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Abstract

Isogeometric Analysis is a numerical simulation method which uses the NURBS based representation of CAD models. NURBS
stands for non-uniform rational B-splines and is a generalization of the concept of B-splines. The isogeometric methoduses the
tensor product structure of 2- or 3-dimensional NURBS functions to parameterize domains, which are structurally equivalent to a
rectangle or a hexahedron. The special case of singularly parameterized NURBS surfaces and NURBS volumes is used to represent
non-quadrangular or non-hexahedral domains without splitting, which leads to a very compact and convenient representation.

If the parameterization of the physical domain is available, the test functions for the Isogeometric Analysis are obtained by
composing the inverse of the domain parameterization with the NURBS basis functions. In the case of singular parameterizations,
however, some of the resulting test functions are not well defined at the singular points and they do not necessarily satisfy the
required integrability assumptions. Consequently, the stiffness matrix integrals which occur in the numerical discretizations may
not exist.

After summarizing the basics of the isogeometric method, wediscuss the existence of the stiffness matrix integrals for 1-,
2- and 3-dimensional second order elliptic partial differential equations. We consider several types of singularities of NURBS
parameterizations and derive conditions which guarantee the existence of the required integrals. In addition, we present cases with
diverging integrals and show how to modify the test functions in these situations.

Keywords: singular parameterization, existence, stiffness matrix integral, isogeometric analysis, NURBS, CAD

1. Introduction

In various engineering applications, two major tasks are the
modeling and the numerical simulation of processes and phe-
nomena which are described by partial differential equations
acting on non-trivial geometric objects. In many cases, the
shape of a technical object or domain of interest is modeled
via tools from Computer Aided Design (CAD). On the other
hand, a widely used framework to simulate physical or techni-
cal processes, such as fluid flow or deformation of an object,
is the Finite Element Method (FEM). In the classical finite ele-
ment approach a mesh, containing geometric primitives suchas
triangles, tetrahedra or hexahedra, has to be generated from the
CAD model. If the boundary of the physical domain is partly
curved, then the mesh generation creates only an approximation
of the domain. Also, mesh generation for real-world CAD ob-
jects can be computationally expensive and may require exten-
sive human interaction for model repair. Therefore, a numerical
simulation framework that can eliminate the need for this task
is of great interest. Isogeometric Analysis, which was intro-
duced by Hughes et al. [1], has the potential to address these
problems and has become an active field of research in the area
of numerical simulation.

∗Corresponding author, Tel.:+43 732/2468-9178
Email addresses:thomas.takacs@dk-compmath.jku.at (T. Takacs),

bert.juettler@jku.at (B. Jüttler)

In Computer Aided Design the considered objects are usu-
ally represented by non-uniform rational B-splines (NURBS).
The isogeometric method applies numerical methods directly
to this representation of CAD models, since the parameteriza-
tion and the function spaces for the numerical simulation are
built up by the same basis functions. Various applications of the
isogeometric method have been studied, including problemsin
fluid dynamics [2, 3], in particular concerning the simulation of
blood flow [4], simulations in computational electromagnetics
[5], modeling deformation or vibration of solid structures[6–
8] and the application to shape optimization [9–11]. One may
especially consider problems where a high degree of smooth-
ness is required, like [12], where the isogeometric method has
numerous advantages compared to higher order Finite Element
Methods.

Recent developments include the introduction of the con-
cept of T-splines for Isogeometric Analysis [13, 14], which
forms the basis for methods extending the classical adaptive h-
refinement to the isogeometric method, see [15, 16]. In another
line of research, fundamental contributions concerning consis-
tency and stability of the method have been provided [17–20].

In this work we focus on the applicability of the numerical
methods in the case of singular parameterizations. In many sit-
uations one cannot avoid singularly parameterized objectsor
domains. This is due to the tensor-product structure of higher-
dimensional NURBS functions, which cannot implement non-
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quadrangular or non-hexahedral domains directly. Severalstud-
ies on the influence of mesh distortions or on the model quality
have been performed (e.g. [19, 21, 22]). The presence of singu-
larities in the parameterization can be caused by intrinsicprop-
erties of the geometry of the object or by distortions of regular
parameterizations, possibly due to mesh adaption in shape op-
timization. In this case, singularities can be avoided via some
constraints. On the other hand, if a single-patch parameteriza-
tion is used to represent non-quadrangular or non-hexahedral
domains (e.g., circular domains or spheres), then singularities
are necessarily present [23–25].

In this work we study whether, in the case of singular pa-
rameterizations, the basis functions from Isogeometric Analy-
sis are suitable for the numerical simulation. We analyze suffi-
cient conditions which guarantee that the basis functions be-
long to the required function spaces. We start with prelim-
inaries concerning the considered problems and the theoreti-
cal background in Section 2. Auxiliary results and notations
are presented in Section 3. We specify configurations of the
control points that lead toH1-basis functions for special cases
mentioned in Section 4 and in Section 5, for the one- and two-
dimensional case, respectively. In Section 6 we compare dif-
ferent approaches to parameterize special geometric objects.
Summing up, we develop a general framework to prove the
existence of the stiffness matrix integrals from the numerical
simulation.

2. Preliminaries

We shortly introduce the model problem, which is a second
order elliptic partial differential equation (PDE). We consider
the partial differential equation on a bounded and open domain.
On this domain we define a function space in which we can
solve the differential equation properly. This function space
can then be discretized, using the isogeometric method. In Iso-
geometric Analysis the same basis functions are used for the
parameterization of the domain and for the discretized func-
tion space. Concerning the formulation of the method and
the considered problems we follow previous papers, especially
[1, 16, 22]. The structure of this paper and the basic ideas of
the presented proofs follow and extend [26].

2.1. Numerical background

For d ∈ Z+ let Ω ⊆ Rd be an open and bounded domain
with Lipschitz boundary∂Ω = Γ = ΓD ∪ ΓN. We consider a
second order elliptic partial differential operatorL and a linear
operatorl, describing the boundary conditions. The boundary
operator defines Dirichlet boundary conditions onΓD and Neu-
mann boundary conditions onΓN. Further on letf : Ω → R

andg : Γ→ R be sufficiently smooth functions. For this setting
we analyze the following differential equation.

Model Problem 2.1 Find u : Ω→ R such that

Lu (ξ) = f (ξ) ∀ ξ ∈ Ω (1)

lu (ξ) = g (ξ) ∀ ξ ∈ Γ. (2)

Similarly to the classical FEM (see [27]), we can derive a
variational (weak) formulation from the general PDE. To con-
struct the variational formulation, the differential equation (1)
is multiplied with specific test functions and integrated over the
domainΩ. The boundary condition (2) is incorporated prop-
erly. Let V (Ω) = H1 (Ω) be the underlying Hilbert space for
both the space of test functions and the solution space, i.e.

V0 (Ω) =
{

v ∈ V (Ω) : lv
∣

∣

∣

ΓD
= 0

}

,

Vg (Ω) =
{

v ∈ V (Ω) : lv
∣

∣

∣

ΓD
= g

∣

∣

∣

ΓD

}

.

The function spaceH1 (Ω) is defined by

H1 (Ω) =
{

v ∈ L2 (Ω) : |∇v| ∈ L2 (Ω)
}

.

where the derivatives can be interpreted in a weak sense only.
With the use of theH1-seminorm

|v|1 = ‖∇v‖L2

the Hilbert space norm inH1 is defined via

‖v‖21 = ‖v‖
2
L2 + |v|21 .

We derive a bilinear forma (·, ·) : Vg × V0 → R and a linear
functional〈F, ·〉 : V0 → R such that the differential equation
in Problem 2.1 is equivalent (under suitable assumptions, see
below) to the following variational problem.

Model Problem 2.2(Variational formulation)Find u ∈ Vg (Ω)
such that

a (u, v) = 〈F, v〉 ∀ v ∈ V0 (Ω) .

More precisely, a solution of the classical formulation solves
the weak formulation if certain integrability conditions are ful-
filled. A weak solution solves the classical formulation if cer-
tain differentiability conditions are fulfilled. We refer to [27]
for a full analysis of the problem.

A typical example for a second order elliptic PDE is the fol-
lowing model problem.

Example 2.3 Find u : Ω→ R such that:

−∆u = f in Ω

u = gD onΓD

∇u.n = gN onΓN.

