika Pillwein

Communicated by: Bert Jüttler
Ronny Ramlau

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria

Computational geometry and combinatorial

algorithms for the genus computation problem ∗

Mădălina Hodorog, Josef Schicho
Johann Radon Institute for Computational and Applied Mathematics

Austrian Academy of Sciences

Research Institute for Symbolic Computation

Johannes Kepler University Linz Austria

{madalina.hodorog, josef.schicho}@oeaw.ac.at

Abstract

Computational geometry and combinatorial algorithms play an im-
portant role in algebraic geometry. We report on several computational
geometry and combinatorial algorithms needed for computing the genus
of a plane complex algebraic curve with numeric coefficients.

1 Introduction

The genus computation problem is a classical subject in computer algebra. In [3]
we have already presented a method for computing the genus of a plane complex
algebraic curve, whose defining polynomial has numeric coefficients, based on
the topology of singular points of the curve and on knot theory. The main idea is
to divide the genus computation problem in several subproblems, to solve each
of these subproblems and than to combine the solutions of these subproblems
in order to obtain the solution to the original problem. In this paper, we de-
scribe in details the computational geometry and combinatorial algorithms that
are required in order to solve the genus computation problem. We base some
of these algorithms on general algorithms from computational geometry (e.g.
Bentley-Ottman algorithm). Whenever required, we design new algorithms for
solving the specific subproblems. We also include a concise description for the
computational complexity of the algorithms.

2 The Genus Computation Problem

2.1 Formulating the genus computation problem

We formulate the genus computation problem in the following way: given a
plane complex algebraic curve with numeric coefficients, we want to compute
the value for the genus of this input curve. For the input curve C = {(z, w) ∈
C2|F (z, w) = 0} ∈ C2 we are given its defining polynomial F (z, w) ∈ C[z, w]

∗The work is supported by the Austrian Science Funds (FWF) under the grant W1214/DK9

1

with numeric coefficients, and its degree d. We intend to compute the value for
the genus of C denoted withgenus(C) ∈ Z using the following formula:

genus(C) =
1
2

(d− 1)(d− 2)−
∑

s∈Sing(C)

δs,

where Sing(C) is the set of all singularities of the input curve C, and with
δs we denote the delta-invariant of the singularity s. We consider C as a real
two-dimensioanl subset in C2 ∼= R4, that is

C = {(x, y, u, v) ∈ R4|F (x, y, u, v) = 0} ⊂ R4,

where z = x + i ∗ y, w = u + i ∗ v. In order to solve the problem we divide it
into several interdependent subproblems, we solve each of these subproblems
and then we combine the solutions of these subproblems to obtain the solution
to our original problem. We divide the genus computation problem into the fol-
lowing subproblems: firstly, we compute all the singularities of the input curve;
secondly, we compute the algebraic link of each singularity; then, we compute
the Alexander polynomial of each algebraic link; we continue with computing
the delta-invariant of each singularity from the Alexander polynomial; and fi-
nally, we compute the genus of the input curve from the delta-invariants of all
the singularities.

2.2 Solving the genus computation problem

We shortly present the main ideas for solving each of the interdependent sub-
problems introduced to solve the genus computation problem. For more details,
the reader is advised to consult [3].

Computing the singularities of the input curve

We compute the set of all the distinct real singularities of the curve both in the
affine and in the projective space, that is the set:

Sing(C) = {(z0, w0) ∈ C2|F (z0, w0) = 0,
∂F

∂z
(z0, w0) = 0,

∂F

∂w
(z0, w0) = 0}.

The algorithm for computing the set Sing(C) is described in detail in [3]. In
the future, we intend to compute the set of all the distinct complex singularities
of the input curve C.

Computing the algebraic link of each singularity

We translate each of the singularity in the origin. For each of the translated
singularity, we compute its topology called the algebraic link of the singularity.
The algorithm for computing the algebraic link of a translated singularity is
straightforward: we take the input curve with the translated singularity in the
origin; we consider the sphere centered in the origin and of a small radius ε; we
intersect the input curve with this sphere obtaining a real subset X in R4; we
project X from R4 to R3 using the stereographic projection f :

f : S3 \ {P} ⊂ R4 → R3 ,

2

(x, y, u, v)→ (a, b, c) = (x
ε−v ,

y
ε−v ,

u
ε−v) .

For small ε, the image of X under f is a link, called the algebraic link of the
singularity. Using the identical algorithm described in [3], f(X) is computed as
an implicit curve in R3 given as the intersection of two surfaces G,H in R3:

f(X) =

{
(a, b, c)

∣∣∣ G := Re(F (2aε
n , 2bε

n ,
2cε
n ,
−ε+a2ε+b2ε+c2ε

n)) = 0,
H := Im(F (2aε

n , 2bε
n ,

2cε
n ,
−ε+a2ε+b2ε+c2ε

n)) = 0

}
,

where n = 1 + a2 + b2 + c2, and Re(F), Im(F) are the real, respectively the
imaginary part of the complex polynomial F (z, w).

We define a knot as a simple closed curve in R3 that does not intersect itself,
and a link as a finite union of disjoint links. In fact f(X) is a differentiable
algebraic link which we denote with L, that is L is a differentiable simple closed
curve in R3 that does not intersect itself, which arises as the intersection of
an algebraic curve with a sufficiently small sphere. In order to compute the
implicit simple closed curve L in R3 as the intersection of the two surfaces
G,H in R3, we use the Axel algebraic geometric modeler, developed at INRIA,
Sophia-Antipolis [5]. Axel uses certified algorithms [1] to compute a piecewise
linear approximation L

′
of L which is isotopic with L. L

′
is computed as a

graph denoted with Graph(L), as described in Section 3. In fact, Graph(L) is
an piecewise simple closed curve approximation for L.

Computing the Alexander polynomial of each algebraic link

After we compute Graph(L) an approximation of the algebraic link L, we are
interested in computing the Alexander polynomial of Graph(L). Our algorithm
as described in [3] for computing the Alexander polynomial of an algebraic link
L, takes as an input D(L) the diagram of L as defined in Section 3. There-
fore we need some algorithms to transform the approximation of the algebraic
link Graph(L) into the corresponding diagram of the link D(L). All these al-
gorithms are computational geometry and combinatorial algorithms, and they
result from the graph data structure returned by Axel. We describe in detail
these algorithms in Section 3.

Computing the delta-invariant of each singularity

Based on Milnor’s research [4], from the Alexander polynomial of each algebraic
link of each singularity we deduce a formula for the delta-invariant of each
singularity of the input curve. For each singularity, we denote with m the
number of variables in the Alexander polynomial of its corresponding algebraic
link and with d the degree of the same Alexander polynomial. In the case of
a univariate Alexander polynomial of an algebraic link of a singularity s, the

delta-invariant of s denoted with δs is computed with the formula δs =
d

2
. In the

case of a multivariate Alexander polynomial of an algebraic link of a singularity

s, δs is computed with the formula δs =
d+m

2
.

3

Computing the genus of the input curve

From the delta-invariants of all the singularities of the input curve C, we com-
pute the genus of the curve denoted with genus(C) ∈ Z using the formula:

genus(C) =
1
2

(d− 1)(d− 2)−
∑

s∈Sing(C)

δs,

where d is the degree of the input curve C, Sing(C) in the set of all singularities
of C and δs is the delta-invariant of the singularity s of the input curve C.

3 Computational geometry and combinatorial al-
gorithms for the genus computation problem

All the computational geometry algorithms presented in this paper are imple-
mented in Axel [5], written in C++ with Qt Script for Applications (QSA) on a
Macintosh 2.2 GHz Intel Core 2 Duo, with 2 GB 667 MHz DDR2 SDRAM and
Mac OS X, version 10.5.8 operating system. All the algorithms are included in
one of Axel’s plugin, which is called GENOM3CK, Symbolic numeric techniques
for GENus cOMputation of plane Complex algebraiC Curves using Knot theory.
Firstly, we introduce some notations, that we will use during the rest of this
paper.

Notations

• A graph is given as a pair G = 〈P,E〉, where P is a set of points in the
3-dimensional space together with their euclidean coordinates, and E is
a set of edges connecting them, that is V = {p = (a, b, c) ∈ R3} and
E = {(i, j) | i, j ∈ P};

• A point in the graph is given as a 4-tuple p(index, x, y, z), where index ∈ Z
uniquely identifies each point in the graph, and (x, y, z) ∈ R3 are the
euclidean coordinates of the point.

• An edge in the graph is given as a 2-tuple e(source, destination), where
source is the index of the source point of e and destination is the index
of the destination point of e. For simplicity reasons, we denote the pair
e(source, destination) := e(s, d).

