
A Note on the Average Complexity

Analysis of the Computation of

Periodic and Aperiodic Ternary

Complementary Pairs

C. Koukouvinos V. Pillwein D.E. Simos

Z. Zafeirakopoulos

DK-Report No. 2010-08 10 2010

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria

Editorial Board: Bruno Buchberger
Bert Jüttler
Ulrich Langer
Esther Klann
Peter Paule
Clemens Pechstein
Veronika Pillwein
Ronny Ramlau
Josef Schicho
Wolfgang Schreiner
Franz Winkler
Walter Zulehner

Managing Editor: Veronika Pillwein

Communicated by: Peter Paule
Josef Schicho

DK sponsors:

• Johannes Kepler University Linz (JKU)

• Austrian Science Fund (FWF)

• Upper Austria

A Note on the Average Complexity Analysis
of the Computation of Periodic and Aperiodic

Ternary Complementary Pairs

Christos Koukouvinos∗ Veronika Pillwein† Dimitris E. Simos‡ Zafeirakis Zafeirakopoulos§

Abstract

We give an average complexity analysis for a new formalism pertaining periodic and
aperiodic ternary complementary pairs. The analysis is done in three levels, so that we
end up with an accurate estimate. The way of separating the candidate pairs into suitable
classes of ternary sequences is interesting, allowing us to use fundamental tools of Symbolic
Computation, such as Holonomic functions and asymptotic analysis to derive an average
complexity of O(n

√
n log n) for sequences of length n.

Keywords: Sequences, Periodic Autocorrelation Function, Non-Periodic Autocorrelation Func-
tion, Complexity, Algorithms, Average-case analysis.
MSC classification: Primary 05B20 Secondary 68Q25, 68W40

1 Introduction

In this paper, we detail an average complexity analysis for a new formalism that exhibits the
cross-fertilization of Combinatorics with Theoretical Computer Science, in the study of se-
quences with zero periodic and non-periodic autocorrelation function.

Definition 1 For a sequence A = [a1, a2, . . . , an] of length n the periodic autocorrelation function
(PAF) and the non-periodic autocorrelation function (NPAF), denoted by PA(s) and NA(s) respectively
are defined as

PA(s) =
n∑
i=1

aiai+s , s = 0, 1, . . . , n− 1 NA(s) =
n−s∑
i=1

aiai+s , s = 0, 1, . . . , n− 1.

where in PAF we consider (i+s) modulo n, see also [9].
∗Department of Mathematics, National Technical University of Athens, Zografou 15773, Athens, Greece
†Research Institute for Symbolic Computation (RISC), Linz Austria
‡Department of Mathematics, National Technical University of Athens, Zografou 15773, Athens, Greece. Sup-

ported by a scholarship awarded by the Secretariat of the Research Committee of N.T.U.A.
§Doctoral program “Computational Mathematics” supported by the Austrian Science Fund (FWF) under grant

W1214/DK6

1

Definition 2 Two sequences, A = [a1, . . . , an] and B = [b1, . . . , bn], of length n are said to have
zero PAF (respectively zero NPAF), if PA(s) + PB(s) = 0 (respectively NA(s) + NB(s) = 0) for
s = 1, . . . , n− 1.

The support of a sequence A of length n is the set of positions where its entries are nonzero.
We will use the notion of support extensively. Since we consider information about the sign
of the sequence elements, unlike in the usual definition of support, we provide the following
definition:

Definition 3 The support of a sequence A = [a1, . . . , an] denoted by SUP (A), is defined as
SUP (A) = {±i : i, ai > 0 ∨ − i, ai < 0 | i = 1, . . . , n}.

We are interested in bundling together the indices of entries with the same sign. This motivates
the following definitions:

Definition 4 The positive and negative support of a sequence A = [a1, . . . , an], denoted by POS(A)
and NEG(A) respectively, are defined as

POS(A) = {i : ai > 0 | i = 1, . . . , n} NEG(A) = {j : aj < 0 | j = 1, . . . , n}

Remark 1 For any sequence A we have SUP (A) = POS(A)
⋃

NEG(A), where by S we denote the
negated set of S (negating elementwise).