(3)

In this formulation,n is the outer normal vector onΓN and∆u
is the Laplacian of u. For this setting we get

a (u, v) =
∫

Ω

∇u.∇vdξ

and

〈F, v〉 =
∫

Ω

f vdξ +
∫

ΓN

gNvds.
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We assume that the bilinear forma and the linear functional
F are bounded. Since the operatorL (as in equation (1)) is
elliptic, the bilinear forma (·, ·) is coercive, i.e.

∃µ > 0 : µ ‖u‖2 ≤ a (u, u) ,

and therefore the theorem of Lax-Milgram can be applied to
Problem 2.2 to show the existence and uniqueness of the solu-
tion.

Now we provide some insight into the theoretical background
of Isogeometric Analysis. The isogeometric method is a special
approach to the discretization of partial differential equations on
non-trivial geometries. Most numerical methods are based on
Galerkin’s principle, which can be interpreted in the following
way. Finite-dimensional function spacesVg,h ⊆ Vg andV0,h ⊆
V0 are set up to solve the discretized model problem.

Model Problem 2.4 Find uh ∈ Vg,h (Ω) such that:

a (uh, vh) = 〈F, vh〉 ∀vh ∈ V0,h (Ω) .

The choice of the subspacesVg,h andV0,h (or its basis func-
tions) is called a Galerkin discretization. Solving the dis-
cretized problem rather than the original problem is calleda
Galerkin method. In Isogeometric Analysis the basis functions
spanningV0,h andVg,h are constructed from B-spline or NURBS
functions. From now on we assume thatVg,h = V0,h = Vh.

For a given basis{ψi}n−1
i=0 of Vh ⊆ V one can represent any

functionuh ∈ Vh as

uh =

n−1
∑

i=0

ψi ûi .

Thus uh can uniquely be described by its coefficient vector
(û0, . . . , ûn−1) = û ∈ Rn. The stiffness matrixA is defined by

A =
(

ai, j

)n−1

i, j=0
, with ai, j = a

(

ψ j , ψi

)

and the load vectorF by

F = (Fi)n−1
i=0 , with Fi = 〈F, ψi〉 .

Using this notation, one can easily see that the Model Problem
2.4 is equivalent to the linear system

Aû = F.

Any numerical method fitting into the framework of Galerkin
methods is defined by the choice of a basis{ψi}n−1

i=0 . The method
can be applied if one can ensure the existence of the matrix
A and the vectorF. In the case of coercive operators, as in
the variational formulation Problem 2.2, this is equivalent to
ψi ∈ H1 (Ω) for all i = 0, . . . , n− 1.

2.2. B-splines and NURBS

B-spline- or NURBS-functions are polynomial or rational
functions, respectively, defined over some parameter spaceΩ0.
In Isogeometric Analysis they are used to set up the Galerkin
discretization. We will adopt the notation from [16]. For a

precise and detailed theoretical background on B-splines and
NURBS in computer aided geometric design we refer the reader
to [28–30].

First we consider B-splines, which are determined by some
given degreep ∈ N and a knot vectorΘ = (θ0, . . . , θm−1). The
knot vector is a non-decreasing sequence of lengthm ∈ N of
real numbers. Forn = m− p − 1 andi = 0, . . . , n− 1 thei-th
B-splineBi,p of degreep is defined by the recurrence

Bi,0 (x) =











1 for θi ≤ x ≤ θi+1

0 else

Bi,p (x) =
x− θi

θi+p − θi
Bi,p−1 (x) +

θi+p+1 − x

θi+p+1 − θi+1
Bi+1,p−1 (x) ,

where all fractions with a zero denominator are considered to be
equal to zero. The support of each B-splineBi,p is the interval
[

θi , θi+p+1

]

. The parameter space is set to beΩ0 =
]

θp, θm−p−1

[

,
which covers the support of each B-spline, except for the
boundary intervals

[

θ0, θp

]

and
[

θm−p−1, θm−1

]

.
The concept of B-splines can be generalized by introduc-

ing non-uniform rational B-splines (NURBS) of degreep. If
weightswi ∈ R+ are given, thei-th non-uniform rational B-
splineRi,p is defined by

Ri,p (x) =
Bi,p (x) wi

∑n−1
j=0 B j,p (x) w j

.

In order to extend the concept of B-splines to two dimensions
one can introduce bivariate tensor product B-splines. Conse-
quently, a degree and a knot vector is set for each direction.We
consider a degreep = (p1, p2), a knot vectorΘ =

(

Θ(1),Θ(2)
)

,

withΘ(1) ∈ Rm1 andΘ(2) ∈ Rm2, and set(n1, n2) = n = m−p−1.
Using the notationi = (i, j) andx = (x, y)T , the i-th bivariate
B-spline of degreep and knot vectorΘ is defined by

Bi,p : Ω0 → R

x 7→ Bi,p1 (x) B j,p2 (y) ,

for 0 ≤ i ≤ n − 1. HereBi,p1 is thei-th B-spline corresponding
to p1 andΘ(1), andB j,p2 is the j-th B-spline corresponding to
p2 andΘ(2). The parameter spaceΩ0 is defined by

Ω0 =
]

θ(1)
p1
, θ

(1)
m1−p1−1

[

×
]

θ(2)
p1
, θ

(2)
m2−p2−1

[

.

As in the one-dimensional case, NURBS functions Ri,p are de-
fined by

Ri,p (x) =
Bi,p (x) wi

∑n−1
j=0 Bj ,p (x) wj

for some positive weightswi ∈ R+.

Remark 2.5 If all weights wi are equal, then the NURBS func-
tion Ri,p simplifies to the B-splineBi,p. Consequently, B-spline
functions are special instances of NURBS functions, indepen-
dent of the dimension d.
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2.3. Isogeometric analysis
In this section we recall the definition and the notations of

Isogeometric Analysis. The formal notation is presented in-
dependent from the dimensiond of the physical spaceΩ, but
follows the notational standards for the multivariate case. In
the following the dimension is considered to bed = 1 ord = 2,
where ford = 1 the standards for one-dimensional variables are
used (e.g. writex rather thanx).

We set the index spaceI to

I =
{

i ∈ Nd : 0 ≤ i ≤ n − 1
}

and the parameter space toΩ0 = ]0, 1[d without loss of gener-
ality. The parameterizationG of Ω defined by

G : Ω0 → R
d

x 7→
∑

i∈I
Piφi (x) ,

is defined by basis functionsφi : Ω0 → R and control points
Pi ∈ Rd for eachi ∈ I. In Isogeometric Analysis the functionsφi

are usually NURBS of some given degreep. The physical space
Ω is represented as the image ofΩ0 underG, i.e. G (Ω0) = Ω.
In case of a bijective and continuously differentiable parame-
terizationG (with C1-inverse) the test functions, i.e. the basis
functions of the function spaceVh ⊂ {v : Ω→ R}, are defined
by

ψi = φi ◦G−1 : Ω→ R.

Figure 1 gives an overview of the functionsG, φi andψi .

Ω0 Ω

G =
∑

Piφi

φi ψi

R

Figure 1: Scheme for the two-dimensional parameterizationG with parameter
spaceΩ0, physical domainΩ and basis functionsφi andψi

Eachvh ∈ Vh possesses a representation in the basis{ψi}i∈I,
i.e. a vector(v̂i)i∈I = v̂ ∈ Rn such that

vh (ξ) =
∑

i∈I
ψi (ξ) v̂i

for all ξ ∈ Ω. In the one-dimensional case we will setφi = Ri,p

and in the two-dimensional caseφi = Ri,p.

2.4. Existence analysis
This paper provides criteria, which guarantee that the meth-

ods from Isogeometric Analysis can be applied for a specific
set of basis functionsφi and control pointsPi . To guarantee the
applicability of the numerical method it is necessary that the
function spaceVh (Ω) is a subspace ofH1 (Ω). We will focus
on the following problem.

Problem 2.6 For which configurations of the control points
(

Pj

)

j∈I
do the test functions fulfillψi ∈ H1 (Ω)?

Consequently, we have to verify that the test functionsψi are
in H1 (Ω). More precisely, we will derive conditions on the
control points that guarantee the existence of some or all ofthe
stiffness matrix integrals. A related problem has been consid-
ered in [21], where the influence of distortions of the control
point mesh on the regularity of the parameterization has been
analyzed.