• We use the dot notation . for accessing the elements of a tuple, i.e.
p.index, p.x, p.y, p.z, e.s, e.d;

• For a random point p(index, x, y, z), we introduce the following notations:

– point3D(index) = (x, y, z) ∈ R3

– point2D(index) = (x, y) ∈ R2

– xcoord(index) = x ∈ R
– ycoord(index) = y ∈ R
– zcoord(index) = z ∈ R

4

• For a random edge e(a, b) with a, b ∈ Z, we use the notations:

– source(e) = a ∈ Z
– destination(e) = b ∈ Z

• Given a vector (or a list), we access its i-th component using the under-
score notation for the index i, i.e we use sw0 to denote the first element of
a vector (or list) denoted SW . We consider that the indexes of a vector
(or a list) start from 0. We also distinguish between the name of the list,
which is denoted with upper case letters (i.e. SW), and the elements of
the list themselves that are denoted with lower case letters (i.e. sw0).

• Given a vector or a list called for example SW , we use length(SW) to
denote its length.

• In order to state that an object is not empty we will use the predicate
symbol IsNotEmpty(object) which will be true when the object is not
empty, and false otherwise.

• We will use the Null pointer as in the C++ programming language, when-
ever an algorithm has “nothing“ as its returning value.

Remark. For Graph(L), which is the approximation of a differentiable al-
gebraic link computed with Axel [5], each index appears two times in the set
of points P of the graph Graph(L), because Graph(L) is in fact a circuit. A
circuit is a path which ends at the point it begins, and a path is a sequence
of consecutive edges in the graph. In the rest of this paper, we will use the
Graph(L) notation to refer to the data structure returned by Axel, but we will
always think of this Graph(L) as a circuit, that is a special type of graph which
contains a sequence of consecutive edges and that ends at the point it begins.

Moreover, for Graph(L) ∈ R3 with the set of points pi = (xi, yi, zi) ∈ R3 we
consider its projection in R2 with the set of points pi = (xi, yi) ∈ R2. We also
consider no vertical edges in the projection. We consider the edges of Graph(L)
to be ”small” edges, i.e. the projection of any edge of Graph(L) has at most one
double point. In the rest of this paper, whenever we refer to the projection of
Graph(L), we consider the projection as described here, with no vertical edges
and only ”small” edges.

5

BASIC COORDINATE GEOMETRY ALGORITHMS

First of all, we design several algorithms from coordinate geometry, which we call
basic coordinate geometry algorithms, since they are straightforward algorithms
and they do not imply a lot of complicated computations. These algorithms will
allow us:

• to compute the slope of a line, given two points in R2;

• to compute the Y-intercept of a line, given two points in R2;

• to compute the equation of a line, given its slope and its Y-intercept;

• to compute the equation of a line, given two points in R2;

• to decide whether a point in R2 lies on a line of a certain equation.

We denote the slope of a line in the coordinate plane system Oxy with m.
We define m as the ratio of the change in the y-value over the correspond-
ing change in the x-value, between two distinct points on the line. We con-
sider A(a, b), B(u, v), two points with given coordinates in R2. Based on the
definition, the slope of the line AB denoted with m is defined as the ratio

m =
change in y-value
change in x-value

=
v − b
u− a

, assuming that (u − a) 6= 0. We notice that

if (u − a) = 0, then the value of the slope m is ∞, thus undefined. In fact if
m =∞, then the corresponding line is a vertical line, i.e. a parallel line to the
y-axis. We remember also that if two lines have the same slope, then they are
parallel.

Algorithm 1 GetSlope(A,B)
Require: A(a, b), B(u, v) ∈ R2 two points in R2

Ensure: mAB the slope of the edge (and line) AB

1: if (u− a) 6= 0 then

2: return mAB =
v − b
u− a

3: else
4: print zero denominator!
5: end if

We denote the Y-intercept of a line in the coordinate plane system Oxy
with n. We define n as the distance on the y-axis from the origin O(0, 0) to
the point where the line intercepts the y-axis of the coordinate plane system
Oxy. If we consider P (0, n) to be the point where the line intercepts the y-axis,
then the Y-intercept equals the y-coordinate of the point P . Given the same
points A(a, b), B(u, v) as in the previous algorithm and supposing the equation

of the line AB determined by the two points is y = mx+ n, where m =
v − b
u− a

is the slope of the line as computed with the algorithm GetSlope(A,B) and
n is the Y-intercept of the line, we can compute the value of the Y-intercept

as n = y − mx = y − v − b
u− a

x. The point B(u, v) belongs to the line AB, so

6

we obtain the value for the Y-intercept to be n = v − v − b
u− a

u =
b · u− a · v
u− a

,

assuming that (u− a) 6= 0.

Algorithm 2 GetYIntercept(A,B)
Require: A(a, b), B(u, v) ∈ R2 two points in R2

Ensure: nAB the yIntercept of the edge (and line) AB

1: if (u− a) 6= 0 then

2: return nAB =
b · u− a · v
u− a

3: else
4: print zero denominator!
5: end if

A line in the coordinate plane system Oxy, with slope m and Y-intercept
n, has the defining equation y = m ∗ x + n or equivalently m ∗ x − y + n = 0.

Given the same points A(a, b), B(u, v) with m =
v − b
u− a

and n =
b · u− a · v
u− a

computed as in the previous algorithms for (u − a) 6= 0, we get the following

form for the defining equation of the line AB, y =
v − b
u− a

∗ x − b · u− a · v
u− a

. A

straightforward computation produces the equation of the line AB : (b− v)x+
(u− a)y+ (a · v− b · u) = 0. We notice that for the equation of a line computed
from two points in R2, it is enough to return the coefficients of the polynomial
equation in x, y, as described in the following algorithm.

Algorithm 3 EqnLine(A,B)
Require: A(a, b), B(u, v) ∈ R2 two points in R2

Ensure: The real coefficients m, n, p for the equation of the line
AB : mx+ ny + p = 0

1: m = (b− v)
2: n = (u− a)
3: p = a · v − b · u
4: return (m,n, p)

In the rest of this paper, we will think of an edge from the projection of
the data structure Graph(L) as a line in the plane coordinate system Oxy. We
notice that if we are given an edge as a pair e(s, d), where s is the index of its
source point and d is the index of its destination point, then we can compute the
equation of the edge using the algorithm EqnLine(A,B) where the coordinates
of the source and destination points of e are given by A(xcoord(s), ycoord(s)),
and B(xcoord(d), ycoord(d)). Thus if we are given a point Q(q, r) and an edge
as a pair e(s, d), we can first compute the equation of the given edge and then
decide whether the point Q(q, r) belongs to the edge e(s, d) or not. If we suppose
that the equation of the edge returned by the algorithm EqnLine(A,B) is mx+
ny + p = 0, then we can compute: value = m ∗ q + n ∗ r + p. The point Q(q, r)
belongs to the edge e(s, d) if and only if value = 0.

We notice that all the basic coordinate geometry algorithms require O(1)
constant time and constant space/memory for their computation.

7

Algorithm 4 EvalAtPointEqnLine(Q, e(s, d))
Require: Q(q, r) ∈ R2 a point in R2

e(s, d), an edge in R2

Ensure: The real value of the equation of the edge e evaluated at the point Q

1: a = xcoord(s), b = ycoord(s)
2: u = xcoord(d), v = ycoord(d)
3: Take A(a, b), B(u, v)
4: (m,n, p)=EqnOfLine(A,B)
5: value = m ∗ q + n ∗ r + p
6: return value

Why do we need all the computational geometry and combinatorial
algorithms? All the algorithms referring to basic coordinate geometry will be
used in more elaborate computational geometry and combinatorial algorithms,
whose main purpose is to transform the Graph(L) data structure returned by
Axel, which represents the piecewise linear algebraic link (which is in fact the ap-
proximation of the differentiable algebraic link computed with the stereographic
projection method) into the corresponding diagram of the algebraic link D(L).
The diagram of the algebraic link D(L) is needed as input for the algorithm
that computes the Alexander polynomial of the algebraic link (see [3]). By def-
inition a regular projection is a linear projection for which no three points on
the knot project to the same point, and no vertex projects to the same point as
any other point on the knot. A crossing point is an image of two knot points of
such a regular projection from R3 to R2. Having defined these notions, we can
define the diagram of an algebraic link to be the image under regular projection
together with the information at each crossing point telling which brach goes
over and which goes under. We thus classify the crossing points in overcrossings
and undercrossings. Moreover, a diagram together with an arbitrary orienta-
tion of each knot in the link is called an oriented diagram. We remember that
the projection of Graph(L) has no vertical edges and consists only of “small”
edges (i.e. the projection of any edge has at most one crossing point). In order
to transform the projection of Graph(L) into D(L), we need to compute the
elements of D(L), i.e. the number of knot components in the diagram, plus for
each knot component its crossings with their types, and its arcs in the diagram.