Two sequences of length n, are said to be of type (0,±1) and weight w if they have a total of
w non-zero elements. These pairs will be denoted by DC(n, w) if they have zero PAF. We also
denote periodic complementary pairs by DC(n, w). Moreover, pairs of (0,±1) sequences, are
also called ternary complementary pairs (TCPs) (sometimes also called aperiodic) when they
have zero NPAF and are denoted by TCP (n, w). For more details regarding the theory of DCs
and TCPs, we refer to [12] and [2], respectively.

Periodic and non-periodic ternary complementary pairs play a pivotal role in the theory
of sequences (see [8, 9]) and their applications are of broader interest. These pairs are used
to construct sequences with desirable properties for radar applications (see [16]), and crypto-
graphic systems (see [17]). Moreover, these sequences intervene in coded aperture imaging (see
[3]), and higher-dimensional signal processing applications (see [6, 7]). Last we would like to
mention that such sequences are interesting objects to study for themselves (see [8, 9, 12]).

In what follows we present the asymptotic analysis for the average case complexity of de-
ciding if two sequences are a TCP or DC pair. We employ a fine grained (low level) analysis
initially and then going higher we provide the asymptotics for a pair of sequences of length n.
In the course of the analysis we use extensively tools from Computer Algebra and especially
tools for dealing with holonomic functions and their asymptotics since such functions occur in
the summations needed for the analysis.

In Section 2 we describe the algorithms and the essential part of the theory behind them. In
Section 3 we detail the asymptotic analysis for the average case complexity of the algorithms.
In Section 4 we conclude by giving some hints on the practical complexity and arguing on the
efficiency of the algorithms examined.

2

2 Combinatorial Algorithms for Periodic and Aperiodic Pairs

In this section, we present a new formalism for the PAF and NPAF of two sequences, based
on their support first given in [10] and [11]. The driving force behind this interpretation which
led us to formulate the PAF and NPAF on the support of the sequences was the miscarry of
the unnecessary multiplications between possible zero elements of the sequences, which take
place in the PAF and NPAF.

2.1 Classic Description

If one evaluates the sum in the PAF and NPAF of a sequence A, the following summations are
obtained:

PA(s) =
n∑
i=1

aiai+s (mod n) = a1a1+s (mod n) + . . . + anas (mod n) (1)

NA(s) =
n−s∑
i=1

aiai+s = a1a1+s + . . . + an−san (2)

where s = 0, 1, . . . , n − 1. Henceforth, we are only concerned with candidate DC(n, w) or
TCP (n, w) sequences, thus their entries are taken from {0,±1}. Thus, the pairs (ai, ai+s (mod n)) =
aiai+s (mod n) and (ai, ai+s) = aiai+s have possible values from {0,±1}. We define the PAF and
NPAF vectors of the sequences A and B as:

PAF (A) = [PA(1), . . . , PA(n− 1)] PAF (B) = [PB(1), . . . , PB(n− 1)]
NPAF (A) = [NA(1), . . . , NA(n− 1)] NPAF (B) = [NB(1), . . . , NB(n− 1)]

Therefore, we can decide if the sequences A and B have zero PAF or NPAF from its equivalent
vector form PAF (A) + PAF (B) = 0 or NPAF (A) + NPAF (B) = 0, where with 0 we mean
the zero vector of length n − 1. We note that such pair of sequences have zero PAF or NPAF
even though it is the sum of their autocorrelations that is zero.

2.2 Support based

Now, we are only concerned with the nonzero elements of the sequences, i.e. the support.
Thus, we demonstrate that all the information required to compute the PAF can be derived as a
function of the weight of the two sequences (see also the complexity analysis, in next section).

The following notations and data structures appear to be handy in our effort to express the
PAF on the support of two sequences.

It is well known that two binary sequences with zero PAF are equivalent to supplementary
difference sets (SDS) (for more details see [5]). Our formalism can also be regarded as a gen-
eralization of SDS on three levels {0,±1}. Following [18, 19] we shall be concerned with lists
(multisets), denoted by square brackets ([]), defined on the fixed group Zn of order n, in which
repeated elements are counted multiply.