Clearly, in the case of NURBS the functionsψi are inL2 (Ω),
as their graphs are bounded rational curves or surfaces. Hence
we only have to verify if∇ψi is an L2-function, Problem 2.6
simplifies to the following.

Problem 2.7(Existence problem)For which configurations of
the control points

(

Pj

)

j∈I
do the squares of the seminorms|ψi |21 =

‖∇ψi‖2L2 exist?

It is more convenient to analyze the square of the seminorm
instead of the seminorm itself. Note that

|ψi |21 = ‖∇ψi‖2L2 =

∫

Ω

∇ψi .∇ψi dξ (4)

is the stiffness matrix integralai,i for the model problem in
Example 2.3. The existence of‖∇ψi‖2L2 means that the un-
derlying L2-norm-integral is bounded. If the parameterization
G : Ω0 → Ω is regular in every point ofΩ0, then all test
functions are inH1 (Ω). If singularities occur this is not true
in general. Unfortunately, one cannot state general and sim-
ple conditions to answer the Existence Problem 2.7 for singu-
lar parameterizations. We will instead state and validate suffi-
cient conditions for some classes of configurations, which are
specified in the next chapters. Those model cases represent the
most commonly used singular parameterizations in Isogeomet-
ric Analysis. The presented proofs can be modified and applied
to larger classes of singular parameterizations.

3. Assumptions and conditions

In some situations, singular parameterizations cannot be
avoided, for instance if one wants to parameterize a triangular
domain or the interior of a circle. The latter has been done in
[22], in which different ways to parameterize specific geomet-
ric objects were compared. We will state theoretical results to
some of the analyzed problems in [22]. Additional conditions
on the parameters and on the parameterization in general have
to be satisfied in order to show basic results.

3.1. General assumptions

We consider open knot vectors only, i.e. the first and last knot
is repeatedp+ 1 times, which leads to the interpolation of the
B-spline on the boundary. Without loss of generality all knot
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vectors (forν = 1, 2) fulfill

θ
(ν)
0 = . . . = θ

(ν)
pν = 0

θ
(ν)
mν−pν−1 = . . . = θ

(ν)
mν−1 = 1

θ
(ν)
j ≤ θ

(ν)
j+1 for 0 ≤ j ≤ mν − 1

θ
(ν)
j < θ

(ν)
j+pν

for 1 ≤ j ≤ mν − 2.

(5)

The parameterizationG is continuously differentiable onΩ0

and its inverse is differentiable onΩ. The parameterizationG
but not necessarily its inverse can be extended continuously to
Ω0 with G

(

Ω0

)

= Ω. We also assume thatG : Ω0 → Ω is
bijective. If restricted to the interior of the domain, thiscon-
dition is always required for the analysis. To fulfill all these
requirements, the parameterization does not have to be regular.
A parameterizationG : Ω0 → Ω is called singular inx0 ∈ Ω0,
if

det∇G (x0) = 0.

Note that the values of the parameterizationG and of the gradi-
ent∇G at boundary points are defined by their respective limits.

We assume thatG is singular at the originx0 = O and that
it is regular inΩ0\x0. Without loss of generalityG (x0) = O.
The condition “det∇G (x) ≥ 0” is necessary for the bijectivity
of the parameterization. The bijectivity on the closed setsis not
fulfilled for the class of parameterizations given in Chapter 6.1,
but we can still state conditions to solve the existence problem
in that case.

3.2. Integrability condition

In order to solve Problem 2.7, some preliminary considera-
tions are needed. In the case of singularly parameterized do-
mains, the integrand|∇ψi (x)|2 of the integral in equation (4)
may tend to infinity forx → x0. We need to specify the be-
havior of the integrand around the singularity in order to prove
the existence of the integral. To characterize the asymptotic
behavior of a function we will use a slight modification of the
classical Landau notation.

Definition 3.1 Let f, g ∈ C (Ω0), with g, 0 in Ω0. Let

Uδ (x0) = {x ∈ Ω0 : ‖x − x0‖ ≤ δ}

be theδ-neighborhood ofx0.

• If ∀ǫ > 0 ∃δ > 0 :
∣

∣

∣

∣

∣

f (x)
g (x)

− 1
∣

∣

∣

∣

∣

≤ ǫ ∀x ∈ Uδ (x0)

we say that the function f is asymptotically equal to g near
x0, in symbols f∼ g.

• If ∃C > 0 ∃δ > 0 :

| f (x)| ≤ C |g (x)| ∀x ∈ Uδ (x0)

we say that f is of the order of g nearx0, in symbols f∈
Ox0 (g).

• If ∀ǫ > 0 ∃δ > 0 :

| f (x)| ≤ ǫ |g (x)| ∀x ∈ Uδ (x0)

we say that g dominates f nearx0, in symbols f∈ ox0 (g).

In the presence of only one singular point we shall writef ∈
O(g) and f ∈ o(g). Note that “∼” is an equivalence relation on
the function spacẽC (Ω0) = { f ∈ C (Ω0) : f , 0}.

The transformation of the considered integral to the parame-
ter spaceΩ0 can always be written as an integral of the form

∫

Ω0

f (x)
g (x)

dx,

which is the integral of a fraction, where the numerator is non-
negative and bounded from above and the denominator might
tend to zero at some points.

Theorem 3.2(Integrability condition)Let

f , g ∈ C
(

Ω0

)

,

f , g ∈ C (Ω0, piecewise) ,

with f, g, f , g ≥ 0. There exists a pointx0 ∈ Ω0, where

g (x0) = g (x0) = 0.

In all other points we have f, g, f , g > 0. Assume that

• f ∈ Ox0

(

f
)

and

• g ∼ g

for the singular pointx0. Under these assumptions, f and g
fulfill

∫

Ω0

f (x)
g (x)

dx < ∞,

provided thatf andg fulfill

∫

Ω0

f (x)
g (x)

dx < ∞.

Proof. A sketch of the proof can be found in the Appendix.

This theorem states that the existence of an integral of a ra-
tional function depends only on the asymptotic behavior of the
numerator and denominator around the singularity. The result
from the theorem can be generalized to cases which contain
finitely many singular points.

3.3. Assumptions on the asymptotic behavior

A description of the asymptotic behavior of the basis func-
tions φi (x) near the singularityx0 is necessary for the analy-
sis. To describe the asymptotic behavior we examine the one-
and the two-dimensional case separately. In the case of a one-
dimensional domain we need the following definition.
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Definition 3.3 (NAM family, 1D) A set of univariate functions
(φi (x))i∈I is called anormalized asymptotically monomialfam-
ily (NAM family) of degree p near x0 if there exist positive con-
stants ai for all 0 ≤ i ≤ p such that

φi (x) ∼ ai (x− x0)i (6)

and
∑

i∈I
φi (x) = 1 (7)

in a neighborhood of x0.

If (φi)i∈I is a NAM family of degreep nearx0 = 0 it follows
from (6) thatφ′i ∼ iai xi−1 for i ≥ 1. Using the condition from
equation (7) we get

φ′0 (x) = −
∑

k≥1

φ′k (x) ∼ −
∑

k≥1

ckxk−1 ∼ −c1.

Hence there exist positive constantsci > 0 for i = 1, . . . , p, such
that

φ′0 (x) ∼ −c1,

φ′1 (x) ∼ c1, and

φ′k (x) ∼ ckxk−1 for k = 2, . . . , p.

If the corresponding knot vector fulfills equation (5) it canbe
shown that NURBS of degreep form a NAM family of degree
p nearx0 = 0. In this case all functionsφk with k > p are equal
to 0 nearx0.

In the two-dimensional case we require a tensor product
structure to define a normalized asymptotically monomial fam-
ily near the singularityx0.

Definition 3.4 (NAM family, 2D) A set of bivariate functions
(φi (x))i∈I is called anormalized asymptotically monomialfam-
ily of degreep = (p1, p2) nearx0 = (x0, y0)T if there exist ai > 0
and bj > 0 for all 0 ≤ i ≤ p1 and0 ≤ j ≤ p2 such that

φ(i, j) (x, y) ∼ aib j (x− x0)i (y− y0) j

and
∑

(i, j)∈I
φ(i, j) (x, y) = 1

in a neighborhood ofx0.