8

ALGORITHM FOR DETECTING THE CROSSING POINTS
OF A KNOT DIAGRAM

For each algebraic link of a singularity, Axel will return a Graph(L) data struc-
ture. The following algorithm which is an adapted version of the Bentley-
Ottman algorithm computes the intersection points of all the edges of the pro-
jection of Graph(L) and some extra information:

• for each intersection point p the pair of edges (ei, ej) that contains p;

• and each pair of edges (ei, ej) is ordered, i.e. ei is under ej in R3.

We notice that these computed intersection points together with the extra in-
formation basically coincide with the crossings of D(L). Our adapted Bentley-
Ottman algorithm operates in several computational steps, which we describe
in detail.

Step 1 (Ordering criteria). The edges of the projection of Graph(L) are
oriented from left to right and they are ordered in a list E = {e0, ..., eN} as
follows: (1) by the x-coordinates of their source points; (2) if the x-coordinates
of the source points of two edges coincide, then the two edges are ordered by
the two slopes of their supporting lines; (3) if the x-coordinates of the source
points and the slopes of two edges coincide, then the two edges are ordered by
the y-coordinates of their destination points. The ordering criteria is necessary
for the correctness of the algorithm.

Step 2 (Sweep line paradigm). We consider a vertical sweep line l that
sweeps the plane from left to right. While l moves, it intersects several edges
from E. The list of edges that intersect l at one point during the sweeping
process, denoted SW , is called the sweep list. SW changes while l sweeps the
plane. The algorithm is based on the key observation that SW is updated only
at certain points of the edges from E called event points. The sweep list SW is
ordered in this algorithm by the y-coordinates of the intersections of the edges
of E with the sweep line L. We notice that each index appears two times in
E since Graph(L) is a circuit. Due to this property, we can manage SW in
a simpler way in our adapted Benttley-Ottman algorithm than in the original
version.

Step 3 (Initialization). We consider E the list of ordered edges as described
in Step 1, and SW the sweep list as described in Step 2. We denote with I the
list of intersection points of all the edges of the projection of Graph(L), and with
EI the list of all pairs of intersection edges that contain the intersection points.
At the end of the algorithm, the i-th element of the list EI will represent the
pair of edges that contains the i-th intersection point from the list I, with the
extra information that the first edge from the pair of edges is under the second
edge from the pair of edges in R3. In the initialization step of our adapted
Bentley-Ottman algorithm, E contains all the ordered edges of the projection
of Graph(L), SW contains always the first two edges of E, while I and EI are
empty.

9

Step 4 (Sweep list management). While we traverse E from its third posi-
tion to its end (the first two position of E are inserted in SW in the initialization
step), we need to insert the current edge em(sm, dm) from E in SW in the right
position and that is:

• we search for an edge en(sn, dn) in SW such that its destination coincide
with the source of em ∈ E, i.e. dn = sm; if we find such an en ∈ SW we
replace it with em ∈ E;

• if such an edge en ∈ SW does not exist, we insert em in SW depend-
ing on its position against the current edges from SW . We assume
SW = {ei1 , ei2 , ei3 , ..., eik}, with eiq ∈ E for all q ∈ {1, ..., k}. There
exists a unique index j with 0 ≤ j ≤ k such that ycoord(sm) is larger
than the y-coordinates of all the intersections of ei1 , ..., eij with l and
smaller than the y-coordinates of all the intersections of eij+1 , ..., eik with
l. This index j can be found by checking all the signs of the deter-
minants det

[(
xycoord(sm), 1

)
,
(
xycoord(sij), 1

)
,
(
xycoord(dij), 1

)]
. Then

we insert em in SW between the two edges eij and eij+1 and we obtain
SW = {ei1 , ei2 , ..., eij , em, eij+1 , ..., eik}.

Each time we insert an edge from E into SW on the right position we have to
additionally update SW depending on the event points encountered:

• we test each inserted edge in SW against its two neighbors for intersec-
tion. If an intersection point p is found we report it together with the
ordered pair of edges that contains it. In addition we swap the edges that
intersect in SW . As opposed to the original Bentley-Ottman algorithm
after swaping the edges in SW , we do not test the edges against their new
neighbors for intersections because we consider only ”small” edges.

• we test each inserted edge in SW against its two neighbors for common
destination. In addition, when two edges are swapped in SW after re-
porting their intersection point, we test them against their new neighbors
for common destination. Whenever we find two consecutive edges with
common destinations we erase them from SW . As opposed to the original
Bentley-Ottman algorithm after deleting edges from SW , we do not test
the new neighbors for intersection because we consider only ”small” edges.

Firstly, we need a basic algorithm to compute the intersection point of two
edges e1, e2, assuming that this intersection point exists. We call this algo-
rithm FindIntersection(e1, e2). This algorithm uses an auxiliary algorithm
ComputeIntersection(e1, e2), which effectivelly computes the coordinates of
the intersection point p(x, y) of the two edges (e1, e2). In order to find the co-
ordinates of the intersection point we solve a linear system of two equations in
the x, y unknowns determined by the defining equations of the two edges e1, e2.
We first extract the coordinates of the source and the destination points of each
edge e1, e2. Using the GetSlope and the GetYIntercept algorithms, we then
compute the slopes and the Y-intercept of the two edges , denoted with m1, n1

for e1 and with m2, n2 for e2. We get the linear system of equations determined
by the equations of the two edges: m1x− y + n1 = 0

m2x− y + n2 = 0
(1)

10

We assume that m1 − m2 6= 0 and using Cramer’s rule to solve this system
we get as solutions to (1) the coordinates of the intersection point p(x, y) with

x =
n2 − n1

m1 −m2
and y =

m1 · n2 −m2 · n1

m1 −m2
.

Algorithm 5 ComputeIntersection(e1, e2)

Require: e1(s1, d1), e2(s2, d2) two edges in R2

Ensure: (x, y) ∈ R2 the coordinates of the intersection point of the pair of
edges (e1, e2) with I(x, y) = e1 ∩ e2

1: a1 = xcoord(s1), b1 = ycoord(s1), u1 = xcoord(d1), v1 = ycoord(d1)
2: a2 = xcoord(s2), b2 = ycoord(s2), u2 = xcoord(d2), v2 = ycoord(d2)
3: Take A1(a1, b1), B1(u1, v1)
4: Take A2(a2, b2), B2(u2, v2)
5: m1 = GetSlope(A1, B1), n1 = GetYIntercept(A1, B1)
6: m2 = GetSlope(A2, B2), n2 = GetYIntercept(A2, B2)
7: if (m1 −m2 6= 0) then

8: x=
n2 − b1
n1 −m2

, y=
m1 · n2 −m2 · n1

m1 −m2
9: else

10: print zero denominator!
11: end if
12: return (x,y)

We describe the algorithm FindIntersection(e1, e2) which test whether
two edges e1, e2 intersect. If the edges intersect, then the algorithm uses the al-
gorithm ComputeIntersection(e1, e2) to compute the coordinates of the inter-
section point p(x, y) of (e1, e2). If the edges do not intersect, then the algorithm
returns the Null pointer. We now describe the test for deciding whether two
edges e1, e2 intersect or not. For the given edges e1(s1, d1), e2(s2, d2) we first
extract the coordinates of the source and destination points. We assume that e1
has the source A1(a1, b1) and the destination B1(u1, v1), and e2 has the source
A2(a2, b2) and the destination B2(u2, v2). We then compute the equations of the
two edges using their slopes and their Y-intercept, i.e. m1, n1 for e1 and m2, n2

for e2. Thus, we compute the equations of the two edges denoted with L1(x, y),
L2(x, y). From the computation we obtain: L1(x, y) : m1 · x − y + n1 = 0 and
L2(x, y) : m2 ·x−y+n2 = 0. If the edges e1 and e2 intersect, then the following
two conditions have to be simultaneously fulfilled:

1. condition 1: we consider L1(x, y) the equation of the edge e1. If e1 inter-
sects e2, then A2 and B2 have to be on opposite semiplanes determined
by e1, i.e. the condition L1(A2) · L1(B2) < 0 has to be fulfilled;

2. condition 2: we consider L2(x, y) the equation of the edge e2. If e2 inter-
sects e1, then A1 and B1 have to be on opposite semiplanes determined
by e2, i.e. the condition L2(A1) · L2(B1) < 0 has to be fulfilled;

11

Algorithm 6 FindIntersection(e1, e2)
Require: e1(s1, d1), e2(s2, d2) two edges in R2

Ensure: If the two edges e1 and e2 intersect, then return their intersection
point, otherwise return the Null pointer