If T1 and T2 are two lists then by T1] T2 we denote the result of appending the elements of
T1 to T2 (with multiplicities retained). If the resulting list is sorted, the operation is denoted by
T1&T2.

3

Example 1 a1 < a2 < a3 ∈ Zn and T1 = [a1, a3, a2], T2 = [a2, a4, a1] then

T1] T2 = [a1, a3, a2, a2, a4, a1] and T1&T2 = [a1, a1, a2, a2, a3, a4] (3)

One natural way to express the operations that occur in PAF and NPAF, when having a rep-
resentation of the position of the elements in the sequence(s) (i.e. the support), is by signed
differences. For each one of the above cases we define collections (multisets) of signed dif-
ferences. Only the following three cases can occur in the PAF/NPAF defined in the support
of A:

(i) Let c1 be the number of pairs (ai, ai+s) with ai = ai+s = 1.

(ii) Let c2 be the number of pairs (ai, ai+s) with ai = ai+s = −1.

(iii) Let c3 be the number of pairs (ai, ai+s) with aiai+s = −1.

Then by a counting argument we derive that AA(s) = c1 + c2 − c3, s = 0, 1, . . . , n − 1, where
AA(s) = PA(s) or NA(s), and in PA(s) we consider (i+s) modulo n.
Notation. Let A be a sequence of length n as above, with entries from {0,±1}. Three cases are of
interest, corresponding to the combinations that can result to±1. We use±,∓ in the notation to
denote the use of POS(A), NEG(A), the index 2 in the multisets represents that we define the
differences in two directions (�) due to the periodic property of the autocorrelation function,
corresponding to the modulo operation in the index of the elements of the sequence A, while
the index 1 in the multisets represents that we define the differences in one direction (⇒) due
to the non-periodic property of the autocorrelation function, corresponding to the index of the
elements of the sequence A.

c1 We define the signed differences in the positive support of A as D+
A,2 = [(x−y) (mod n) :

x 6= y, x, y ∈ POS(A)] for PAF, while for NPAF we define the signed differences in the
positive support of A as D+

A,1 = [x− y : x > y ∧ x, y ∈ POS(A)].

c2 We define the signed differences in the negative support of A as D−A,2 = [(x−y) (mod n) :
x 6= y, x, y ∈ NEG(A)] for PAF, while for NPAF we define the signed differences in the
negative support of A as D−A,1 = [x− y : x > y ∧ x, y ∈ NEG(A)].

c3 For aiai+s (mod n) = −1 to occur in PAF we have two cases. ai = 1, ai+s (mod n) = −1
and vice versa. Thus, we have to define the cross differences between the positive and
negative support of A as D±A,2 = [(x − y) (mod n) : x ∈ POS(A), y ∈ NEG(A)] and
D∓A,2 = [(x − y) (mod n) : x ∈ NEG(A), y ∈ POS(A)]. Since, we count the totality of

differences with repetitions in two ways we define C�
A,2 = D±A,2] D∓A,2. Similarly, for

aiai+s = −1 to occur in NPAF we have two cases. ai = 1, ai+s = −1 and vice versa. Thus,
we have to define the cross differences between the positive and negative support of A as
D±A,1 = [x − y : x > y ∧ x ∈ POS(A), y ∈ NEG(A)] and D∓A,1 = [x − y : x > y ∧ x ∈
NEG(A), y ∈ POS(A)]. Since, we count the totality of differences with repetitions in one
way we define C⇒

A,1 = D±A,1]D∓A,1.

We quote the following Lemma from [10, 11], which acts as a criterion to decide if any pair of
two sequences has zero PAF or NPAF.