Similar to the one-dimensional case we can derive results for
the derivatives of the functionsφ(i, j). If

(

φ(i, j)

)

(i, j)∈I
is a NAM

family of degreep nearx0 = O then

∇φ(0,0) (x, y) ∼














−a1b0

−a0b1















,

∇φ(0, j) (x, y) ∼














−a1b jy j

ja0b jy j−1















,

∇φ(i,0) (x, y) ∼














iaib0xi−1

−aib1xi















, and

∇φ(i, j) (x, y) ∼














iaib j xi−1y j

jaib j xiy j−1















(8)

for 1 ≤ i ≤ p1 and 1≤ j ≤ p2. This result can be shown sim-
ilarly to the one-dimensional case by analyzing mixed deriva-
tives of the double sum.

One can show that NURBS of degreep are a normalized
asymptotically monomial family of degreep nearx0 = O. In
this case all functionsφ(i, j) with i ≥ p1 + 1 or j ≥ p2 + 1 fulfill
φ(i, j) = 0 in a neighborhood ofx0.

3.4. Structurally equivalent parameterizations

We introduce a framework to show existence results for gen-
eral parameterizations where theH1-seminorm integrals can
not be computed explicitly. Results can be derived if the gen-
eral parameterization is structurally equivalent to a reference
parameterization where existence results are known.

Definition 3.5 Two parameterizationŝG and G are called
structurally equivalent ifĜ

(

G−1
)

is regular and orientation-

preserving and there exist constantsλ andλ satisfying0 < λ <

λ such thatJ = ∇
(

Ĝ
(

G−1
))

fulfills λI ≤ JTJ ≤ λI in Ω.

In this definition the inequalities are interpreted as spectral
inequalities of symmetric matrices andI is the identity matrix
of dimensiond. We say that under these conditions the matrix
JTJ is uniformly positive definite. For structurally equivalent
parameterizations we can show the following.

Theorem 3.6 If two parameterizationŝG (with test functions
ψ̂i on Ω̂) andG (with test functionsψi onΩ) with common ba-
sis functionsφi onΩ0 and common index setI are structurally
equivalent, thenψi ∈ H1 (Ω) if and only ifψ̂i ∈ H1

(

Ω̂
)

.

Proof. We have

|ψi |21 =
∫

Ω

‖∇ψi (ξ)‖2 dξ

and

∣

∣

∣ψ̂i

∣

∣

∣

2

1
=

∫

Ω̂

∥

∥

∥

∥

∇ψ̂i

(

ξ̂
)

∥

∥

∥

∥

2
dξ̂

=

∫

Ω

∥

∥

∥J−T∇ψi

∥

∥

∥

2
det(J) dξ

=

∫

Ω

〈

(

JTJ
)−1
∇ψi ,∇ψi

〉
√

det
(

JTJ
)

dξ

for J = ∇
(

Ĝ
(

G−1
))

. SinceJTJ is uniformly positive definite
we can bound the seminorms by

(

λ
d
2 /λ

)

|ψi |21 ≤
∣

∣

∣ψ̂i

∣

∣

∣

2

1
≤

(

λ
d
2 /λ

)

|ψi |21 .

Henceψi ∈ H1 (Ω) if and only if ψ̂i ∈ H1
(

Ω̂
)

.

If both parameterizations are in NURBS form, then this con-
dition can be guaranteed by representing the determinant det (J)
as a NURBS function. If all coefficients and weights are posi-
tive, then the condition is satisfied.

The framework from this chapter is applied to specific exam-
ples presented in Subsections 4.3 and 5.3.
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4. The one-dimensional case

In this section we consider the one-dimensional differential
equation (1) and answer the Existence Problem 2.7 for one spe-
cific class of singular parameterizations. The core ideas can be
generalized to higher dimensions.

The given functionsφi : Ω0 → R for i ∈ I form a NAM
family of degreep nearx0 = 0 (such as NURBS of degreep
with open knot vectors). Fromφi we construct the test function

ψi (ξ) = φi ◦G−1 (ξ) .

We assume that the firstα control points are equal, so a part of
the control polygon degenerates to one point. This condition on
the control points causes the parameterization to be singular in
the pointx0 = 0. In fact, this is the most general case, which
still fulfills all the assumptions from Subsection 3.1. In the one-
dimensional case a singular parameterization does not leadto a
different geometry of the domain as compared to the geometry
of the parameter domain, hence it is of little practical use but
still of some theoretical interest.

4.1. Existence results
The existence of the square of theH1-seminorm ofψi has

to be analyzed for eachi ∈ I. Under the assumption thatG is
C1-invertible the integral can be transformed from the physical
spaceΩ = G (Ω0) to the parameter spaceΩ0, hence

|ψi |21 =

∫

Ω

(

∂ψi

∂ξ

)2

dξ

=

∫

Ω0















∂φi

∂x

(

∂G
∂x

)−1












2 (

∂G
∂x

)

dx

=

∫ 1

0

(

∂φi

∂x

)2 (

∂G
∂x

)−1

dx.

Thus, the square of the seminorm is an integral of a fraction of
two functions

|ψi |21 =
∫ 1

0

Ni (x)
D (x)

dx

where

Ni (x) =
(

φ′i (x)
)2

and

D (x) = G′ (x) .

The asymptotic behavior of the integrand can be computed ex-
plicitly, since the functionsφi are a NAM family of degreep
nearx0 = 0 (as in Definition 3.3). The asymptotic behavior of
the numeratorNi is

Ni (x) =
(

φ′i (x)
)2 ∼ c2

i xmax(2(i−1),0), (9)

wherec0 = −c1. From the definition ofG (x) it follows that the
denominatorD is asymptotically equal to

D (x) = G′ (x) ∼ c0P0 +

p
∑

i=1

ciPi x
i−1. (10)

Existence results for basic cases can be derived using this
asymptotic representation. We examine those cases where the
first α control points are equal.

Theorem 4.1(Existence, 1D case)Letα ∈ Z+, with2 ≤ α ≤ p.
Assume that the control points satisfy

• Pi = 0, for 0 ≤ i ≤ α − 1, and

• Pα , 0,

then

• ψk < H1 (Ω) for 0 ≤ k ≤
⌊

α
2

⌋

and

• ψk ∈ H1 (Ω) for k >
⌊

α
2

⌋

.

Proof. First we analyze the behavior of the denominator. For
0 ≤ i ≤ α − 1 the control points fulfillPi = 0, hence we can
conclude from equation (10) that

D (x) ∼ c0P0 +

p
∑

i=0

ciPi x
i−1 ∼

p
∑

i=α

ci Pi x
i−1,

and withPα , 0 it follows

D (x) ∼ cαPαxα−1.

Since the previous analysis shows thatN0 andN1 are asymptot-
ically equal, we do not have to treat the casek = 0 separately,
but can assumek ≥ 1 from now on. From the integrability
condition Theorem 3.2 and from equation (9) it follows that the
H1-seminorm ofψk exists if and only if the integral

c2
k

cαPα

∫ 1

0
x2(k−1)−(α−1) dx

exists, which is equivalent to 2k − α − 1 > −1. Henceψk is in
H1 (Ω) if and only if k > α

2 .

In this proof we analyzed the asymptotic behavior of the in-
tegrand around the singularity. This strategy can be generalized
to other singular pointsx , x0. In Theorem 4.1 we assume that
the firstα control points degenerate to one point, which results
in basis functions that are not inH1 (Ω). Therefore numerical
methods cannot be applied directly.

The following example illustrates these results.

Example 4.2 Consider a one-dimensional parameterization of
degree p= 3 with knot vector

Θ =

(

0, 0, 0, 0,
1
2
, 1, 1, 1, 1

)

,

and control points as in Table 1.

i = 0 i = 1 i = 2 i = 3 i = 4

Pi 0 0 1 2 3

Table 1: Control points for Example 4.2
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0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

φi (x)

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

ψi (ξ)

Figure 2: Functionsφi onΩ0, ψi onΩ and control pointsPi for i = 0, . . . , 4

We haveΩ0 = ]0, 1[ andΩ = ]0, 3[. We consider B-Splines
φi onΩ0 and test functionsψi onΩ for i = 0, . . . , 4, which are
shown in Figure 2. The graphs of the functionsφ0 andψ0 are
dotted lines and the graphs ofφ1 andψ1 are dashed lines.

Theorem 4.1 states that in this caseψ0 and ψ1 are not in
H1 (Ω). The integrands of the stiffness matrix integrals cor-
responding to the test functions are shown in Figure 3. The
two diverging functions are the integrands corresponding to ψ0

(dotted line) andψ1 (dashed line), respectively.