1: a1 = xcoord(s1), b1 = ycoord(s1), u1 = xcoord(d1), v1 = ycoord(d1)
2: a2 = xcoord(s2), b2 = ycoord(s2), u2 = xcoord(d2), v2 = ycoord(d2)
3: Take A1(a1, b1), B1(u1, v1)
4: Take A2(a2, b2), B2(u2, v2)
5: (m1, n1, p1) = EqnLine(A1, B1)
6: (m2, n2, p2) = EqnLine(A2, B2)
7: value1=EvalAtPointEqnLine(A2, e1(s1, d1))
8: value2=EvalAtPointEqnLine(B2, e1(s1, d1))
9: value3=EvalAtPointEqnLine(A1, e2(s2, d2))

10: value4=EvalAtPointEqnLine(B1, e2(s2, d2))
11: if (m1 = m2) then
12: return Null { the edges are parallel}
13: end if
14: if (value1∗value 2 < 0) and (value3∗value4 < 0) then
15: return (x,y)=ComputeIntersection(e1, e2) { the edges intersect }
16: else
17: return Null { the edges do not intersect}
18: end if

Secondly, we need a basic algorithm to introduce a current edge e(s, d)
from E into the right position in SW as described in Step 4. Thus, the
algorithm keeps the sweep list SW ordered. We call this basic algorithm
InsertSW(e, SW). The algorithm InsertSW(e, SW) uses an auxiliary algorithm
ComputeDet(A,B, P). This auxiliary algorithm computes the values of the de-
terminant formed by the coordinates of three points A(a, b), B(u, v), P (m,n).
For instance, we assume that the edge e(s, d) has the point A(a, b) as its source
point and the point B(u, v) as its destination point. Given the point P (m,n)
we want to test whether P lies above or below the edge e in R2. If the value
of the determinant formed by the three points A,B, P computed with the algo-
rithm ComputeDet(A,B, P) is positive, then the point P is above the edge e. If
the value of the determinant is negative, then the point P is below the edge e,
and if the value of the determinant is zero, then the three points are collinear.
Moreover, if we assume that the point P is the source point of another edge
f(s, d) in R2, then by computing the value of the determinant formed by the
three points A,B, P , we can decide the position of the edge f toward the edge e.
If the value of the determinant is positive, then f is above e; if the value of the
determinant is negative, then f is below e, and if the value of the determinant
is zero, then f and e lie on the same line, i.e. they have a common index point
(either source or destination).

We describe the InsertSW(e, SW) algorithm. We assume that the edge
e(s, d) has the point P (m,n) as its source point. We consider an arbitrary
edge at position i from the sweep list denoted with swi(s, d), and for which the
source point is A(a, b) and the destination point is B(u, v). We notice that, if
we assume that the sweep list SW is ordered as described in Step 4 depending

12

Algorithm 7 ComputeDet(A,B, P)
Require: A(a, b), B(u, v), P (m,n) ∈ R2

Ensure: det(A,B,P) ∈ R, the value of the determinant formed by the three
points A,B,P.

1: det(A,B,P)= -u∗b + m∗b + a∗v - m∗v - a∗n + u∗n
2: return det(A,B,P)

on the y-coordinates of its edges, then the position of the edge e(s, d) towards
the edges from the sweep list can be one of the three cases (Figure 1): either
the edge e(s, d) is below swi and all the edges from the sweep list SW and there
are no other edges below e from SW in R2; or the edge e(s, d) is above swi and
all the edges from the sweep list SW and there are no other edges above e from
SW in R2; or finally, the edge e(s, d) is above the edge swi from the sweep list,
thus e is above all the edges which are below swi and e is below all the other
edges from SW .

\\\\\\\\\\\\

swi aaaaaaaaaaaa
\\\\\\\\\\\\

%
e

%eeeeeeeeeeee

swi aaaaaaaaaaaa

� e
�\\\\\\\\\\\\

eeeeeeeeeeee

eeeeeeeeeeee

! e !aaaaaaaaaaaa
\\\\\\\\\\\\

swi eeeeeeeeeeee eeeeeeeeeeee

Figure 1: Position of an edge towards the edges from the sweep list

13

Algorithm 8 InsertSW(e, SW)
Require: e(s, d) an edge in R2

SW the sweep list as described in Step 2
Ensure: the modified sweep list SW in which we insert e on the right position

as described in Step 4

1: for all i = 0 to length(SW) do
2: if we find swi in SW s.t. source(e) = destination(swi) then
3: insert e instead of swi in SW
4: else
5: take P ← source point of e
6: take A← source point of swi
7: take B ← destination point of swi
8: value =ComputeDet(A,B, P)
9: if (value < 0) and (there are no edges in SW below e) then

10: insert e before swi in SW {e is below swi and above no edges}
11: else if (value ≥ 0) and (there are no edges in SW above e) then
12: insert e after swi in SW {e is above swi and below no edges }
13: else
14: insert e after swi in SW {e is above swi and below several edges}
15: end if
16: end if
17: return SW
18: end for

We assume that we know the algorithm FindIntersection(e1, e2) for find-
ing the intersection point of two edges e1, e2, if this intersection point exists,
together with its auxiliary algorithm ComputeIntersection(e1, e2); and the
InsertSW(e, SW) algorithm for inserting an edge e from E into SW on the right
position, together with its auxiliary algorithm ComputeDet(A,B, P). We de-
scribe the SweepPlane algorithm. In this algorithm, HandleCase1, HandleCase2,
HandleCase3 are three procedures which manage the sweep list SW differ-
ently, depending on the position on which each edge is inserted in SW . We
call a non-trivial position of the sweep list SW , a position of SW different
from its first or last position, i.e. i-th of SW is non-trivial if and only of
i ∈ {1, ..., length(SW)−1}. If e is inserted on the first position in SW , then we
call the HandleCase1 procedure. If e is inserted on the last position in SW , then
we call the HandleCase2 procedure, and if e is inserted on a non-trivial position
in SW then we call the HandleCase3 procedure. The sweep plane algorithm
basically operates in the same way as described below.

14

Algorithm 9 SweepPlane(G〈P,E〉)
Require: G the projection of the graph data structure Graph(L) with

P the set of points with pi(index, xi, yi)
E the set of ordered edges among the points in P with ei(si, di) for si, di ∈ P

Ensure: I the list of intersection points among all the edges of E
EI the list of pairs of intersection edges which contain the intersection points

1: E ← {e0, e1, e2, ..., en} and SW ← {e0, e1}
2: I ← ∅ and EI ← ∅
3: for i← 2 to length(E) do
4: p← InsertSW(ei, SW) { the position on which ei is inserted in SW}
5: if (p = 0) then
6: HandleCase1 {ei is inserted on the first position in SW}
7: else if (p = length(SW)) then
8: HandleCase2 {ei is inserted on the last position in SW}
9: else

10: HandleCase3 {ei is inserted on a non-trivial position in SW}
11: end if
12: end for
13: return 〈I, EI〉

We now describe in detail the three auxiliary procedures HandleCase1,
HandleCase2, HandleCase3 needed for the SweepPlane algorithm. Whenever
we insert an edge e on the first position in the sweep list SW , we want to test it
for intersection with its right neighbour, since in this case we know that the left
neighbour of e does not exist. We call an intersection point of two edges degen-
erate if and only if the intersection point coincide with the destination point of
the two edges. Since we do not want to detect degenerate intersection points,
we always test e and its neighbour for intersection using the FindIntersection
algorithm if and only if the two edges do not have the same destination point.
If an intersection point is detected, then we insert it in the list of intersection
points. In addition, the corresponding pair of intersection edges is inserted in
the list of pairs of intersection edges. Moreover, whenever an intersection point
p is reported for the pair of edges (e, f) from SW , we have to swap the order
of the two edges in the sweep list.

In general, if e and its neighbours have the same destination points, we have
to erase them from the sweep list SW in order to assure the correctness of the
algorithm. If two neighbouring edges with the same destination points are not
erased from SW , then the algorithm will not detect all the intersection points.

We notice that when we insert e on the first position in SW , e can have
different neighbours depending if it intersects its right neighbour or not. On the
one hand, if e intersects its right neighbour, then the two intersecting edges are
swapped in SW . After the swapping operation, e will have a new right neighbour
and also a left neighbour which coincides with the original right neighbour of
e (see Figure 2). Thus e has to be tested for common destination points both
with its left and right neighbour. On the other hand, if e and its original right
neighbour does not intersect but they have the same destination points, then
we erase them from the sweep list (see Figure 3).

15

0 1 2 ... n
e sw1 sw2 ... sw − n =⇒ 0 1 2 ... n

sw1 e sw2 ... swn

Figure 2: Insertion on the first position with intersection detected

0 1 2 ... n
e sw1 sw2 ... sw − n =⇒ 0 1 2 ... n

e sw1 sw2 ... swn

Figure 3: Insertion on the first position with no intersection detected

We now describe the HandleCase1 procedure.