4

Lemma 1 Let A, B be two sequences of length n and weight w with entries from {0,±1}. Then the
following are equivalent:

(i) A, B are TCP (n, w) if and only if (D+
A,1]D−A,1)&(D+

B,1]D−B,1) = C⇒
A,1&C⇒

B,1

(ii) A, B are DC(n, w) if and only if (D+
A,2]D−A,2)&(D+

B,2]D−B,2) = C�
A,2&C�

B,2

2.3 Description of the Algorithms

In this section, we describe an algorithm that decides if two {0,±1} sequences have zero
PAF/NPAF. In order to compare the efficiency of the proposed formalism we analyze the al-
gorithms involved in the computation of the NPAF. There are three subalgorithms that are
needed:

• Representation (Sequences or support)

• Computation (Summations or differences)

• Verification (NPAF vectors or sorting lists)

To analyze an algorithm we determine the number of steps required for the algorithm to
execute. Since our problem, involves two parameters for a candidate DC(n, w) or TCP (n, w)
pair of sequences, the time complexity will be given as a function of both length n and weight
w which are the input parameters in order to obtain a refined analysis.

It is obvious, that in order to compare the efficiency of the algorithms we must compare
them for the same representation of input. In our case, the given problem must either be two
candidate DC(n, w) and TCP (n, w) or support sets of two sequences. When given candidate
DC(n, w) and TCP (n, w) we will refer to our problem, as the sequence problem. We note that,
we only deal with an analysis in the arithmetic model and not with bit-size complexity, i.e. all
arithmetic operations are exact and contribute the same in the complexity of the algorithm.

The following three phases needed for the computation of PAF and NPAF of two sequences
and the respective algorithms were given in [10, 11]:

• Sequence to Support (SEQ2SUP) and Support to Sequence (SUP2SEQ) algorithms

• PAF/NPAF Vector (PAFVEC/NPAFVEC) and PAF/NPAF Support (PAFSUP/NPAFSUP)
algorithms

• PAF/NPAF Vector Verification (PAFVECVER/NPAFVECVER) and PAF/NPAF Support
Verification (PAFSUPVER/NPAFSUPVER) algorithms

A high level view of the previous subalgorithms in one phase of computations can be seen
in the following pseudo code for the two cases of the sequence problem.

A refined worst case analysis for the complexity of the previous two algorithms will be
given in the next section, needed as the first step for an average case complexity analysis. By
the term refined we mean that the analysis is performed by taking into account the weight of
each one of the two sequences.

5

Algorithm 1 (N)PAF Computation Algorithm - (N)PAFCOMP
procedure (N)PAFCOMP(A,B)

Require: A,B are two {0,±1} sequences of length n
n← |A|
(POS(A), NEG(A))← SEQ2SUP(A)
(POS(B), NEG(B))← SEQ2SUP(B)

(D+
A,2, D

−
A,2, C

�
A,2)← PAFSUP(POS(A), NEG(A), n) OR (D+

A,1, D
−
A,1, C

⇒
A,1)← NPAFSUP(POS(A), NEG(A), n)

(D+
B,2, D

−
B,2, C

�
B,2)← PAFSUP(POS(B), NEG(B), n) OR (D+

B,1, D
−
B,1, C

⇒
B,1)← NPAFSUP(POS(B), NEG(B), n))

bool← PAFSUPVER(D+
A,2, D

−
A,2, C

�
A,2, D

+
B,2, D

−
B,2, C

�
B,2) OR bool← NPAFSUPVER(D+

A,1, D
−
A,1, C

⇒
A,1, D

+
B,1, D

−
B,1, C

⇒
B,1)

return bool
end procedure

3 Average Case Complexity Analysis

In this section we examine the average case complexity of the aforementioned algorithms.
Average-case analysis is a hard task to accomplish because there are a lot of details involved.

The basic process begins by determining the different groups into which all possible inputs
can be divided. The second step is to determine for each of the groups, the probability for a
random input to come from this group. The third step is to determine for each of the groups,
the complexity of the algorithm for inputs coming from this group.

Afterwards, the average case complexity is given by the following formula:

A(n) =
m∑
i=1

Pi · Ti (4)

where n is the size of the input, m is the number of groups, Pi is the probability assigned to
the i-th group, and Ti is the complexity of the algorithms for inputs from the i-th group.

In what follows, we consider as input a pair of sequences. The total length is 2·n, the weight
of the first sequence is w1, of the second is w2 and the total weight is w = w1 + w2.

We use the notation “a pair of weight (w1, w2)” to mean that the first sequence is of weight
w1 and the second of w2.