0.5 1.0 1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0

∇ψi (ξ)
2

Figure 3: Integrands(∇ψi (ξ))2 onΩ for i = 0, . . . , 4

4.2. Modification of the function space

In the case of singular parameterizations it may happen that
some of the test functions are not inH1, as we have already
seen. So, generally, one cannot ensure that the discretizedfunc-
tion spaceVh is a subspace ofH1. For special cases, however, a
method to cope with this problem can be developed. One possi-
ble way would be to simply omit those basis functions inVh that
are not inH1. In this case Dirichlet boundary conditions might
not be implemented correctly. Hence, the function spaceVh has
to be modified in a different way to maintain a full numerical
analysis without losing to much information.

Considering the special case of Theorem 4.1, a new finite-
dimensional function spacẽVh, fulfilling Ṽh ⊆ Vh andṼh ⊆ H1,
is set up. Therefore, we construct a new function onΩ0 from

the sum of the old ones, setting

ΦA (x) =
A

∑

i=0

φi (x) ,

with A =
⌊

α
2

⌋

. A similar approach was taken in the examples in
[1]. Using this notation, the parameterization fulfills

G (x) = ΦA (x) P0 +

n−1
∑

i=A+1

φi (x) Pi for x ∈ Ω0,

since the firstα control points are equal by assumption andA <

α. The new basis functions on the physical domain are defined
as

ΨA (ξ) = ΦA

(

G−1 (ξ)
)

Ψi (ξ) = φi

(

G−1 (ξ)
)

for A+ 1 ≤ i ≤ n− 1

for ξ ∈ Ω. It is easy to see thatΨi = ψi for i ≥ A + 1. The
basis of the function spacẽVh is the set{Ψi}i=A,...,n−1 containing
the newly defined functions. One can easily see thatṼh is a
subspace ofVh since

ΨA (ξ) =
A

∑

i=0

ψi (ξ)

and all other basis functions ofṼh are contained inVh by defi-
nition.

To proveṼh ⊂ H1 we need to compute the derivative ofΦA.
For x beeing in a neighborhood ofx0 = 0 the condition

p
∑

i=0

φi (x) = 1

implies

A
∑

i=0

φi (x) = 1−
p

∑

i=A+1

φi (x) ,

for 0 ≤ A ≤ p− 1. Hence

Φ′A (x) =

A
∑

i=0

φ′i (x) = −
p

∑

i=A+1

φ′i (x)

∼ −
p

∑

i=A+1

Ci x
i−1 ∼ −CA+1xA.

From this it follows that|ΨA|21 exists if and only if

∫ 1

0

(

−CA+1xA
)2

CαPαxα−1
dx

exists. This is equivalent to the existence of|ΨA+1|21 = |ψA+1|21,
which we already considered in Theorem 4.1. Summing up, it
follows thatΨA is in H1 (Ω). Theorem 4.1 states that all other
basis functionsΨi , for i ≥ A+ 1, are inH1, henceṼh ⊂ H1.

One can even show thatṼh = Vh ∩ H1, which is in some
sense optimal. The functionΦA has the property that it is non-
negative and thatΦA (0) = 1. SoΨA is interpolating at the
boundary.
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Example The functionsΦA andΨA corresponding to the set-
ting of Example 4.2 are shown in Figure 4 (ΦA and ΨA are
dashed).

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ΦA (x) φi (x)

0.5 1.0 1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0

Ψi (ξ)

Figure 4: FunctionsΦA andφi onΩ0 for i = 2, . . . ,4,Ψi onΩ for i = 1, . . . ,4
and control pointsPi for i = 0, . . . , 4

The integrands of the stiffness matrix integrals correspond-
ing to the test functionsΨi are shown in Figure 5, where the
graph of the function(∇ΨA (ξ))2 is a dashed line. In this case
all functions are bounded.

0.5 1.0 1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0

∇Ψi (ξ)
2

Figure 5: Integrands(∇Ψi (ξ))2 onΩ0 for i = 1, . . . ,4

4.3. Swept parameterizations of two-dimensional domains
The results of Theorem 4.1 can be carried over to two-

dimensional domains described by special parameterizations.
We consider a rectangular domainΩ having a two-dimensional
parameterizationG of degreep with control points(Pi)i∈I. Fig-
ure 6 shows an example of a rectangular control point grid
which is constructed from the control polygon given by Table1
(see Example 4.2). In this case the degree isp = (3, 3).

Theorem 4.3 Letα ∈ Z+, with 2 ≤ α ≤ p1. We consider a two-
dimensional parameterizationG consisting of basis functions
(φi)i∈I and control points(Pi)i∈I and a one-dimensional param-
eterization G with the control polygonQ = (Qi)i∈{0,...,n1−1} fulfill-
ing the assumptions of Theorem 4.1. We assume that the control

points fulfillP(i, j) =
(

Qi ,P j

)T
for all i , j, where

(

P j

)

j∈{0,...,n2−1}
is

a strictly monotonically increasing sequence.
Under these assumptions

ψ(i, j) ∈ H1 (Ω)

(0, 0)T (1, 0)T

(0, 1)T

Figure 6: Control points for a swept parameterization

if and only if0 ≤ i ≤
⌊

α
2

⌋

.

The proof of this theorem takes advantage of the tensor-
product structure of the bivariate NURBS functions and follows
directly from Theorem 4.1. In this situation the function space
Vh can be modified similar to the one-dimensional case. The
framework follows the method introduced in Subsection 4.2.

With the help of Theorem 3.6 the results of Theorem 4.3 can
be carried over to more general parameterizations. As an exam-
ple we consider the following parameterization.

Example 4.4 Let p = (2, 2) and consider a quarter of a cir-
cular ring having the parameterization̂G constructed via the
control points given in Figure 7.

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Figure 7: Circular ring and control points

This parameterization of the circular ring is structurally
equivalent to the parameterizationG given in Figure 8. The
constantsλ andλ as defined in Theorem 3.6 can be chosen as
λ = 1 andλ = 10.99.

Figure 9 shows the Jacobian determinant ofĜ
(

G−1
)

. One
can show that the determinant is bounded from above and be-
low by positive constants.

Because of the given structure of the parameterization all test
functions corresponding to the inner6 control points are not in
H1. This follows directly from Theorems 3.6 and 4.3.

To set up conditions on the control points which guarantee
that two parameterizations are structurally equivalent isbeyond
the scope of this paper.

The basic structure of the previously developed methods for
the one-dimensional case can be generalized to various cases of

9



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Reference rectangle corresponding to Figure 7

0.0

0.5

1.0

0.0

0.5

1.0 1.5

2.0

2.5

3.0

Figure 9: Jacobian determinant det(J) for the circular ring

two-dimensional parameterizations, which we will study inthe
next section.

5. The two-dimensional case

In the bivariate case we analyze the existence of the stiffness
matrix integrals derived from the differential equation (2.1) on
a two-dimensional domainΩ, hence the main task is to answer
the Existence Problem 2.7.

5.1. Assumptions

The functions(φi)i∈I form a NAM family of degreep near
x0 = O, such as NURBS of degreep with open knot vectors.
The parameterization has to be regular everywhere, except for
the singularity atx0 = O. There exist different configurations
of the control point grid, that lead to such a singularly parame-
terized domain. In the following we concentrate on two specific
cases, which are of practical interest. In the first case (Assump-
tion 5.1) the index set of degeneration is a rectangle and all
control points in that set degenerate to one point. In the sec-
ond case (Assumption 5.2) the index set of degeneration is an
L-shape, where all points in the set are collinear.

Assumption 5.1(Case 1: rectangle)Letα = (α1, α2) with 1 ≤
α ≤ p. The index setDα ⊆ I fulfills

Dα = {i ∈ I : 0 ≤ i ≤ α − 1}

and the control points fulfill

• Pi = O for i ∈ Dα and

• Pi , O for i ∈ I\Dα.

The triangles

1. △11 = △
(

O,P(α1,0),P(α1,1)
)

2. △12 = △
(

O,P(α1,0),P(0,α2)
)

3. △13 = △
(

O,P(0,α2),P(1,α2)
)

do not degenerate.

An example for the rectangle-case can be seen in Figure 10,
whereα1 = 3 andα2 = 4. The dots represent double indices
(i, j) ∈ I. The dots inside the bold-lined rectangle represent the
setDα.