Algorithm 10 HandleCase1

Require: Same requirements as in SweepPlane algorithm
Ensure: I and EI as in SweepPlane algorithm

1: if ycoord(swp) 6= ycoord(swp+1) then
2: v = FindIntersection(swp, swp+1) { exclude degenerate case }
3: end if
4: if IsNotEmpty(v) then
5: insert the intersection point v to the list I
6: insert the pair of edges (swp, swp+1) to the list EI
7: swap(swp, swp+1) { intersection detected }
8: if ycoord(swp+1) = ycoord(swp+2) then
9: erase the edges swp+1, swp+2 from SW { assure correctness }

10: end if
11: end if
12: if ycoord(swp) = ycoord(swp+1) then
13: erase the edges swp, swp+1 from SW { assure correctness }
14: end if
15: return 〈I, EI〉

16

Whenever we insert an edge e on the last position in the sweep list SW ,
we want to test it for intersection with its left neighbour, since in this case we
know that the right neighbour of e does not exist. As in the previous case,
since we do not want to detect degenerate intersection points, we always test e
and its neighbour for intersection using the FindIntersection algorithm only
if the two edges do not have the same destination point. If an intersection
point is detected, then we insert it in the list of intersection points. Moreover,
the corresponding pair of intersection edges is inserted in the list of pairs of
intersection edges. As in the previous case, whenever an intersection point p is
reported for the pair of edges (e, f) from SW , we have to swap the order of the
two edges in the sweep list. In addition, we have to check whether e and its new
left neighbour or its right neighbour (which coincide after the swapping with the
original left neighbour) have comon destination points (see Figure 4). If they
do, then we erase them from SW . Finally, if e and its original left neighbour
do not intersect but they have the same destination points, then we erase them
from the sweep list SW (see Figure 5).

0 ... n− 2 n− 1 n
sw0 ... swn−2 swn−1 e

=⇒ 0 ... n− 2 n− 1 n
sw0 ... swn−2 e swn−1

Figure 4: Insertion on the last position with intersection detected

0 ... n− 2 n− 1 n
sw0 ... swn−2 swn−1 e

=⇒ 0 ... n− 2 n− 1 n
sw0 ... swn−2 swn−1 e

Figure 5: Insertion on the last position with no intersection detected

17

Algorithm 11 HandleCase2

Require: Same requirements as in SweepPlane algorithm
Ensure: I and EI as in SweepPlane algorithm

1: if ycoord(swp−1) 6= ycoord(swp) then
2: v = FindIntersection(swp−1, swp) { exclude degenerate case }
3: end if
4: if IsNotEmpty(v) then
5: insert the intersection point v to the list I
6: insert the pair of edges (swp−1, swp) to the list EI
7: swap(swp−1, swp) { intersection detected }
8: if ycoord(swp−1) = ycoord(swp−2) then
9: erase the edges swp−1, swp−2 from SW { assure correctness }

10: end if
11: end if
12: if ycoord(swp−1) = ycoord(swp) then
13: erase the edges swp−1, swp from SW { assure correctness }
14: end if
15: return 〈I, EI〉

Whenever we insert an edge e on a non-trivial position in the sweep list SW ,
we want to test it for intersection with both its left and right neighbour. We
apply the same strategies as before, which are splitted by case, taking care to in-
clude all the possible existing cases. Firstly, we consider the case of e and its left
neighbour. If the two edges have different destination points, we test them for
intersection. If an intersection is detected, then we report it together with the
pair of edges that contains it, and we swap the order of the edges of intersection
in SW . In addition, if e has common destination points with its neighbours,
we erase them from SW (see Figure 6). Secondly, we consider the case of e
and its right neighbour. We test the two edges for intersection if they have dif-
ferent destination points. If an intersection point is detected, then we report it
together with the pair of edges that contains it, and we swap the order of edges
of intersection in SW (see Figure 7). In addition, if e has common destination
points with its neighbours, we erase them from SW . Finally, if e does not in-
tersect any of its neighbours, then we have to test it against its left and right
neighbour for common destination points (see Figure 8). Whenever two con-
secutive edges from the sequence (left-neighbour(e), e, right-neighbour(e))
have a common destination point, they are erased from the sweep list. Since we
have considered only “small” edges, the edge e cannot intersect in the same time
both its right and left neighbour, so this case was not included in the treatment
of the algorithm.

... i− 2 i− 1 i i+ 1 ...

... swi−2 swi−1 e swi+1 ...
⇒ ... i− 2 i− 1 i i+ 1 ...

... swi−2 e swi−1 swi+1 ...

Figure 6: Insertion on a non-trivial position with intersection on the left

18

... i− 1 i i+ 1 i+ 2 ...

... swi−1 e swi+1 swi+2 ...
⇒ ... i− 1 i i+ 1 i+ 2 ...

... swi−1 swi+1 e swi+2 ...

Figure 7: Insertion on a non-trivial position with intersection on the right

... i− 1 i i+ 1 ...

... swi−1 e swi+1 ...
⇒ ... i− 1 i i+ 1 ...

... swi−1 e swi+1 ...

Figure 8: Insertion on a non-trivial position with no intersection detected

Algorithm 12 HandleCase3

Require: Same requirements as in SweepPlane algorithm
Ensure: I and EI as in SweepPlane algorithm

1: if ycoord(swp−1) 6= ycoord(swp) then
2: v = FindIntersection(swp−1, swp) { exclude degenerate case }
3: end if
4: if IsNotEmpty(v) then
5: insert the intersection point v to the list I
6: insert the pair of edges (swp−1, swp) to the list EI
7: swap(swp−1, swp) { intersection detected }
8: if ycoord(swp−1) = ycoord(swp−2) then
9: erase the edges swp−1, swp−2 from SW { assure correctness }

10: end if
11: end if
12: if ycoord(swp) 6= ycoord(swp+1) then
13: v = FindIntersection(swp, swp+1) { exclude degenerate case }
14: end if
15: if IsNotEmpty(v) then
16: insert the intersection point v to the list I
17: insert the pair of edges (swp, swp+1) to the list EI
18: swap(swp, swp+1) { intersection detected }
19: if ycoord(swp+1) = ycoord(swp+2) then
20: erase the edges swp+1, swp+2 from SW { assure correctness }
21: end if
22: end if
23: if ycoord(swp−1) = ycoord(swp) = ycoord(swp+1) then
24: erase the edges swp−1, swp, swp+1 from SW { assure correctness }
25: end if
26: if ycoord(swp−1) 6= ycoord(swp) and ycoord(swp) = ycoord(swp+1) then
27: erase the edges swp, swp+1 from SW { assure correctness }
28: end if
29: if ycoord(swp−1) = ycoord(swp) and ycoord(swp) 6= ycoord(swp+1) then
30: erase the edges swp−1, swp from SW { assure correctness }
31: end if
32: return 〈I, EI〉

19

As output to the SweepPlane algorithm we obtain I the list of intersection
points, and EI the list of pairs of intersection edges that contain each inter-
section point from I. For instance, if pi is the i-th intersection point from I,
then the i-th pair of edges (ei, fi) from EI represents the pair of intersection
edges that contain the intersection point pi = ei ∩ fi. We need an algorithm
that orderes each pair of intersection edges. In general, we say that the pair
of intersection edges (e1, e2) that contains the intersection point p is ordered if
and only if e1 is under e2 in R3. For both edges e1, e2 we extract the coordi-
nates of their source and destination points in R2. We denote the source and
destination points of e1 with A1(a1, b1), B1(u1, v1), and the source and desti-
nation points of e2 with A2(a2, b2), B2(u2, v2). Assuming that the two edges
e1, e2 intersect, we compute the coordinates of their intersection point p(x, y)
in R2 with the ComputeIntersection algorithm. We compute the equations of
the two edges e1, e2 with the EqnLine algorithm. We denote the equation of e1
with L1(x, y), and the equation of e2 with L2(x, y). We remember that e1, e2
are projections of the original edges of Graph(L) from R3 that we denote with
e

′

1, e
′

2. For both e
′

1, e
′

2 we extract the coordinates of their source and destination
points in R3, that we denote with A

′

1(a1, b1, c1), B
′

1(u1, v1, w1) for e
′

1, and with
A

′

2(a2, b2, c2), B
′

2(u2, v2, w2) for e
′

2. The intersection point p(x, y) = e1∩e2 from
R2 has two corresponding points in R3: a point p

′

1(x, y, z1) which lies of e
′

1 with
the special property that p and p

′

1 split e1 and e
′

1 in the same proportion factor
α1 since e1 is the projection of e

′

1; and a point p
′

2(x, y, z2) which lies of e
′

2 with
the special property that p and p

′

2 split e2 and e
′

2 in the same proportion factor
α2 since e2 is the projection of e

′

2. We notice that p
′

1 and p
′

2 differ only by their
z-coordinate. In fact, if z1 < z2 then e

′

1 is under e
′

2 in R3. Since e1, e2 are the
projections of e

′

1, e
′

2, if z1 < z2 then e1 is under e2 in R3. In this way, the cri-
teria for ordering the pair of intersection edges (e1, e2) of the intersection point
p(x, y) reduces to computing the corresponding coordinates z1, z2 as described
above. In order to compute z1, z2 we need an algorithm that computes the
proportion factors α1, α2. For instance, we compute α1 (in order to compute
α2 or any other proportion factor we proceed in the same way). We consider
A1(a1, b1), B1(u1, v1) and L2(x, y) as computed above. We compute α1 from the

equation α1 · L2(A1) + (1 − α1) · L2(B1) = 0. We get α1 =
L2(B1)

L2(B1)− L2(A1)
,

as described in the GetAlpha(A1, B1, e2) algorithm below.