3.1 First Level

We start with a fine grain analysis considering pairs of sequences of length n, where the first
sequence has weight w1 and a positive entries and the second sequence has weight w2 and b
positive entries. This is the lowest we can go, in the sense that we do not ignore any information
about the non zero entries of the sequences. We take into account the number of positive and
negative entries, ignoring the structure.

Let’s denote with (s1, s2) the support vectors of the two sequences. This means that |s1| =
w1 and |s2| = w2. In this section we consider classes of sequences of fixed support. We denote
the set of pairs of sequences having support (s1, s2) by As1,s2 . The set of pairs of sequences
having support (s1, s2), where the first sequence has a positive entries and the second has b
positive entries is denoted by As1,s2(a, b).

We will use wi to denote |si| without mentioning from now on. As a side note, the length n
is irrelevant in this section.

The cardinality of As1,s2(a, b) is
(
w1

a

)
·
(
w2

c

)
. We choose a out of the w1 positions for the

positive entries, then the remaining w1 − a positions are the negative entries. Similarly for the
second sequence, we get the second term in the product.

6

The cardinality of As1,s2 is 2w1+w2 . We have 2 choices (positive or negative) for each non
zero entry.

Thus, the probability of picking at random an As1,s2(a, b) pair out of As1,s2 is:

p1(a, b, s1, s2) =

(
w1

a

)(
w2

b

)
2w1+w2

(5)

We now examine the complexity of the algorithm for an As1,s2(a, b) pair. The algorithm
consists of three steps as seen previously. We first compute the amount of operations for each
step separately.

The cardinality of the two sets D = D+
A]D−A]D+

B]D−B and C = CA] CB is 1
2(2 · a2 + 2 ·

b2 −w1 − 2 · a ·w1 + w2
1 −w2 − 2 · b ·w2 + w2

2) and a · (w1 − a) + b · (w2 − b) respectively, which
by abuse of notation we denote as D and C.

• Sequence to Support (SEQ2SUP)
This step requires 4 · n operations in order to scan the sequences and populate the POS
and NEG sets.

• Computation of the signed difference sets (PAFSUP/NPAFSUP)
This step requires at most 3 operations for each element added in any of the sets
D+
A , D−A , D+

B , D−B , CA, CB . Therefore the total complexity for this step is 3D + 3C.

• Verification of PAF/NPAF property (PAFSUPVER/NPAFSUPVER)

1. This step requires D log D + C log C steps to sort the two lists.

2. Another step is needed to check for equality of the elements in the two lists where
this step requires max{D,C} < D + C steps to compare the two lists for equality.

Summing up the complexity for the previous three steps we deduce that the total complex-
ity for an As1,s2(a, b) pair is:

c1(a, b, s1, s2) = 2 (w1(w1 − 1) + w2(w2 − 2))
+1

2 (2a(a− w1) + 2b(b− w2) + w1(w1 − 1) + w2(w2 − 1))
× log

(
1
2 (2a(a− w1) + 2b(b− w2) + w1(w1 − 1) + w2(w2 − 1))

)
+ (a(w1 − a) + b(w2 − b)) log (a(w1 − a) + b(w2 − b)) .

(6)

Multiplying the probability by the complexity, we compute the average complexity for
As1,s2(a, b) pairs. More precisely we have that

T1(a, b, s1, s2) = p1(a, b, s1, s2) · c1(a, b, s1, s2).

In order to get rid of the dependency of the logarithms on a and b we estimate the logands from
above using a quick application of cylindrical algebraic decomposition [1, 15],

In[1]:= Resolve[ForAll[{a, b}, 0 ≤ a ≤ w1&&0 ≤ b ≤ w2,
1
2

(2a(a− w1) + 2b(b− w2) + w1(w1 − 1) + w2(w2 − 1)) ≤M], {w1, w2, M}, Reals]

Out[1]= M ≥ 1
2

`
w2

1 − w1 + w2
2 − w2

´
In[2]:= ResolveForAll[{a, b}, 0 ≤ a ≤ w1&&0 ≤ b ≤ w2, a(w1−a)+b(w2−b) ≤M], {w1, w2, M}, Reals]

7

Out[2]= M ≥ 1
4

`
w2

1 + w2
2

´
These last estimates in turn can be bounded by n2 for n ≥ 1 and so the last two summands

stemming from the logarithms can be replaced by the upper bound

2−w1−w2

(
w1

a

)(
w2

b

)
(w1(w1 − 1) + w2(w2 − 1)) log(n).