α1

α2

i

j

(0, 0)

Figure 10: Index setDα for case 1 (rectangle)

Figure 11 shows an example of a control point grid for bi-
variate B-Splines of degreep = (3, 3) along with the triangles
△11, △12 and△13. The control points that lie on a common thin
continuous or dashed line have a commoni- or j-index, respec-
tively. Points that are close together in the figure are meantto
be equal. This example is a valid Case-1-situation forα1 = 2
andα2 = 3.

△11

△13

△12

(0, 0)T

Figure 11: Triangles△11, . . . ,△13 for case 1 (withα1 = 2,α2 = 3)

Assumption 5.2(Case 2: L-shape)Let α = (α1, α2) andβ =
(β1, β2) with 1 ≤ α ≤ p andα ≤ β ≤ p + 1. The two index sets
Dα andDβ are defined by

Dα = {(i, 0) ∈ I : 0 ≤ i ≤ α1 − 1}
∪ {(0, j) ∈ I : 0 ≤ j ≤ α2 − 1}
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and

Dβ = {(i, 0) ∈ I : 0 ≤ i ≤ β1 − 1}
∪ {(0, j) ∈ I : 0 ≤ j ≤ β2 − 1} .

The control points fulfill

• Pi = O for i ∈ Dα,

• Pi , O for i ∈ I\Dα and

the pointsPj are collinear forj ∈ Dβ and the triangles

1. △21 = △
(

O,P(α1,0),P(1,1)
)

2. △22 = △
(

O,P(1,1),P(2,1)
)

3. △23 = △
(

O,P(1,1),P(1,2)
)

4. △24 = △
(

O,P(0,α2),P(1,1)
)

do not degenerate.

Figure 12 gives an overview of the index setsDα (bold con-
tinuous line) andDβ (dashed line) for the L-shape-case, where
α1 = 3,α2 = 4, β1 = 4 andβ2 = 5.

α1

α2

β1

β2

i

j

(0, 0)

Figure 12: Index setsDα andDβ for case 2 (L-shape)

In Figure 13 we consider B-Splines of degreep = (3, 3). The
figure shows an example of a control point grid and triangles
△21, △22, △23 and△24 for a valid Case-2-situation (α1 = α2 = 2
andβ1 = β2 = 4). This figure is to be interpreted similar to
Figure 11.

△21△24

△23 △22

(0, 0)T

Figure 13: Triangles△21, . . . ,△24 for case 2 (withα1 = α2 = 2)

The additional assumptions on the triangles (as depicted in
Figure 11 and 13) are sufficient but not necessary to prove the
existence of the integrals. It might happen that some of the tri-
angles degenerate, but nevertheless all integrals may still exist.

5.2. Results
Similar to the one-dimensional case we have to analyze the

square of theH1-seminorm of the test functionsψi . First the
integral is transformed to the parameter domain, then the un-
derlying structure of the specific integral is analyzed. Applying
the substitution rule to the bivariate integral leads to

|ψi |21 =

∫

G(Ω0)
‖∇ψi (ξ)‖2 dξ

=

∫

Ω0

∥

∥

∥(∇G)−T ∇φi

∥

∥

∥

2
det(∇G) dx

=

∫

Ω0

‖Cof (∇G)∇φi‖2

det(∇G)
dx,

where Cof(∇G) is the cofactor matrix of the Jacobian matrix
∇G, with

Cof















∂G1
∂x

∂G1
∂y

∂G2
∂x

∂G2
∂y















=















∂G2
∂y − ∂G2

∂x

− ∂G1
∂y

∂G1
∂x















.

Hence theH1-seminorm can be written as

|ψi |21 =
∫

Ω0

Ni (x, y)
D (x, y)

dx,

with the numeratorNi = ‖Cof (∇G)∇φi‖2 and the denominator
D = det(∇G).

The denominatorD (x, y) can be represented by the double
sum

D (x, y) =
∑

k,l∈I
S (k, l) (x, y)△k,l ,

where

S (k, l) = φ(1)
k φ

(2)
l − φ

(2)
k φ

(1)
l

and

△k,l =
1
2

(

P1
kP2

l − P2
kP1

l

)

.

Here△k,l is the area of the triangle△ (O,Pk,Pl). The numerator
Ni (x, y) fulfills

Ni (x, y) =
∑

k,l∈I
S (k, i) S (l, i) 〈Pk ,Pl〉 . (11)

Using this representation we can prove existence results for
the model cases described in Assumptions 5.1 and 5.2.

Theorem 5.3 If Assumption 5.1 (Case 1) or Assumption 5.2
(Case 2) is fulfilled, then all test functionsψi , for i ∈ I, are in
H1 (Ω).

The core idea of the proof is to analyze the asymptotic behav-
ior of the denominator and of the numerator separately. Each
function depends on the control pointsPi and on the basis func-
tionsφi , therefore the asymptotic behavior of both denominator
and numerator can be computed explicitly under the assump-
tions of Section 3. Finally the integrability condition (Theorem
3.2) leads to a rational function that can be integrated overthe
parameter domain.
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Proof of Theorem 5.3.We prove that the square of theH1-
seminorm of the functionψi is well-defined. The denominator
has a double sum structure, where we sum over the index setI

twice. The bivariate functionD [S,T] is defined by

D [S,T] =
∑

k∈S

∑

l∈T
S (k, l)△k,l , (12)

which is a partial sum of the denominator over some smaller
index setsS andT. It is clear, thatD (x, y) = D [I, I] (x, y) by
definition. The asymptotic behavior ofD nearx0 depends only
on some of the basis functions. Hence we can define a proper
subsetK of I, such thatD [I, I] ∼ D [K,K] and |K| ≪ |I|. The
setK is of course depending on the degeneration of the control
grid.

It is obvious that△k,l = △l,k = 0 for all k ∈ Dα and for all
l ∈ I, since all control points corresponding toDα are equal to
O. HenceD [I, I] = D [J, J] for J = I\Dα.

The specific setting ofK is

K = {(α1, 0) , (α1, 1) , (0, α2) , (1, α2)}

in Case 1 and

K = {(α1, 0) , (0, α2) , (1, 1) , (1, 2) , (2, 1)}

in Case 2. Now the asymptotic behavior ofD [K,K] can be
computed explicitly and follows directly from the Assumptions
5.1 and 5.2, respectively, and from the results derived fromDef-
inition 3.4. In Case 1 there exist constantsK1,K2,K3 > 0 such
that

D [K,K] ∼ K1x2α1−1 + K2xα1−1yα2−1 + K3y2α2−1

and in Case 2 there exist constantsK1,K2,K3,K4 > 0 such that

D [K,K] ∼ K1xα1 + K2x2y+ K3xy2 + K4yα2 .

Note thatKi > 0 if △1i or△2i does not degenerate, respectively.
For this representation ofD [K,K] one can easily show via the
equations (8), that in both cases

∣

∣

∣

∣
φ

(1)
i φ

(2)
j

∣

∣

∣

∣
,
∣

∣

∣

∣
φ

(2)
i φ

(1)
j

∣

∣

∣

∣
∈ o(D [K,K]) ,

for i ∈ J andj ∈ J\K. From this it follows immediately that

D [J\K, J] = D [J, J\K] ∈ o(D [K,K]) ,

henceD [I, I] = D [J, J] ∼ D [K,K].
Some preliminary considerations are needed to analyze the

behavior of the numeratorNi . From Assumptions 5.1 and 5.2 it
follows that〈Pk ,Pl〉 = 0 for k ∈ Dα or l ∈ Dα. The derivatives
φ

(l)
i and the scalar products〈Pk ,Pl〉 can be bounded from above.

There exist real constantsC1,C2 > 0 such that
∣

∣

∣φ
(l)
i

∣

∣

∣ ≤ C1

and

〈Pk ,Pl〉 ≤ C2

for k, l ∈ J. It follows from equation (11) and the triangular
inequality that

|Ni | ≤ C1C2

∑

k,l∈J

(∣

∣

∣φ
(1)
k

∣

∣

∣ +
∣

∣

∣φ
(2)
k

∣

∣

∣

) (∣

∣

∣φ
(1)
l

∣

∣

∣ +
∣

∣

∣φ
(2)
l

∣

∣

∣

)

,

which is equivalent to

Ni ∈ O



































∑

k∈J

∣

∣

∣φ
(1)
k

∣

∣

∣ +
∑

k∈J

∣

∣

∣φ
(2)
k

∣

∣

∣

















2
















.