20

Algorithm 13 GetAlpha(A,B, f)
Require: A(a, b), B(u, v) ∈ R2 two points in R2 that determine the edge e

e is the projection of the edge e
′

from R3

f(s, d) an edge in R2 which intersects e in P (x, y)
P on e is the projection of P

′
(x, y, z) on e

′

Ensure: α s.t. P and P
′

split e and e
′

in the same proportion

1: consider L(x, y) the equation of f
2: (EvalEqnLine is not called for L(x, y) as it is included in EvalEqnLine)
3: compute v1 = L(a, b) by evaluating A(a, b) in L(x, y): EvalEqnLine(A,B, f)
4: compute v2 = L(u, v) by evaluating B(u, v) in L(x, y):

EvalEqnLine(A,B, f)
5: compute α =

v2
v2 − v1

6: return α

We continue with computing the z1 coordinate of p
′

1 as described above.
We assume we have computed α1 with the GetAlpha(A1, B1, e2) algorithm.
For e1 the projection of e

′

1 from R3, we know A
′

1(a1, b1, c1), B
′

1(u1, v1, w1) the
coordinates of the source and destination point of e

′

1 in R3. Thus we compute
z1 = α1 · c1 + (1 − α1) · w1 as described in the GetZCoordinate(A1, B1, e2)
algorithm below.

Algorithm 14 GetZCoordinate(A,B, f)
Require: A(a, b), B(u, v) ∈ R2 two points in R2 that determine the edge e

A
′
(a, b, c), B

′
(u, v, w) ∈ R2 two points in R3 that determine the edge e

′

e is the projection of the edge e
′

from R3

f(s, d) an edge in R2 which intersects e in P (x, y)
P on e is the projection of P

′
(x, y, z) on e

′

Ensure: z s.t. P and P
′

split e and e
′

in the same proportion

1: α = GetAlpha(A,B, f)
2: z = α · c+ (1− α) · w
3: return z

We assume that we know the GetAlpha and GetZCoordinate algorithms.
For a pair of intersection edges (e1, e2) of the intersection point p(x, y) in R2,
we compute the corresponding z1, z2 coordinates as described above. If z1 < z2
for the pair of intersection edges (e1, e2) of the intersection point p(x, y), then
e1 is under e2 in R3 and thus the pair (e1, e2) is ordered. If z1 > z2 for the pair
of intersection edges (e1, e2) of the intersection point p(x, y), then e1 is over e2
in R3. Thus we swap the two edges in the original pair of intersection edges
(e1, e2) and we obtain a new pair of intersection edges (e2, e1) which is ordered.
After applying the SweepPlane algorithm on the projection of a Graph(L) data
structure returned by Axel, we always apply the ArrangeEdgesIntersect al-
gorithm described below on EI the list of pairs of intersection edges returned
by SweepPlane to order all the pairs of intersection edges in the list.

21

Algorithm 15 ArrangeEdgesIntersect(EI)
Require: EI as returned by the SweepPlane algorithm

I as returned by SweepPlane the list of intersection points of all the edges
of the projection of Graph(L)
EI the list of pairs of edges of all the intersection points I

Ensure: The ordered list EI s.t. for each pair (ei, fi) ∈ EI ei is under fi in
R3

1: for all i = 0 to length(EI) do
2: consider the pair of intersection edges (ei, fi) from EI
3: consider A1, B1 the source and destinaton points of ei
4: consider A2, B2 the source and destinaton points of fi
5: z1 = GetZCoordinate(A1, B1, fi)
6: z2 = GetZCoordinate(A2, B2, ei)
7: if (z1 > z2) then
8: swap(ei, fi)
9: end if

10: return EI
11: end for

Computational complexity of the algorithm used for detecting the
crossing points of a knot diagram. The algorithm used for detecting the
crossing points of a knot diagram require O(n) computational (running) time.
We notice that the computational time is linear in n the number of edges of the
(algebraic) link diagram. The algorithm is an adapted version of the usual
Bentley-Ottman algorithm, whose computational time is O(nlogn + Ilogn),
where n represents the number of edges for which we compute all the inter-
section points and I represents the number of reported intersection points. The
adapted version of the Bentley-Ottman algorithm behaves better because we
can use simpler data structures for the event queue and the status of the al-
gorithm: we use lists instead of balanced binary search trees; moreover, we
need only one list for the status of the algorithm which we call the sweep list
and we denote with SW , since the next event is always determined on the fly,
when we traverse the consecutive edges of the link diagram, that always share a
common index. We easily notice that the ComputeIntersection(e1, e2), the
FindIntersection(e1, e2) and the ComputeDet(A,B, P) algorithms together
with the three procedures HandleCase1, HandleCase2, and HandleCase3 re-
quire O(1) constant computational time; and that the InsertSW(e, SW) algo-
rithm require O(sw) linear computational time in the current lenght of the
sweep list SW which is always smaller than n. It follows that the computa-
tional time for SweepPlane(G〈P,E〉) is O(n). We notice that the algorithm
SweepPlane(G〈P,E〉) requires O(n) linear space/memory for the computation,
where n denotes the total number of edges of E, the set of edges of G, which
represents the projection of the graph data structure Graph(L). In fact, n rep-
resents the number of edges of the link diagram. In addition, the algorithms
GetAlpha(A,B, f), GetZCoordinate(A, b, f) require O(1) constant computa-
tional time, thus ArrangeEdgesIntersect(EI) requires O(I) linear computa-
tional time and O(I) linear computational space in the number of reported inter-
section points. It follows that ArrangeEdgesIntersect is an output-senzitive

22

algorithm.

ALGORITHM FOR DETECTING THE KNOT COMPO-
NENTS OF AN ALGEBRAIC LINK

For every differentiable algebraic link of a singualrity computed with the stere-
ographic projection method described in Section 2.2, Axel returns a Graph(L)
data structure which is an piecewise linear algebraic link which is the approx-
imation of the differentiable algebraic link. If the differentiable algebraic link
has several differentiable knot components, then the Graph(L) data structure
contains also several piecewise linear algebraic knots that are the approxima-
tions of the differentiable knot components. For computing the diagram of
the algebraic link, we certainly need to compute all the piecewise linear knot
components. From now on we consider only piecewise linear algebraic knot
components, which we will simply call knot components. Thus, the following
computational algorithm constructs the knot components of the diagram of a
link from the projection of Graph(L). It also returns the total number of knot
components. We consider E as in the previous algorithm. We denote a positive
edge in R2 for which xcoord(s) < xcoord(y) with e(s, d), and its corresponding
negative edge for which xcoord(s) > xcoord(y) with −e(d, s). We notice that
the positive edges are oriented from left to right, while the negative ones are
oriented from right to left. We denote the knot components with Kj , j ∈ N. All
Kj must satisfy the following two properties:

1. for each edge ek(sk, dk) ∈ Kj there exists ek+1(sk+1, dk+1) ∈ Kj with
dk = sk+1; in this case, we call ek+1 the right consecutive edge of ek, and
we call ek, ek+1 two suitable consecutive edges for a knot component.

2. for Kj = {e0(s0, d0), ..., en(sn, dn)}: dn = s0. This assures that the knot
component is always a circuit in the graph.

We need an algorithm which contructs all the knot components Kj , j ∈ N with
the two properties. As opposed to the list E which contains only positive edges
oriented from left to right, we notice that each list Kj will contain both positive
and negative edges. We show how the first knot component of a link can be
computed from the projection of Graph(L) data structure. We initialize the
first knot K0 with the first edge e0(s0, d0) from E. Next we look for the edge
en in E which has a common index, either source or destination, with d0. If
we find en(d0, dn) ∈ E then we insert en(d0, dn) in K0 as a positive edge. If we
find en(sn, d0) ∈ E then we insert −en(d0, sn) in K0 as a negative edge. In this
case, we first need to swap the source and the destination points of the positive
edge en(sn, d0) to obtain its negative edge correspondent −en(d0, sn), and then
we insert −en in K0. We call en the right consecutive edge of e0. After we
insert en in K0 we erase it from E. We will always find such an edge en in
E, because each index such as d0 appears two times in E. We continue with
inserting edges in K0 from E until the destination of an inserted edge coincide
with s0 the source of the first edge from K0. We apply the same strategy to
constructs all the knots Ki of D(L) until E is empty, increasing i each time a
new knot starts being constructed. At the end of the algorithm, the index i
returns the total number of knot components of D(L). We notice that all the
knot components that are constructed from E have always a counterclockwise

23

orientation. In Figure 9 we give a simple example of how to compute such knot
components from E the set of ordered edges.