With this upper bound summing over a and b ranging in [0, w1] and [0, w2] respectively, we
obtain for the average complexity Tα for a pair of sequences of weight (w1, w2) and length n
that

Tα(n, w1, w2) ≤ (w1(w1 − 1) + w2(w2 − 1)) (log n + 2).

3.2 Second Level

At a second level we examine the complexity ignoring the low level structure of the positive
and negative entries. We are concerned about sequences of total weight w. In order to compute
the average complexity for these sequences, we need to consider the probability of a pair to
have total weight w and combine it with Tα from section 3.1.

The probability for a pair of ternary sequences to have weights w1 and w2 is:

p2(n, w1, w2) =
2w1+w2

(
n
w1

)(
n
w2

)
32·n (7)

The complete space has 32·n elements (3 choices for each position in the two sequences of
length n). We choose the non-zero positions in each sequence and then we have two choices
for each of the non-zero positions.

The complexity for a pair of sequences of weight (w1, w2) is Tα. Multiplying the upper
bound for Tα with the probability p2, we get:

T2(n, w1, w2) = 3−2n2w1+w2

(
n

w1

)(
n

w2

)
(w1(w1 − 1) + w2(w2 − 1)) (log n + 2).

By summing T2 over all combinations of w1 and w2 for a given w = w1 + w2, we conclude
to the average complexity for a pair of sequences of length n and total weight w,

Tβ(n, w) =

(
3−2n2w+1

w∑
i=0

(
n

i

)(
n

w − i

)
i2 − 3−2n2w+1w

w∑
i=0

(
n

i

)(
n

w − i

)
i

+3−2n2w(w2 − w)
w∑
i=0

(
n

i

)(
n

w − i

))
(log n + 2)

= 3−2n2w
n− 1
2n− 1

w(w − 1)
(

2n

w

)
(log n + 2).

3.3 Third Level

The probability for a pair of sequences to have weight w is:

p3(n, w) =
2w ·

(
2n
w

)
32·n (8)

8

Choosing w positions out of 2 · n and for each of them having two choices for the entry.
The average complexity for a pair of sequences of length n and total weight w is Tβ . Multi-

plying the Tβ with p3 we get the expression, which we split in three parts to make the summa-
tion easier, i.e.,

Tγ(n, w) = Tβ(n, w)p3(n, w)

= 3−4n n− 1
2n− 1

(
22ww2

(
2n

w

)2

− 22ww

(
2n

w

)2
)

(log n + 2).

Summing over w = 0, 1, . . . , 2 · n yields the average complexity of the algorithm. We sum
separately the two parts and obtain for Tδ(n) =

∑n
w=0 Tγ(n, w)

Tδ(n) = 3−4n n− 1
2n− 1

16n2

(
2F1

(
−2n + 1,−2n + 1

1
; 4
)
− 2F1

(
−2n + 1,−2n + 1

2
; 4
))

, (9)

where the hypergeometric sums 2F1 is defined as

2F1

(
a, b
c

; z
)

=
∑
k≥0

(a)k(b)k
(c)kk!

zk,

with (a)k = a(a + 1) . . . (a + k − 1) denoting the Pochhammer symbol (or rising factorial).
Note that the sums appearing above are finite because of the factors −2n + 1 in the numerator.
Hypergeometric sums are classical objects and over the centuries many tricks and treats-of-the-
day have been developed to simplify them or find equivalent descriptions such as recurrence
relations. Within the last decades several symbolic algorithms have been designed and imple-
mented that are capable of taking over these tasks [14]. We are interested in the asymptotic be-
havior of the average complexity and to obtain this information we first compute a recurrence
relation for the two terms in (9). From this recurrence relation then the asymptotic behavior
can easily be determined using standard techniques, see e.g. [4]. For the computation of the
recurrence relations we employ the Mathematica package HolonomicFunctions1 implemented
by Christoph Koutschan [13]. The package is loaded in the Mathematica kernel via

In[3]:= << HolonomicFunctions.m

HolonomicFunctions package by Christoph Koutschan, RISC-Linz, Version 0.13 (13.05.2009)
— Type ?HolonomicFunctions for help

To obtain a recurrence for the terms in (9) we first compute the annihilator with respect to
shifts in n, where the shift operator is denoted by Sn.