Using this representation, it is easy to show that in Case 1 the
numeratorNi fulfills

Ni ∈ O
(

(

xα1−1 + yα2−1
)2
)

and in Case 2 it fulfills

Ni ∈ O
(

(x+ y)2
)

if α1 > 1 andα2 > 1 or

Ni ∈ O(1)

if eitherα1 = 1 orα2 = 1.
Since the parameterization is regular in every point different

from x0, it follows from the integrability condition (Theorem
3.2) that|ψi |21 < ∞ if, in Case 1, the function

(

xα1−1 + yα2−1
)2

K1x2α1−1 + K2xα1−1yα2−1 + K3y2α2−1

is integrable on the unit square. In Case 2 the same is true, if

(x+ y)2

K1xα1 + K2x2y+ K3xy2 + K4yα2
,

for α1, α2 > 1,

1
K1x+ K4yα2

,

for α1 = 1, or

1
K1xα1 + K4y

,

for α2 = 1, is integrable on the unit square. For the two latter
subcases it is not necessary that the triangles△22 and△23 do
not degenerate. All the conditions are fulfilled for arbitrary α,
which can be shown easily using elementary calculus, hence all
test functionsψi have well-definedH1-seminorms, so they are
in H1 (Ω).

Similar existence results can be derived for other types of sin-
gularities (e.g. other sets of degeneration). We restrict ourselves
to the two model cases, because the two considered cases cover
most of the examples which are of practical interest (of course
under the assumption that only finitely many singularities at the
vertices of the rational segments of the spline parameterization
are present). Both cases, the rectangular case as well as theL-
shape case, lead to the existence of all stiffness matrix integrals
for the standard test functions. The only condition on the basis
functions is that they have to form an NAM family of degreep,
such as NURBS.
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5.3. Swept parameterizations of three-dimensional domains

Similar to Theorem 4.3 we can derive existence results for
parameterizations of special three-dimensional domains,which
are constructed from planar patches. For further information on
the generation of swept volume parameterizations see e.g. [31].

We consider a parameterizationG[2] of the two-dimensional
domainΩ[2] consisting of basis functions

(

φj (x, y)
)

j∈J
and con-

trol points
(

Qj

)

j∈J
. The three-dimensional domainΩ[3] has a pa-

rameterizationG[3] with basis functions
(

φ(i, j) (x, y)φk (z)
)

(i, j,k)∈I

and control points(Pi)i∈I constructed from
(

Qj

)

j∈J
(as in Theo-

rem 5.4). Here we consider the index sets

I =
{

i = (i, j, k) ∈ N3 : 0 ≤ i ≤ (n1, n2, n3) − 1
}

and

J =
{

j = (i, j) ∈ N2 : 0 ≤ j ≤ (n1, n2) − 1
}

.

Figure 14 shows a volumetric parameterization of a cylindric
domain. In this case the underlying two-dimensional patch is
the circle from Example 6.2.

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5
0.0

0.5
1.0

0.0

0.5

1.0

1.5

2.0

Figure 14: Cylindric parameterization

Theorem 5.4 LetΩ[3] be a volume constructed from the two-
dimensional domainΩ[2], i.e. for i ∈ I the control pointPi ful-

fills P(i, j,k) =
(

Q1
(i, j),Q

2
(i, j),Pk

)T
, where(Pk)k∈{0,...,n3−1} is a strictly

monotonically increasing sequence. Each trivariate test func-
tion ψ(i, j,k) fulfills

ψ(i, j,k) = φ(i, j)φk ◦
(

G[3]
)−1
∈ H1

(

Ω[3]
)

if and only if the bivariate test functionψ(i, j) fulfills

ψ(i, j) = φ(i, j) ◦
(

G[2]
)−1
∈ H1

(

Ω[2]
)

.

This theorem states existence results for cylindric domains.
It can be applied to more general domains using Theorem 3.6.
In combination with the examples from Subsection 6.2 one can
especially derive results for circular cylinders or tori. Figure

15 shows the quarter of a torus. The parameterization of the
torus is structurally equivalent to the cylindric parameterization
shown in Figure 14. In this case all test functions on the torus
are inH1. This follows directly from Theorems 3.6 and 5.4 and
the existence results for Example 6.2.

0

1
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3

-1.0

-0.5

0.0

0.5

1.0

0

1

2

3

Figure 15: Quarter of a torus

6. Case studies

There may occur different kinds of singularities, not covered
by the model cases, which lead to the non-existence of some of
the stiffness matrix integrals. In those cases we can modify the
set of basis functions to be able to guarantee that all new basis
functions are inH1 (Ω). In this section we present and compare
different ways to parameterize basic geometric objects. In Sub-
section 6.1 we parameterize a triangle and in Subsection 6.2we
parameterize the unit disc.

6.1. Triangular domains

A parameterization of a triangle as a tensor-product patch
can be obtained by collapsing one edge into a single point. This
approach is not covered by the previously defined cases (As-
sumptions 5.1 and 5.2). As a model case, we analyze a patch of
degreep = (p1, p2) with knot vectors

θ1 = (0, . . . , 0, 1, . . . , 1) ∈ R2p1+2,

θ2 = (0, . . . , 0, 1, . . . , 1) ∈ R2p2+2,

and control points

P(i, j) =

(

i
p1
,

i
p1
· j

p2

)

.

The parameterization fulfills

G (x, y) = (x, xy) ,

where det∇G = x and

Cof (∇G) (x, y) =















x −y

0 1















.
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(0, 0)T (1, 0)T

(1, 1)T

Figure 16: Control points for the triangle case (withp1 = p2 = 3)

Figure 16 shows the control point grid forp = (3, 3) and the
three extremal points(0, 0)T , (1, 0)T and(1, 1)T .

One can show that for eachj ∈ {0, . . . , p2} exists ac > 0, an
ǫ > 0 and an interval

]

y1, y2
[

⊂ ]0, 1[ such that

c <

∥

∥

∥

∥

∥

∥

∥















x −y

0 1















∇φ(0, j) (x, y)

∥

∥

∥

∥

∥

∥

∥

2

for all x < ǫ and for ally ∈
]

y1, y2
[

. Using this we get

∣

∣

∣ψ(0, j)

∣

∣

∣

2

1
>

∫ ǫ

δ

∫ y2

y1

c
x

dy dx −−−→
δ→0

∞,

henceψ(0, j) is not in H1 (Ω). Thus, we need to modify these
functions, in order to make them suitable for the Isogeometric
Analysis.

For i > 0 the gradient ofφ(i, j) is of the form

∇φ(i, j) =
(

Q1 (x, y) , xi Q2 (x, y)
)T
,

whereQ1 (x, y) andQ2 (x, y) are some polynomials. Therefore

∥

∥

∥

∥

∥

∥

∥















x −y

0 1















∇φ(i, j) (x, y)

∥

∥

∥

∥

∥

∥

∥

2

= x2 (Q (x, y))2 ,

whereQ (x, y) is some polynomial. From this it follows directly
that theH1-seminorm ofψ(i, j) exists fori > 0, since the denom-
inator of the integrand det∇G (x, y) = x cancels out.

Using again the approach taken in the examples in [1], we
modify the set of basis functions such that all considered func-
tions are inH1. We introduce an approach similar to the method
in the one-dimensional case. One can easily see that the sum of
the first row of basis functions

ϕ0 (x, y) =
p2
∑

j=0

φ(0, j) (x, y)

is equal to the 0-th univariate B-spline function of degreep1,
i.e.

ϕ0 (x, y) = B0,p1 (x) ∀ (x, y) ∈ Ω0.

For the new test functionψ0 defined byψ0 = ϕ0 ◦G−1 it can be
shown that

∣

∣

∣ψ0

∣

∣

∣

2

H1 =

∫

Ω0

x2
(

∂ϕ0(x,y)
∂x

)2

x
dx

=

∫

Ω0

x
(

B′0,p1
(x)

)2
dx < ∞.

Usingψ0 we construct a new function spaceṼh, as the space

spanned by the basis
{

ψ0
}

∪
{

ψ(i, j)

} j=0,...,p2

i=1,...,p1
. Since all test func-

tions are inH1 we get Ṽh ⊂ H1. One can again show that
Ṽh = H1 ∩ Vh. The presented method can be generalized to
other instances of singularly parameterized domains.