Example. We consider E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}. The
algorithm consists of two steps (see Figure 9):

• Step 1: We initialize the first knot component with K0 = {e0}. We
continue with inserting edges from E into K0 into the right direction
(either from left to right or from right to left) until two consecutive edges
have the same source index. While inserting the edges in K0, we erase
them from E. We obtain: E = {��e0,��e1, e2, e3,��e4,��e5, e6, e7,��e8, e9,��e10, e11}
K0 = {e0, e4, e10,−e8,−e5,−e1}

• Step 2: We initialize K1 = {e2}. We proceed in the same way as in Step 2
and we obtain: E = {��e2,��e3,��e6,��e7,��e9,��e11}K1 = {e2, e6, e11,−e9,−e7,−e3}
The algorithm terminates because E = ∅.

e3

55lllllllllllllll
e2

&&NNNNNNNNNN

e7 00̀``````````````

e6

//̀`````````````````````

e9

++XXXXXXXX

e11

EE

e1

??����������
e0 %%KKKKKK

e5 00̀`````````````````

e4

//̀``````````````````````

e8
,,YYYYYYYYYYYYYYYYY

e10

77ppppppppppppppp

⇓
−e3

uulllllllllllllll

e2

&&NNNNNNNNNN

−e7
pp```````````````

e6

//̀`````````````````````

−e9kkXXXXXXXX

e11

EE

−e1

������������

e0 %%KKKKKK

−e5
pp``````````````````

e4

//̀``````````````````````

−e8
llYYYYYYYYYYYYYYYYY

e10

77ppppppppppppppp

Figure 9: Creating the knot components of an algebraic link

We now describe the CreateKnots algorithm.

24

Algorithm 16 CreateKnots(G〈P,E〉)
Require: G the projection of the graph data structure Graph(L) with

P the set of points with pi(index, xi, yi)
E the set of ordered edges as described in Step 1 among the points in P
with ei(si, di) for si, di ∈ P

Ensure: all the knot components Kj with j ∈ N constructed from E with the
two properties (1), (2) and
index the number of knot components

1: index← −1
2: while IsNotEmpty(E) do
3: index+ +
4: consider Kindex ← ∅ a knot component of the link
5: insert e0 in Kindex

6: erase e0 from E
7: repeat
8: consider e the last edge in Kindex

9: for all i← 0 to length(E) do
10: find ei the right consecutive edge of e in Kindex with a common index

(either source or destination) with destination(e)
11: if destination(e) = source(ei) then
12: insert ei after e in Kindex

13: erase ei from E
14: end if
15: if destination(e) = destination(ei) then
16: swap(source(ei), destination(ei))
17: insert ei after e in Kindex

18: erase ei from E
19: end if
20: end for
21: until two suitable consecutive edges have the same source points
22: end while
23: return 〈{Kj , j ∈ N}, index〉

Computational complexity of the algorithm used for detecting the
knot components of an algebraic link. The algorithm used for detecting
the knot components of an algebraic link denoted with CreateKnots(G〈P,E〉)
require O(n3) computational (running) time. We notice that the computational
time is polynomial in n the number of edges of the (algebraic) link diagram. In
addition the computational memory requiered for the algorithm is O(n) linear
in the number of edges of the (algebraic) link diagram.

ALGORITHM FOR DETECTING THE ARCS OF A KNOT
DIAGRAM AND FOR DECIDING THE TYPE OF CROSS-
INGS

For the diagram of a link we can always distinguish between the type of its
crossings. A crossing is lefthanded if the underpass traffic goes from left to
right or it is righthanded if the underpass traffic goes from right to left. We

25

denote a lefthanded crossing with −1 (or LH) and a righthanded crossing with
+1 (or RH), see Figure 11. Moreover, we define the notion of arcs of the
diagram of a link. An arc is the part of a diagram between two undercrossings.
The algorithm presented in this paragraph constructs the arcs for each knot
component of the link. It also decides the type of crossings (righthanded or
lefthanded) for each knot component. For constructing the arcs, we consider E
as in the previous algorithms. This algorithm operates on the outputs of the
previous two algorithms, i.e. the list of intersection points I together with the
list of ordered pairs of intersection edges EI, and the lists of edges for all the
knot components Ki, i ∈ N. The key point of the algorithm is to search in Ki

all the undergoing edges from EI and to splitt them in two parts. For instance
in Figure 10, we consider a diagram of a trefoil knot and we compute its arcs.
We assume that for E = {e0, ..., en, em, ..., el, ek..., et, es, ..., elast}, we compute
the following outputs with the previous two algorithms:

I = {(x1, y1), (x2, y2), (x3, y3)}, EI = {(−en, em), (el, ek), (es,−et)}

K0 = {e0, ..., ek, ..., es, ..., em, ..., el, ...,−et, ...,−en, ...,−e1}

We search the three undergoing edges −en, el, es one by one in K0 and we replace
them with −en → (−edn,−eun), el → (edl , e

u
l), es → (eds , e

u
s) obtaining:

K
′

0 = {e0, .., ek, .., eds , eus , .., em, .., edl , eul , ..,−et, ..,−edn,−eun, ..,−e1}.

From the definition of an arc, we conjecture that an arc contains the list of
edges from a modified knot component K

′

i , i ∈ N starting with an edge of type
euj , j ∈ N from K

′

i and ending with the next consecutive edge of type edk, k ∈ N
from K

′

i . While we insert the edges from K
′

i into the list of edges representing
the arcs we erase them from K

′

i . Thus from the modified loop K
′

0 we compute
the following three arcs until K

′

0 is empty:

K
′

0 = {e0, .., ek, .., eds ,(((((
(([eus , .., em, .., e
d
l], e

u
l , ..,−et, ..,−edn,−eun, ..,−e1}

arc0 = {eus , ..., em, ..., edl }

K
′

0 = {e0, .., ek, .., eds ,(((((
(((([eul , ..,−et, ..,−edn],−eun, ..,−e1}

arc1 = {eul , ..,−et, ..,−edn}

K
′

0 = {(((((
((

[e0, .., ek, .., eds],((((
(([−eun, ..,−e1]}

arc2 = {eun, ..,−e1, e0, .., ek, .., eds}

26

last

e
s

n

l
e
u

u

u

d

d

d

e
n

e
l

e
s

−e

0
e

n
e
m

e
k

e
l

t

e
s

e
0

1
1

−e
−e

−e

−e

 e
last

e

Figure 10: Creating the arcs of a trefoil knot diagram

Algorithm 17 CreateArcs(〈I, EI〉, 〈{Kj , j ∈ N}, index〉)
Require: I and EI as computed by the SweepPlane algorithm

Kj , j ∈ N and index as computed by the CreateKnots algorithm
Ensure: for each knot component Kj , j ∈ N all the arcs of its corresponding

diagram are computed

1: for all i← 0 to length(EI) do
2: consider (ei, fi) the i-th pair of intersection edges with ei under fi in R3

as returned by ArrangeEdgesIntersect(EI)
3: split the undergoing edge of such a pair ei → (edi , e

u
i)

4: search for ei in all of the Kj knot components and when found replace it
in the corresponding Kj where it was found with ei → (edi , e

u
i)

5: end for
6: m← −1
7: for all l← 0 to index do
8: consider Kl the l-th knot component
9: while IsNotEmpty(Kl) do

10: m+ +
11: consider arcm ← ∅ an arc of Kl

12: insert all the edges from Kl between the first edge of type eu and the
first consecutive edge of type ed into arcm

13: delete all the edges inserted in arcm from Kl

14: end while
15: end for
16: return {arcm,m ∈ N}

For deciding the type of crossings, we observe that in each knot component
for a positive edge ei(si, di) : xcoord(si) < xcoord(di) and for a negative edge
−ej(sj , dj) : xcoord(sj) > xcoord(dj). Each type of crossing depends on the
pair of intersection edges (eunder, eover) that contains the corresponding intersec-
tion point, and that is: (i) on the orientation of eunder, and eover, i.e. whether
they are oriented from left to right (positive) or from right to left (negative);
(ii) on the comparison relation between the slope of eunder and the slope of eover.
Depending on these three parameters, we have 23 possible cases for deciding the
type of crossings. For instance, we consider a crossing c determined by the pair

27

of ordered edges
(
− el(sl, dl), ek(sk, dk)

)
, for which −el is the undergoing edge

and ek is the overgoing edge in R3. We have xcoord(sl) > xcoord(dl) for the
negative undergoing edge el, and xcoord(sk) < xcoord(dk) for the positive over-
going edge ek. If additionally we suppose that slope(el) < slope(ek), then c is a
lefthanded crossing. For instance, in Figure 11 we can decide each type of cross-
ings: c1 = (−en, em) is a lefthanded crossing, since xcoord(sn) > xcoord(dn),
xcoord(sm) < xcoord(dm),and slope(em) < slope(−en); using the same rea-
soning, c2 = (el, ek), c3 = (es,−et) are both lefthanded crossings. We de-
scribe the DecideTypeCrossings algorithm. For this algorithm we use the
slope(e) procedure, which computes the slope of e(s, d). This procedure first
extract the x, y coordinates of the source and destination points of e obtaining
A(xcoord(e.s), ycoord(e.s)), B(xcoord(e.d), ycoord(e.d)). Then it computes
its slope as described in GetSlope(A,B). We notice that both the CreateKnots,
CreateArcs and DecideTypeCrossings algorithms contain also combinatorial
aspects.