In[4]:= ann = Factor[Annihilator[
4n2(n− 1)

(2n− 1)34n−1
Hypergeometric2F1[−2n + 1,−2n + 1, 1, 4], {S[n]}]]

Out[4]= {81(n− 1)n(n + 1)2(2n + 3)2(4n + 1)S2
n − (n− 1)(n + 2)2(2n + 1)(4n + 3)(49 + 246n + 164n2)Sn

+ (n + 1)2(n + 2)2(2n− 1)(2n + 1)(4n + 5)}

The recurrence for the remaining expression is obtained completely analogously and reads
as

81(n− 1)n(2n + 3)2(20n2 + 20n + 3)S2
n

− 4(n− 1)(2n + 1)(249 + 2066n + 4313n2 + 3280n3 + 820n4)Sn
+ n(n + 1)(2n− 1)(2n + 1)(43 + 60n + 20n2).

1available at http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/

9

The final step consists in determining the asymptotic behavior from these two recurrences. For
this purpose we make use of a yet unpublished implementation of the methods described in [4]
by Manuel Kauers. For the first recurrence this yields the asymptotic behavior n3/2(1 + 3−4n)
and for the second one n1/2(1 + 3−4n).

From this we directly conclude that the average complexity of the algorithm is at most
O(n
√

n log n).

4 Conclusion

We presented a detailed analysis for the average case complexity of an algorithm based on a
support based formulation deciding if two sequences form a periodic or aperiodic complemen-
tary pair. In the course of the analysis we have used Computer Algebra tools and computed
the average case asymptotic complexity to be O(n

√
n log n). This estimate proves that in prac-

tice the algorithm under consideration performs better than what the worst case complexity
(O(n2 log n), see [10, 11]) implies.

Acknowledgements

The authors are grateful to Manuel Kauers for providing the asymptotics package. The second
and fourth author are supported by the Austrian Science Fund (FWF) grant W1214/DK6. Part
of this work was completed while the third author was visiting RISC in Linz. Thanks go to
the RISC for the kind hospitality and support from the RISC Transnational Access Programme
supported by the European Commission FP6 for Integrated Infrastructures Initiatives under
the project SCIEnce.

References

[1] G.E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decom-
position, Automata theory and formal languages (Second GI Conf., Kaiserslautern, 1975), pages
134–183. Lecture Notes in Comput. Sci., Vol. 33. Springer, Berlin, 1975.

[2] R. Craigen and C. Koukouvinos, A theory of ternary complementary pairs, J. Combin.
Theory Ser. A, 96 (2001), 358–375.

[3] E. Fenimore and T. Cannon, Coded aperture imaging with uniformly redundant arrays,
Appl. Optics, 17 (1978), 337–347.

[4] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cambridge University Press, Cam-
bridge, 2009.

[5] A. V. Geramita and J. Seberry, Orthogonal designs. Quadratic forms and Hadamard matrices,
Lecture Notes in Pure and Applied Mathematics, 45, Marcel Dekker Inc. New York, 1979.

[6] S. Golomb and H. Taylor, Two-dimensional synchronization patterns for minimum am-
biguity, IEEE Trans. Inform. Theory, 28 (1982), 600–604.

10

[7] J. Hersheya and R. Yarlagadda, Two-dimensional synchronisation, Electron. Lett., 19
(1983), 801–803.

[8] H. Kharaghani and C. Koukouvinos, Complementary, Base and Turyn Sequences, in
Handbook of Combinatorial Designs, (Eds. C.J. Colbourn and J.H. Dinitz), 2nd ed. Chap-
man and Hall/CRC Press, Boca Raton, Fla., 2006, pp. 317–321.