However, the L-shape case as described in Assumption 5.2
can also be used to parameterize a triangular domain. Figure
10 shows one example of a control point grid of a triangular
domain with curved boundary. Theorem 5.3 states that in this
case all test functions are inH1 (Ω). So this strategy to param-
eterize a triangle does not require further manipulation ofthe
function spaceVh (Ω).

6.2. Circular domains
The methods and results from Subsection 5.2 can be applied

when parameterizing the interior of the unit circle. Here we
compare two different parameterizations. Both methods have
been presented in [22]. The first example has a polar coordinate
structure.

Example 6.1 Consider a NURBS parameterization of degree
p = (1, 2) with knot vectorsθ1 = (0, 0, 1, 1) and θ2 =
(

0, 0, 0, 1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 , 1, 1, 1

)

. The control points and weights
are given in Table 2.

P(i, j), w(i, j) i = 0 i = 1

j = 0 (0, 0)T , 1 (1, 0)T , 1

j = 1 (0, 0)T , 1√
2

(1, 1)T , 1√
2

j = 2 (0, 0)T , 1 (0, 1)T , 1

j = 3 (0, 0)T , 1√
2

(−1, 1)T , 1√
2

j = 4 (0, 0)T , 1 (−1, 0)T , 1

j = 5 (0, 0)T , 1√
2

(−1,−1)T , 1√
2

j = 6 (0, 0)T , 1 (0,−1)T , 1

j = 7 (0, 0)T , 1√
2

(1,−1)T , 1√
2

j = 8 (0, 0)T , 1 (1, 0)T , 1

Table 2: Control points and weights for Example 6.1

Figure 17 shows the control points and Figure 18 shows the
parameterization for Example 6.1. In Figure 17 the control
points that lie on a common continuous or dashed line have
a commoni- or j-index, respectively. In this situation all con-
trol points with i = 0 degenerate to the origin. This leads to
a singular parameterization with∇G (0, y) = 0 for 0 ≤ y ≤ 1.
Basically, this singularity is similar to the triangular parameter-
ization from Subsection 6.1.
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(1, 0)T

(0, 1)T

Figure 17: Control points for Example 6.1

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 18: Parameterization for Example 6.1

Among the 18 test functionsψ(i, j) only those withi = 1 are in
H1 (Ω). The basis ofVh has to be modified in order to achieve
Ṽh (Ω) ⊆ C0 (Ω) ∩ H1 (Ω). This results in a total number of
9 basis functions for̃Vh after modification, since allψ(0, j) for
0 ≤ j ≤ 8 as well asψ(1,0) andψ(1,8) have to be summed up.

The second possibility to parameterize a circular domain is
given in Example 6.2. It has a more Cartesian-like structure
than Example 6.1.

Example 6.2 Consider a NURBS parameterization of degree
p = (2, 2) with knot vectorsθ1 = θ2 = (0, 0, 0, 1, 1, 1). The
control points and weights are given in Table 3.

P(i, j), w(i, j) i = 0 i = 1 i = 2

j = 0 (−1, 0)T , 1 (−1,−1)T , 1√
2

(0,−1)T , 1

j = 1 (−1, 1)T , 1√
2

(0, 0)T , 1 (1,−1)T , 1√
2

j = 2 (0, 1)T , 1 (1, 1)T , 1√
2

(1, 0)T , 1

Table 3: Control points and weights for Example 6.2

The control points and the parameterization corresponding
to Example 6.2 are shown in Figures 19 and 20. Similarly to
Figure 17 the control points in Figure 19 which lie on a common
continuous or dashed line have a commoni- or j-index.

Here we have four singularities at the parameter valuesx1 =

(0, 0)T , x2 = (0, 1)T , x3 = (1, 1)T andx4 = (1, 0)T . From Theo-
rem 5.3 it follows that all test functions are inH1, since the pa-
rameterization is symmetric with respect to the singular points.

(1, 0)T

(0, 1)T

Figure 19: Control points for Example 6.2

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 20: Parameterization for Example 6.2

Hence the function spaceVh is spanned by 9 basis functions and
fulfills Vh (Ω) ⊆ C∞ (Ω) ∩ H1 (Ω).

In Example 6.2 the basis functions do not require a modifi-
cation but are even inC∞. In Example 6.1 the test functionΨ0

which corresponds to the origin is interpolating at the origin,
i.e.Ψ0 (0, 0) = 1, but has no well-defined gradient in this point.
In Example 6.2 the corresponding test functionψ(1,1) is smooth
everywhere but fulfillsψ(1,1) (0, 0) < 1, so it is not interpolat-
ing. When restricted to the boundary ofΩ, the values of the ba-
sis functions corresponding to the 8 outer control points are the
same for both parameterizations. We highly recommend to use
the parameterization given in Example 6.2 rather than the pa-
rameterization from Example 6.1, since it is more concise and
does not require further manipulation of the basis functions.

7. Conclusions

We considered the isogeometric approach for the numerical
discretization of a general second order elliptic partial differen-
tial equation in the one- and two-dimensional case. We assumed
that the control points degenerate such that the parameterization
possesses a singular point in one corner of the parameter do-
main. This situation can occur when some of the control points
near the boundary are equal or collinear.

In the one-dimensional case we showed that if the firstα con-
trol points are equal, then the first⌊ α/2⌋ + 1 test functions are
not in H1. We showed the existence of all stiffness matrix in-
tegrals for two special (but practically interesting) cases in the
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two-dimensional case. If some test functions are not inH1 be-
cause of a singularity, one may show that their sum is anH1-
function and use it as a test function instead. This was demon-
strated in the one-dimensional case and for a parameterization
of a triangle with a collapsing edge. A more general study will
be a topic for future research.

Note that the results of our paper can be extended to parame-
terizations with several singular points, provided that the singu-
larities occur at the vertices of the polynomial or rationalseg-
ments. Singular points in the interior of edges, however, require
a separate analysis, which should be analyzed in the future.

Strong distortions of the control point grid may lead to pa-
rameterizations that contain many singular or almost singular
points. By almost singular points we understand points, where
the determinant of the parameterization gradient is close to
0. There may occur severe singularities, that lead to the non-
existence of all stiffness matrix integrals in one specific NURBS
patch. One area of future research will be to characterize other
singularities and to analyze the asymptotic behavior of theinte-
grand functions. The goal will be to prove qualitative existence
results as well as quantitative results concerning the condition
number of the stiffness matrix or the approximation power of
the discretized space.

One should also consider other differential equations, which
lead to function spaces different fromH1 (Ω). An example
would be the spaceH (div;Ω) which is defined as the sub-
space ofL2 (Ω), where the divergence of any function is anL2-
function as well. It may happen, that NURBS test functions are
contained inH (div;Ω) but not inH1 (Ω).

Of particular interest is also the extension to higher dimen-
sions. Especially for three-dimensional NURBS-based repre-
sentations, which are widely used in technical applications, ex-
istence results are of importance.

Acknowledgements

The first author was supported by the government of Upper
Austria through the Doctoral Program ”Computational Mathe-
matics” at the Johannes Kepler University of Linz.

Appendix

Proof of Theorem 3.2.Let 0 < ǫ < 1 andC > 0. We know
from the asymptotic behavior off andg that there exists aδ > 0
such that(1− ǫ) g (x) < g (x) and f (x) ≤ Cf (x) for all x ∈
Ω0 ∩ Uδ (x0). The integral can be split, such that

∫

Ω0

f (x)
g (x)

dx =

∫

Ω0∩Uδ(x0)

f (x)
g (x)

dx

+

∫

Ω0\Uδ(x0)

f (x)
g (x)

dx,

where
∫

Ω0∩Uδ(x0)

f (x)
g (x)

dx <
1

1− ǫ

∫

Ω0∩Uδ(x0)

f (x)
g (x)

dx

and
∫

Ω0∩Uδ(x0)

f (x)
g (x)

dx ≤ C
∫

Ω0∩Uδ(x0)

f (x)
g (x)

dx.

Sinceg is continuous, it is bounded from below by some con-
stantc > 0, so

∫

Ω0\Uδ(x0)

f (x)
g (x)

dx ≤ M.

From the assumption

∫

Ω0

f (x)
g (x)

dx = D < ∞

it follows
∫

Ω0

f (x)
g (x)

dx < M +
CD
1− ǫ

< ∞.
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