LH

n
e
m

e
k

e
l

−e
e
s

c
1

c
3

c
2

t

−e

RH

Figure 11: Deciding the type of crossings of a knot diagram (RH or LH)

28

Algorithm 18 DecideTypeCrossings(EI)
Require: EI as computed by the SweepPlane algorithm
Ensure: T a list of {−1, 1} elements with the same length as EI

where the i-th element from T represents the type of the crossing corre-
sponding to the i-th pair of intersection edges (ei, fi) from EI

1: for all i← 0 to length(EI) do
2: consider (ei, fi) the i-th pair of intersection edges with ei under fi in R3

as returned by ArrangeEdgesIntersect(EI)
3: if (xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and

slope(ei) > slope(fi)) or
(xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) > xcoord(fi.d) and
slope(ei) < slope(fi)) or
(xcoord(ei.s) > xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and
slope(ei) < slope(fi)) or
(xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and
slope(ei) > slope(fi)) then

4: ti ← 1
5: end if
6: if (xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and

slope(ei) < slope(fi)) or
(xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) > xcoord(fi.d) and
slope(ei) > slope(fi)) or
(xcoord(ei.s) > xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and
slope(ei) > slope(fi)) or
(xcoord(ei.s) < xcoord(ei.d) and xcoord(fi.s) < xcoord(fi.d) and
slope(ei) < slope(fi))
then

7: ti ← −1
8: end if
9: end for

10: return T = {ti, i← 0, ..., length(EI)}

Computational complexity of the algorithm used for detecting the
arcs of a knot diagram and for deciding the type of crossings. We
denote with n the total number of edges of E, the set of edges of G, which
represents the projection of the graph data structure Graph(L). We denote with
I the number of intersection points of the edges of the link diagram as computed
with SweepPlane algorithm, and with k the number of knot components of the
link as computed with the CreateKnots algorithm. With these notations, we
observe that CreateArcs algorithm requires O(n∗k ∗I) computational time. In
a way, this time is linear in the number of edges, intersection points and knot
components of the algebraic link, because the number of intersection points
I and the number of knot components k will always be smaller than n, the
numbers of edges of the link diagram. With the same notations, we observe
that the algorithm CreateArcs requires O(n+ k + I) computational space.

In addition, the DecideTypeCrossings(EI) algorithm requires O(I) linear
computational time and linear computational space in the number of intersection
points I computed by the SweepPlane algorithm.

29

4 Conclusion

We described several computational geometry and combinatorial algorithms for
solving the genus computation problem of plane complex algebraic curves whose
defining polynomials have numeric coefficients. The algorithms depend on the
geometric properties of the specific problems that they solve. We use the library
GENOM3CK ([3]) included in the Axel algebraic geometric modeler (see [5]) for
their implementation. The set of algorithms prove to be efficient in producing
the required solutions. The efficiency of the set of algorithms is indicated by
both the tests experiments but also by the analysis of each of the algorithms.
As we have thourughly described in each separate section, the complexity of the
algorithms is at most polynomial.

References

[1] Alberti, L., Mourrain, B.: Regularity Criteria for the Topology of Algebraic
Curves and Surfaces. IMA Conference on the Mathematics of Surfaces, 1-
28, 2007.

[2] Berg, M. de, Krefeld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications. Second Edition. Springer, 2008.

[3] Hodorog, M., Schicho, J.: A Symbolic-Numeric Algorithm for genus com-
putation.

[4] Milnor J.: Singular Points of Complex Hypersurfaces. Annals of Mathe-
matics Studies. Princeton University Press and the University of Tokyo
Press. Priceton, New Jersey, 1968.

[5] Wintz, J.: Algebraic Methods for Geometric Modelling. PhD. Thesis. Uni-
versity of Nice. Sophia-Antipolis, 2008.

30

Technical Reports of the Doctoral Program

“Computational Mathematics”

2010

2010-01 S. Radu, J. Sellers: Parity Results for Broken k-diamond Partitions and (2k+1)-cores March
2010. Eds.: P. Paule, V. Pillwein

2010-02 P.G. Gruber: Adaptive Strategies for High Order FEM in Elastoplasticity March 2010. Eds.:
U. Langer, V. Pillwein

2010-03 Y. Huang, L.X.Châu Ngô: Rational General Solutions of High Order Non-autonomous ODEs
June 2010. Eds.: F. Winkler, P. Paule

2010-04 S. Beuchler, V. Pillwein, S. Zaglmayr: Sparsity optimized high order finite element functions
for H(div) on simplices September 2010. Eds.: U. Langer, P. Paule

2010-05 C. Hofreither, U. Langer, C. Pechstein: Analysis of a non-standard finite element method
based on boundary integral operators September 2010. Eds.: B. Jüttler, J. Schicho

2010-06 M. Hodorog, J. Schicho: A symbolic-numeric algorithm for genus computation September
2010. Eds.: B. Jüttler, R. Ramlau

2010-07 M. Hodorog, J. Schicho: Computational geometry and combinatorial algorithms for the genus
computation problem September 2010. Eds.: B. Jüttler, R. Ramlau

2009

2009-01 S. Takacs, W. Zulehner: Multigrid Methods for Elliptic Optimal Control Problems with Neu-
mann Boundary Control October 2009. Eds.: U. Langer, J. Schicho

2009-02 P. Paule, S. Radu: A Proof of Sellers’ Conjecture October 2009. Eds.: V. Pillwein, F. Winkler
2009-03 K. Kohl, F. Stan: An Algorithmic Approach to the Mellin Transform Method November 2009.

Eds.: P. Paule, V. Pillwein
2009-04 L.X.Chau Ngo: Rational general solutions of first order non-autonomous parametric ODEs

November 2009. Eds.: F. Winkler, P. Paule
2009-05 L.X.Chau Ngo: A criterion for existence of rational general solutions of planar systems of

ODEs November 2009. Eds.: F. Winkler, P. Paule
2009-06 M. Bartoň, B. Jüttler, W. Wang: Construction of Rational Curves with Rational

Rotation-Minimizing Frames via MöbiusTransformations November 2009. Eds.: J. Schicho,
W. Zulehner

2009-07 M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, A.V. Vuong: Swept Volume
Parameterization for Isogeometric Analysis November 2009. Eds.: J. Schicho, W. Zulehner

2009-08 S. Béla, B. Jüttler: Fat arcs for implicitly defined curves November 2009. Eds.: J. Schicho,
W. Zulehner

2009-09 M. Aigner, B. Jüttler: Distance Regression by Gauss–Newton–type Methods and Iteratively
Re–weighted Least–Squares December 2009. Eds.: J. Schicho, W. Zulehner

2009-10 P. Paule, S. Radu: Infinite Families of Strange Partition Congruences for Broken 2-diamonds
December 2009. Eds.: J. Schicho, V. Pillwein

2009-11 C. Pechstein: Shape-explicit constants for some boundary integral operators December 2009.
Eds.: U. Langer, V. Pillwein

2009-12 P. Gruber, J. Kienesberger, U. Langer, J. Schöberl, J. Valdman: Fast solvers and a posteriori
error estimates in elastoplasticity December 2009. Eds.: B. Jüttler, P. Paule

2009-13 P.G. Gruber, D. Knees, S. Nesenenko, M. Thomas: Analytical and Numerical Aspects of
Time-Dependent Models with Internal Variables December 2009. Eds.: U. Langer, V. Pillwein

Doctoral Program

“Computational Mathematics”

Director:
Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:
Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-7174

E-Mail:
office@dk-compmath.jku.at

Homepage:
http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.