[9] C. Koukouvinos, Sequences with Zero Autocorrelation, in The CRC Handbook of Combina-
torial Designs, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 1996, pp. 452–456.

[10] C. Koukouvinos and D. E. Simos, On the Computation of the Periodic Autocorrelation
Function of Two Ternary Sequences and its Related Complexity Analysis, submitted for
publication.

[11] C. Koukouvinos and D. E. Simos, On the Computation of the Non-Periodic Autocorrela-
tion Function of Two Ternary Sequences and its Related Complexity Analysis, submitted
for publication.

[12] C. Koukouvinos and J. Seberry, New weighing matrices and orthogonal designs con-
structed using two sequences with zero autocorrelation function-a review, J. Statist.
Plann. Inference, 81 (1999), 153–182.

[13] C. Koutschan, HolonomicFunctions (User’s Guide), Technical report no. 10-01 in RISC Re-
port Series, University of Linz, Austria. January 2010.

[14] M. Petkovšek, H.S. Wilf and D. Zeilberger, A = B, A K Peters Ltd., Wellesley, MA, 1996.

[15] Adam Strzeboński, Solving systems of strict polynomial inequalities, Journal of Symbolic
Computation, 29:471–480, 2000.

[16] G. Weathers and E. M. Holiday, Group-complementary array coding for radar clutter
rejection, IEEE Transaction on Aerospace and Electronic Systems, 19 (1983), 369–379.

[17] B. Schneier, Applied Cryptography, 2nd edition, John Wiley and Sons, New York, 1996.

[18] J. Seberry Wallis, On supplementary difference sets, Aequationes Math., 8 (1972), 242–257.

[19] J. Seberry Wallis, A note on supplementary difference sets, Aequationes Math., 10 (1974),
46–49.

11

Technical Reports of the Doctoral Program

“Computational Mathematics”

2010

2010-01 S. Radu, J. Sellers: Parity Results for Broken k-diamond Partitions and (2k+1)-cores March
2010. Eds.: P. Paule, V. Pillwein

2010-02 P.G. Gruber: Adaptive Strategies for High Order FEM in Elastoplasticity March 2010. Eds.:
U. Langer, V. Pillwein

2010-03 Y. Huang, L.X.Châu Ngô: Rational General Solutions of High Order Non-autonomous ODEs
June 2010. Eds.: F. Winkler, P. Paule

2010-04 S. Beuchler, V. Pillwein, S. Zaglmayr: Sparsity optimized high order finite element functions
for H(div) on simplices September 2010. Eds.: U. Langer, P. Paule

2010-05 C. Hofreither, U. Langer, C. Pechstein: Analysis of a non-standard finite element method
based on boundary integral operators September 2010. Eds.: B. Jüttler, J. Schicho

2010-06 M. Hodorog, J. Schicho: A symbolic-numeric algorithm for genus computation September
2010. Eds.: B. Jüttler, R. Ramlau

2010-07 M. Hodorog, J. Schicho: Computational geometry and combinatorial algorithms for the genus
computation problem September 2010. Eds.: B. Jüttler, R. Ramlau

2010-08 C. Koukouvinos, V. Pillwein, D.E. Simos, Z. Zafeirakopoulos: A Note on the Average Com-
plexity Analysis of the Computation of Periodic and Aperiodic Ternary Complementary Pairs
October 2010. Eds.: P. Paule, J. Schicho

The complete list since 2009 can be found at
https://www.dk-compmath.jku.at/publications/

Doctoral Program

“Computational Mathematics”

Director:
Prof. Dr. Peter Paule
Research Institute for Symbolic Computation

Deputy Director:
Prof. Dr. Bert Jüttler
Institute of Applied Geometry

Address:
Johannes Kepler University Linz
Doctoral Program “Computational Mathematics”
Altenbergerstr. 69
A-4040 Linz
Austria
Tel.: ++43 732-2468-7174

E-Mail:
office@dk-compmath.jku.at

Homepage:
http://www.dk-compmath.jku.at

Submissions to the DK-Report Series are sent to two members of the Editorial Board
who communicate their decision to the Managing Editor.

